lightgbm 0.1.2 → 0.1.3
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +5 -0
- data/README.md +79 -9
- data/lib/lightgbm.rb +6 -1
- data/lib/lightgbm/booster.rb +1 -1
- data/lib/lightgbm/classifier.rb +64 -0
- data/lib/lightgbm/dataset.rb +32 -3
- data/lib/lightgbm/regressor.rb +34 -0
- data/lib/lightgbm/version.rb +1 -1
- metadata +33 -3
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 3d841acf71e8af7111178da8c2062b47900ec953a94154a0cdf9f28bf7d61714
|
4
|
+
data.tar.gz: 6ed019f4094803a06be77008e48870fb8db3acac4b83f3675eaeae4e20c27fdb
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 477e25066789028e7b8a8a78107c1ed823bd06d96d97afdda41b502e2e3e4a9e0065888c414effe4ace4097baa4d4b18988c4ee6b4a9d06347992afa201a52b5
|
7
|
+
data.tar.gz: eabb924994ffcafce6cb9038a60e3327528d2308d39c62bc336a06191e471ff412e141f9117446abc068aabbe9d1d16be59cc8bdca889270219895e85ec9e57b
|
data/CHANGELOG.md
CHANGED
data/README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
# LightGBM
|
2
2
|
|
3
|
-
[LightGBM](https://github.com/microsoft/LightGBM) for Ruby
|
3
|
+
[LightGBM](https://github.com/microsoft/LightGBM) - the high performance machine learning library - for Ruby
|
4
4
|
|
5
5
|
:fire: Uses the C API for blazing performance
|
6
6
|
|
@@ -18,6 +18,16 @@ gem 'lightgbm'
|
|
18
18
|
|
19
19
|
## Getting Started
|
20
20
|
|
21
|
+
This library follows the [Data Structure, Training, and Scikit-Learn APIs](https://lightgbm.readthedocs.io/en/latest/Python-API.html) of the Python library. A few differences are:
|
22
|
+
|
23
|
+
- The `get_` prefix is removed from methods
|
24
|
+
- The default verbosity is `-1`
|
25
|
+
- With the `cv` method, `stratified` is set to `false`
|
26
|
+
|
27
|
+
Some methods and options are also missing at the moment. PRs welcome!
|
28
|
+
|
29
|
+
## Training API
|
30
|
+
|
21
31
|
Train a model
|
22
32
|
|
23
33
|
```ruby
|
@@ -44,38 +54,98 @@ Load the model from a file
|
|
44
54
|
booster = LightGBM::Booster.new(model_file: "model.txt")
|
45
55
|
```
|
46
56
|
|
47
|
-
Get
|
57
|
+
Get the importance of features
|
48
58
|
|
49
59
|
```ruby
|
50
60
|
booster.feature_importance
|
51
61
|
```
|
52
62
|
|
53
|
-
|
63
|
+
Early stopping
|
54
64
|
|
55
65
|
```ruby
|
56
66
|
LightGBM.train(params, train_set, valid_set: [train_set, test_set], early_stopping_rounds: 5)
|
57
67
|
```
|
58
68
|
|
59
|
-
|
69
|
+
CV
|
60
70
|
|
61
71
|
```ruby
|
62
72
|
LightGBM.cv(params, train_set, nfold: 5, verbose_eval: true)
|
63
73
|
```
|
64
74
|
|
65
|
-
##
|
75
|
+
## Scikit-Learn API
|
66
76
|
|
67
|
-
|
77
|
+
Prep your data
|
68
78
|
|
69
|
-
|
70
|
-
|
79
|
+
```ruby
|
80
|
+
x = [[1, 2], [3, 4], [5, 6], [7, 8]]
|
81
|
+
y = [1, 2, 3, 4]
|
82
|
+
```
|
71
83
|
|
72
|
-
|
84
|
+
Train a model
|
85
|
+
|
86
|
+
```ruby
|
87
|
+
model = LightGBM::Regressor.new
|
88
|
+
model.fit(x, y)
|
89
|
+
```
|
90
|
+
|
91
|
+
> For classification, use `LightGBM::Classifier`
|
92
|
+
|
93
|
+
Predict
|
94
|
+
|
95
|
+
```ruby
|
96
|
+
model.predict(x)
|
97
|
+
```
|
98
|
+
|
99
|
+
> For classification, use `predict_proba` for probabilities
|
100
|
+
|
101
|
+
Save the model to a file
|
102
|
+
|
103
|
+
```ruby
|
104
|
+
model.save_model("model.txt")
|
105
|
+
```
|
106
|
+
|
107
|
+
Load the model from a file
|
108
|
+
|
109
|
+
```ruby
|
110
|
+
model.load_model("model.txt")
|
111
|
+
```
|
112
|
+
|
113
|
+
Get the importance of features
|
114
|
+
|
115
|
+
```ruby
|
116
|
+
model.feature_importances
|
117
|
+
```
|
118
|
+
|
119
|
+
## Data
|
120
|
+
|
121
|
+
Data can be an array of arrays
|
122
|
+
|
123
|
+
```ruby
|
124
|
+
[[1, 2, 3], [4, 5, 6]]
|
125
|
+
```
|
126
|
+
|
127
|
+
Or a Daru data frame
|
128
|
+
|
129
|
+
```ruby
|
130
|
+
Daru::DataFrame.from_csv("houses.csv")
|
131
|
+
```
|
132
|
+
|
133
|
+
Or a Numo NArray
|
134
|
+
|
135
|
+
```ruby
|
136
|
+
Numo::DFloat.new(3, 2).seq
|
137
|
+
```
|
73
138
|
|
74
139
|
## Helpful Resources
|
75
140
|
|
76
141
|
- [Parameters](https://lightgbm.readthedocs.io/en/latest/Parameters.html)
|
77
142
|
- [Parameter Tuning](https://lightgbm.readthedocs.io/en/latest/Parameters-Tuning.html)
|
78
143
|
|
144
|
+
## Related Projects
|
145
|
+
|
146
|
+
- [Xgb](https://github.com/ankane/xgb) - XGBoost for Ruby
|
147
|
+
- [Eps](https://github.com/ankane/eps) - Machine Learning for Ruby
|
148
|
+
|
79
149
|
## Credits
|
80
150
|
|
81
151
|
Thanks to the [xgboost](https://github.com/PairOnAir/xgboost-ruby) gem for serving as an initial reference, and Selva Prabhakaran for the [test datasets](https://github.com/selva86/datasets).
|
data/lib/lightgbm.rb
CHANGED
@@ -8,11 +8,15 @@ require "lightgbm/dataset"
|
|
8
8
|
require "lightgbm/ffi"
|
9
9
|
require "lightgbm/version"
|
10
10
|
|
11
|
+
# scikit-learn API
|
12
|
+
require "lightgbm/classifier"
|
13
|
+
require "lightgbm/regressor"
|
14
|
+
|
11
15
|
module LightGBM
|
12
16
|
class Error < StandardError; end
|
13
17
|
|
14
18
|
class << self
|
15
|
-
def train(params, train_set,num_boost_round: 100, valid_sets: [], valid_names: [], early_stopping_rounds: nil, verbose_eval: true)
|
19
|
+
def train(params, train_set, num_boost_round: 100, valid_sets: [], valid_names: [], early_stopping_rounds: nil, verbose_eval: true)
|
16
20
|
booster = Booster.new(params: params, train_set: train_set)
|
17
21
|
|
18
22
|
valid_contain_train = false
|
@@ -150,6 +154,7 @@ module LightGBM
|
|
150
154
|
if early_stopping_rounds
|
151
155
|
stop_early = false
|
152
156
|
means.each do |k, score|
|
157
|
+
# TODO fix higher better
|
153
158
|
if best_score[k].nil? || score < best_score[k]
|
154
159
|
best_score[k] = score
|
155
160
|
best_iter[k] = iteration
|
data/lib/lightgbm/booster.rb
CHANGED
@@ -77,7 +77,7 @@ module LightGBM
|
|
77
77
|
num_feature = self.num_feature
|
78
78
|
out_result = ::FFI::MemoryPointer.new(:double, num_feature)
|
79
79
|
check_result FFI.LGBM_BoosterFeatureImportance(handle_pointer, iteration, importance_type, out_result)
|
80
|
-
out_result.read_array_of_double(num_feature)
|
80
|
+
out_result.read_array_of_double(num_feature).map(&:to_i)
|
81
81
|
end
|
82
82
|
|
83
83
|
def model_from_string(model_str)
|
@@ -0,0 +1,64 @@
|
|
1
|
+
module LightGBM
|
2
|
+
class Classifier
|
3
|
+
def initialize(num_leaves: 31, learning_rate: 0.1, n_estimators: 100, objective: nil)
|
4
|
+
@params = {
|
5
|
+
num_leaves: num_leaves,
|
6
|
+
learning_rate: learning_rate
|
7
|
+
}
|
8
|
+
@params[:objective] = objective if objective
|
9
|
+
@n_estimators = n_estimators
|
10
|
+
end
|
11
|
+
|
12
|
+
def fit(x, y)
|
13
|
+
n_classes = y.uniq.size
|
14
|
+
|
15
|
+
params = @params.dup
|
16
|
+
if n_classes > 2
|
17
|
+
params[:objective] ||= "multiclass"
|
18
|
+
params[:num_class] = n_classes
|
19
|
+
else
|
20
|
+
params[:objective] ||= "binary"
|
21
|
+
end
|
22
|
+
|
23
|
+
train_set = Dataset.new(x, label: y)
|
24
|
+
@booster = LightGBM.train(params, train_set, num_boost_round: @n_estimators)
|
25
|
+
nil
|
26
|
+
end
|
27
|
+
|
28
|
+
def predict(data)
|
29
|
+
y_pred = @booster.predict(data)
|
30
|
+
|
31
|
+
if y_pred.first.is_a?(Array)
|
32
|
+
# multiple classes
|
33
|
+
y_pred.map do |v|
|
34
|
+
v.map.with_index.max_by { |v2, i| v2 }.last
|
35
|
+
end
|
36
|
+
else
|
37
|
+
y_pred.map { |v| v > 0.5 ? 1 : 0 }
|
38
|
+
end
|
39
|
+
end
|
40
|
+
|
41
|
+
def predict_proba(data)
|
42
|
+
y_pred = @booster.predict(data)
|
43
|
+
|
44
|
+
if y_pred.first.is_a?(Array)
|
45
|
+
# multiple classes
|
46
|
+
y_pred
|
47
|
+
else
|
48
|
+
y_pred.map { |v| [1 - v, v] }
|
49
|
+
end
|
50
|
+
end
|
51
|
+
|
52
|
+
def save_model(fname)
|
53
|
+
@booster.save_model(fname)
|
54
|
+
end
|
55
|
+
|
56
|
+
def load_model(fname)
|
57
|
+
@booster = Booster.new(params: @params, model_file: fname)
|
58
|
+
end
|
59
|
+
|
60
|
+
def feature_importances
|
61
|
+
@booster.feature_importance
|
62
|
+
end
|
63
|
+
end
|
64
|
+
end
|
data/lib/lightgbm/dataset.rb
CHANGED
@@ -20,9 +20,25 @@ module LightGBM
|
|
20
20
|
used_row_indices.put_array_of_int32(0, used_indices)
|
21
21
|
check_result FFI.LGBM_DatasetGetSubset(reference, used_row_indices, used_indices.count, parameters, @handle)
|
22
22
|
else
|
23
|
-
|
24
|
-
|
25
|
-
|
23
|
+
if matrix?(data)
|
24
|
+
nrow = data.row_count
|
25
|
+
ncol = data.column_count
|
26
|
+
flat_data = data.to_a.flatten
|
27
|
+
elsif daru?(data)
|
28
|
+
nrow, ncol = data.shape
|
29
|
+
flat_data = data.each_vector.map(&:to_a).flatten
|
30
|
+
elsif narray?(data)
|
31
|
+
nrow, ncol = data.shape
|
32
|
+
flat_data = data.flatten.to_a
|
33
|
+
else
|
34
|
+
nrow = data.count
|
35
|
+
ncol = data.first.count
|
36
|
+
flat_data = data.flatten
|
37
|
+
end
|
38
|
+
|
39
|
+
c_data = ::FFI::MemoryPointer.new(:float, nrow * ncol)
|
40
|
+
c_data.put_array_of_float(0, flat_data)
|
41
|
+
check_result FFI.LGBM_DatasetCreateFromMat(c_data, 0, nrow, ncol, 1, parameters, reference, @handle)
|
26
42
|
end
|
27
43
|
# causes "Stack consistency error"
|
28
44
|
# ObjectSpace.define_finalizer(self, self.class.finalize(handle_pointer))
|
@@ -89,11 +105,24 @@ module LightGBM
|
|
89
105
|
end
|
90
106
|
|
91
107
|
def set_field(field_name, data)
|
108
|
+
data = data.to_a unless data.is_a?(Array)
|
92
109
|
c_data = ::FFI::MemoryPointer.new(:float, data.count)
|
93
110
|
c_data.put_array_of_float(0, data)
|
94
111
|
check_result FFI.LGBM_DatasetSetField(handle_pointer, field_name, c_data, data.count, 0)
|
95
112
|
end
|
96
113
|
|
114
|
+
def matrix?(data)
|
115
|
+
defined?(Matrix) && data.is_a?(Matrix)
|
116
|
+
end
|
117
|
+
|
118
|
+
def daru?(data)
|
119
|
+
defined?(Daru::DataFrame) && data.is_a?(Daru::DataFrame)
|
120
|
+
end
|
121
|
+
|
122
|
+
def narray?(data)
|
123
|
+
defined?(Numo::NArray) && data.is_a?(Numo::NArray)
|
124
|
+
end
|
125
|
+
|
97
126
|
include Utils
|
98
127
|
end
|
99
128
|
end
|
@@ -0,0 +1,34 @@
|
|
1
|
+
module LightGBM
|
2
|
+
class Regressor
|
3
|
+
def initialize(num_leaves: 31, learning_rate: 0.1, n_estimators: 100, objective: nil)
|
4
|
+
@params = {
|
5
|
+
num_leaves: num_leaves,
|
6
|
+
learning_rate: learning_rate
|
7
|
+
}
|
8
|
+
@params[:objective] = objective if objective
|
9
|
+
@n_estimators = n_estimators
|
10
|
+
end
|
11
|
+
|
12
|
+
def fit(x, y)
|
13
|
+
train_set = Dataset.new(x, label: y)
|
14
|
+
@booster = LightGBM.train(@params, train_set, num_boost_round: @n_estimators)
|
15
|
+
nil
|
16
|
+
end
|
17
|
+
|
18
|
+
def predict(data)
|
19
|
+
@booster.predict(data)
|
20
|
+
end
|
21
|
+
|
22
|
+
def save_model(fname)
|
23
|
+
@booster.save_model(fname)
|
24
|
+
end
|
25
|
+
|
26
|
+
def load_model(fname)
|
27
|
+
@booster = Booster.new(params: @params, model_file: fname)
|
28
|
+
end
|
29
|
+
|
30
|
+
def feature_importances
|
31
|
+
@booster.feature_importance
|
32
|
+
end
|
33
|
+
end
|
34
|
+
end
|
data/lib/lightgbm/version.rb
CHANGED
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: lightgbm
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.1.
|
4
|
+
version: 0.1.3
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Andrew Kane
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2019-08-
|
11
|
+
date: 2019-08-16 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: ffi
|
@@ -66,6 +66,34 @@ dependencies:
|
|
66
66
|
- - ">="
|
67
67
|
- !ruby/object:Gem::Version
|
68
68
|
version: '5'
|
69
|
+
- !ruby/object:Gem::Dependency
|
70
|
+
name: daru
|
71
|
+
requirement: !ruby/object:Gem::Requirement
|
72
|
+
requirements:
|
73
|
+
- - ">="
|
74
|
+
- !ruby/object:Gem::Version
|
75
|
+
version: '0'
|
76
|
+
type: :development
|
77
|
+
prerelease: false
|
78
|
+
version_requirements: !ruby/object:Gem::Requirement
|
79
|
+
requirements:
|
80
|
+
- - ">="
|
81
|
+
- !ruby/object:Gem::Version
|
82
|
+
version: '0'
|
83
|
+
- !ruby/object:Gem::Dependency
|
84
|
+
name: numo-narray
|
85
|
+
requirement: !ruby/object:Gem::Requirement
|
86
|
+
requirements:
|
87
|
+
- - ">="
|
88
|
+
- !ruby/object:Gem::Version
|
89
|
+
version: '0'
|
90
|
+
type: :development
|
91
|
+
prerelease: false
|
92
|
+
version_requirements: !ruby/object:Gem::Requirement
|
93
|
+
requirements:
|
94
|
+
- - ">="
|
95
|
+
- !ruby/object:Gem::Version
|
96
|
+
version: '0'
|
69
97
|
description:
|
70
98
|
email: andrew@chartkick.com
|
71
99
|
executables: []
|
@@ -76,8 +104,10 @@ files:
|
|
76
104
|
- README.md
|
77
105
|
- lib/lightgbm.rb
|
78
106
|
- lib/lightgbm/booster.rb
|
107
|
+
- lib/lightgbm/classifier.rb
|
79
108
|
- lib/lightgbm/dataset.rb
|
80
109
|
- lib/lightgbm/ffi.rb
|
110
|
+
- lib/lightgbm/regressor.rb
|
81
111
|
- lib/lightgbm/utils.rb
|
82
112
|
- lib/lightgbm/version.rb
|
83
113
|
homepage: https://github.com/ankane/lightgbm
|
@@ -102,5 +132,5 @@ requirements: []
|
|
102
132
|
rubygems_version: 3.0.4
|
103
133
|
signing_key:
|
104
134
|
specification_version: 4
|
105
|
-
summary: LightGBM for Ruby
|
135
|
+
summary: LightGBM - the high performance machine learning library - for Ruby
|
106
136
|
test_files: []
|