lernen 0.1.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml ADDED
@@ -0,0 +1,7 @@
1
+ ---
2
+ SHA256:
3
+ metadata.gz: c925ae55bb57b20dc2ef637e751882ec493d565b7f0b7a8348c858593ef0d5f4
4
+ data.tar.gz: dbfae4d012e582aeb909460eea27c30945a62e6586cd8ae7f9be48ac2c6dac6c
5
+ SHA512:
6
+ metadata.gz: c0621a919ee2cebdc932f9aec31aac52ca7cfc528cd8f8f24ff4519e2d39769c4a6c2c5f9eeecad1394339afbe1625a89fb3acb418aa02e452eef2b78eb2a111
7
+ data.tar.gz: e88d2feb2c44e766e348c62c05ea15cc5eddcb816077e33db40071957047f31b7eccfeb2f9d8b1679c1907f6a57e116042dac009180b5cef2a4453da1c05f7d1
data/.editorconfig ADDED
@@ -0,0 +1,8 @@
1
+ root = true
2
+
3
+ [*]
4
+ end_of_line = lf
5
+ insert_final_newline = true
6
+ charset = utf-8
7
+ indent_style = space
8
+ indent_size = 2
data/.rubocop.yml ADDED
@@ -0,0 +1,34 @@
1
+ inherit_gem:
2
+ syntax_tree: config/rubocop.yml
3
+
4
+ require:
5
+ - rubocop-minitest
6
+ - rubocop-rake
7
+
8
+ AllCops:
9
+ TargetRubyVersion: 3.1
10
+ NewCops: enable
11
+
12
+ Metrics/AbcSize:
13
+ Enabled: false
14
+
15
+ Metrics/BlockLength:
16
+ Enabled: false
17
+
18
+ Metrics/ClassLength:
19
+ Enabled: false
20
+
21
+ Metrics/CyclomaticComplexity:
22
+ Enabled: false
23
+
24
+ Metrics/MethodLength:
25
+ Enabled: false
26
+
27
+ Metrics/ModuleLength:
28
+ Enabled: false
29
+
30
+ Metrics/ParameterLists:
31
+ Enabled: false
32
+
33
+ Metrics/PerceivedComplexity:
34
+ Enabled: false
data/.yardopts ADDED
@@ -0,0 +1,3 @@
1
+ --protected
2
+ --no-private
3
+ --markup markdown
@@ -0,0 +1,84 @@
1
+ # Contributor Covenant Code of Conduct
2
+
3
+ ## Our Pledge
4
+
5
+ We as members, contributors, and leaders pledge to make participation in our community a harassment-free experience for everyone, regardless of age, body size, visible or invisible disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, socio-economic status, nationality, personal appearance, race, religion, or sexual identity and orientation.
6
+
7
+ We pledge to act and interact in ways that contribute to an open, welcoming, diverse, inclusive, and healthy community.
8
+
9
+ ## Our Standards
10
+
11
+ Examples of behavior that contributes to a positive environment for our community include:
12
+
13
+ * Demonstrating empathy and kindness toward other people
14
+ * Being respectful of differing opinions, viewpoints, and experiences
15
+ * Giving and gracefully accepting constructive feedback
16
+ * Accepting responsibility and apologizing to those affected by our mistakes, and learning from the experience
17
+ * Focusing on what is best not just for us as individuals, but for the overall community
18
+
19
+ Examples of unacceptable behavior include:
20
+
21
+ * The use of sexualized language or imagery, and sexual attention or
22
+ advances of any kind
23
+ * Trolling, insulting or derogatory comments, and personal or political attacks
24
+ * Public or private harassment
25
+ * Publishing others' private information, such as a physical or email
26
+ address, without their explicit permission
27
+ * Other conduct which could reasonably be considered inappropriate in a
28
+ professional setting
29
+
30
+ ## Enforcement Responsibilities
31
+
32
+ Community leaders are responsible for clarifying and enforcing our standards of acceptable behavior and will take appropriate and fair corrective action in response to any behavior that they deem inappropriate, threatening, offensive, or harmful.
33
+
34
+ Community leaders have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, and will communicate reasons for moderation decisions when appropriate.
35
+
36
+ ## Scope
37
+
38
+ This Code of Conduct applies within all community spaces, and also applies when an individual is officially representing the community in public spaces. Examples of representing our community include using an official e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event.
39
+
40
+ ## Enforcement
41
+
42
+ Instances of abusive, harassing, or otherwise unacceptable behavior may be reported to the community leaders responsible for enforcement at make.just.on@gmail.com. All complaints will be reviewed and investigated promptly and fairly.
43
+
44
+ All community leaders are obligated to respect the privacy and security of the reporter of any incident.
45
+
46
+ ## Enforcement Guidelines
47
+
48
+ Community leaders will follow these Community Impact Guidelines in determining the consequences for any action they deem in violation of this Code of Conduct:
49
+
50
+ ### 1. Correction
51
+
52
+ **Community Impact**: Use of inappropriate language or other behavior deemed unprofessional or unwelcome in the community.
53
+
54
+ **Consequence**: A private, written warning from community leaders, providing clarity around the nature of the violation and an explanation of why the behavior was inappropriate. A public apology may be requested.
55
+
56
+ ### 2. Warning
57
+
58
+ **Community Impact**: A violation through a single incident or series of actions.
59
+
60
+ **Consequence**: A warning with consequences for continued behavior. No interaction with the people involved, including unsolicited interaction with those enforcing the Code of Conduct, for a specified period of time. This includes avoiding interactions in community spaces as well as external channels like social media. Violating these terms may lead to a temporary or permanent ban.
61
+
62
+ ### 3. Temporary Ban
63
+
64
+ **Community Impact**: A serious violation of community standards, including sustained inappropriate behavior.
65
+
66
+ **Consequence**: A temporary ban from any sort of interaction or public communication with the community for a specified period of time. No public or private interaction with the people involved, including unsolicited interaction with those enforcing the Code of Conduct, is allowed during this period. Violating these terms may lead to a permanent ban.
67
+
68
+ ### 4. Permanent Ban
69
+
70
+ **Community Impact**: Demonstrating a pattern of violation of community standards, including sustained inappropriate behavior, harassment of an individual, or aggression toward or disparagement of classes of individuals.
71
+
72
+ **Consequence**: A permanent ban from any sort of public interaction within the community.
73
+
74
+ ## Attribution
75
+
76
+ This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 2.0,
77
+ available at https://www.contributor-covenant.org/version/2/0/code_of_conduct.html.
78
+
79
+ Community Impact Guidelines were inspired by [Mozilla's code of conduct enforcement ladder](https://github.com/mozilla/diversity).
80
+
81
+ [homepage]: https://www.contributor-covenant.org
82
+
83
+ For answers to common questions about this code of conduct, see the FAQ at
84
+ https://www.contributor-covenant.org/faq. Translations are available at https://www.contributor-covenant.org/translations.
data/LICENSE.txt ADDED
@@ -0,0 +1,21 @@
1
+ The MIT License (MIT)
2
+
3
+ Copyright (c) 2024 TSUYUSATO Kitsune
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in
13
+ all copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
21
+ THE SOFTWARE.
data/README.md ADDED
@@ -0,0 +1,45 @@
1
+ # Lernen
2
+
3
+ > a simple automata learning library.
4
+
5
+ ## Usage
6
+
7
+ ```ruby
8
+ require "lernen"
9
+
10
+ alphabet = %w[0 1]
11
+ sul = Lernen::SUL.from_block { |inputs| inputs.count { _1 == "1" } % 4 == 3 }
12
+ oracle = Lernen::BreadthFirstExplorationOracle.new(alphabet, sul)
13
+
14
+ dfa = Lernen::LStar.learn(alphabet, sul, oracle, automaton_type: :dfa)
15
+ # => Lernen::DFA.new(
16
+ # 0,
17
+ # Set[3],
18
+ # {
19
+ # [0, "0"] => 0,
20
+ # [0, "1"] => 1,
21
+ # [1, "0"] => 1,
22
+ # [1, "1"] => 2,
23
+ # [2, "0"] => 2,
24
+ # [2, "1"] => 3,
25
+ # [3, "0"] => 3,
26
+ # [3, "1"] => 0
27
+ # }
28
+ # )
29
+ ```
30
+
31
+ ## Algorithms
32
+
33
+ Learnen supports these automata learning algorithms.
34
+
35
+ | Algorithm | Supported `automaton_type` |
36
+ |:----------------:|:--------------------------:|
37
+ | `LStar` | `:dfa`, `:moore`, `:mealy` |
38
+ | `KearnsVazirani` | `:dfa`, `:moore`, `:mealy` |
39
+ | `LSharp` | `:dfa`, `:moore`, `:mealy` |
40
+
41
+ ## License
42
+
43
+ [MIT](https://opensource.org/license/MIT)
44
+
45
+ 2024 (C) Hiroya Fujinami
data/Rakefile ADDED
@@ -0,0 +1,29 @@
1
+ # frozen_string_literal: true
2
+
3
+ require "bundler/gem_tasks"
4
+ require "minitest/test_task"
5
+ require "yard"
6
+ require "rubocop/rake_task"
7
+ require "syntax_tree/rake_tasks"
8
+
9
+ Minitest::TestTask.create
10
+
11
+ YARD::Rake::YardocTask.new do |t|
12
+ t.files = ["lib/**/*.rb"]
13
+ t.stats_options = ["--list-undoc"]
14
+ end
15
+
16
+ RuboCop::RakeTask.new { |t| t.options = %w[--fail-level W] }
17
+
18
+ [SyntaxTree::Rake::WriteTask, SyntaxTree::Rake::CheckTask].each do |task|
19
+ task.new do |t|
20
+ t.source_files =
21
+ FileList[
22
+ %w[Gemfile Rakefile *.gemspec bin/**/{console,rake} lib/**/*.rb test/**/*.rb example/**/*.rb tool/**/*.rb]
23
+ ]
24
+ t.print_width = 120
25
+ end
26
+ end
27
+
28
+ task format: %w[rubocop:autocorrect_all stree:write]
29
+ task lint: %w[rubocop stree:check]
@@ -0,0 +1,101 @@
1
+ # frozen_string_literal: true
2
+
3
+ module Lernen
4
+ # Automaton is an abstract class for automata.
5
+ #
6
+ # Note that this class is *abstract*. You should implement the following method:
7
+ #
8
+ # - `#step(state, input)`
9
+ class Automaton
10
+ # Computes a transition for the given `input` from the current `state`.
11
+ #
12
+ # This is *abstract*.
13
+ def step(_state, _input)
14
+ raise TypeError, "abstract method: `step`"
15
+ end
16
+
17
+ # Runs this automaton with the given input string and returns an output sequence
18
+ # and a state after running.
19
+ def run(inputs)
20
+ state = @initial_state
21
+ outputs = []
22
+ inputs.each do |input|
23
+ output, state = step(state, input)
24
+ outputs << output
25
+ end
26
+ [outputs, state]
27
+ end
28
+ end
29
+
30
+ # DFA is a deterministic finite-state automaton.
31
+ class DFA < Automaton
32
+ def initialize(initial_state, accept_states, transitions)
33
+ super()
34
+
35
+ @initial_state = initial_state
36
+ @accept_states = accept_states
37
+ @transitions = transitions
38
+ end
39
+
40
+ attr_reader :initial_state, :accept_states, :transitions
41
+
42
+ # Computes a transition for the given `input` from the current `state`.
43
+ def step(state, input)
44
+ next_state = @transitions[[state, input]]
45
+ output = @accept_states.include?(next_state)
46
+ [output, next_state]
47
+ end
48
+
49
+ # Checks equality.
50
+ def ==(other)
51
+ initial_state == other.initial_state && accept_states == other.accept_states && transitions == other.transitions
52
+ end
53
+ end
54
+
55
+ # Moore is a deterministic Moore machine.
56
+ class Moore < Automaton
57
+ def initialize(initial_state, outputs, transitions)
58
+ super()
59
+
60
+ @initial_state = initial_state
61
+ @outputs = outputs
62
+ @transitions = transitions
63
+ end
64
+
65
+ attr_reader :initial_state, :outputs, :transitions
66
+
67
+ # Computes a transition for the given `input` from the current `state`.
68
+ def step(state, input)
69
+ next_state = @transitions[[state, input]]
70
+ output = @outputs[next_state]
71
+ [output, next_state]
72
+ end
73
+
74
+ # Checks equality.
75
+ def ==(other)
76
+ initial_state == other.initial_state && outputs == other.outputs && transitions == other.transitions
77
+ end
78
+ end
79
+
80
+ # Mealy is a deterministic Mealy machine.
81
+ class Mealy < Automaton
82
+ def initialize(initial_state, transitions)
83
+ super()
84
+
85
+ @initial_state = initial_state
86
+ @transitions = transitions
87
+ end
88
+
89
+ attr_reader :initial_state, :transitions
90
+
91
+ # Computes a transition for the given `input` from the current `state`.
92
+ def step(state, input)
93
+ @transitions[[state, input]]
94
+ end
95
+
96
+ # Checks equality.
97
+ def ==(other)
98
+ initial_state == other.initial_state && transitions == other.transitions
99
+ end
100
+ end
101
+ end
@@ -0,0 +1,61 @@
1
+ # frozen_string_literal: true
2
+
3
+ module Lernen
4
+ # CexProcessor is a collection of implementations of couterexample processing procesudres.
5
+ module CexProcessor
6
+ # Processes a given `cex`. It returns a new prefix and suffix to advance a learning.
7
+ def self.process(sul, hypothesis, cex, state_to_prefix, cex_processing: :binary)
8
+ case cex_processing
9
+ in :linear
10
+ process_linear(sul, hypothesis, cex, state_to_prefix)
11
+ in :binary
12
+ process_binary(sul, hypothesis, cex, state_to_prefix)
13
+ end
14
+ end
15
+
16
+ # Processes a given `cex` by linear search.
17
+ def self.process_linear(sul, hypothesis, cex, state_to_prefix)
18
+ expected_output = sul.query(cex).last
19
+
20
+ current_state = hypothesis.initial_state
21
+ cex.each_with_index do |a, i|
22
+ _, next_state = hypothesis.step(current_state, a)
23
+
24
+ prefix = state_to_prefix[next_state]
25
+ suffix = cex[i + 1...]
26
+ return state_to_prefix[current_state], a, suffix if expected_output != sul.query(prefix + suffix).last
27
+
28
+ current_state = next_state
29
+ end
30
+ end
31
+
32
+ # Processes a given `cex` by binary search.
33
+ #
34
+ # It is known as the Rivest-Schapire (RS) technique.
35
+ def self.process_binary(sul, hypothesis, cex, state_to_prefix)
36
+ expected_output = sul.query(cex).last
37
+
38
+ low = 0
39
+ high = cex.size
40
+
41
+ while high - low > 1
42
+ mid = (low + high) / 2
43
+ prefix = cex[0...mid]
44
+ suffix = cex[mid...]
45
+
46
+ _, prefix_state = hypothesis.run(prefix)
47
+ if expected_output == sul.query(state_to_prefix[prefix_state] + suffix).last
48
+ low = mid
49
+ else
50
+ high = mid
51
+ end
52
+ end
53
+
54
+ prefix = cex[0...low]
55
+ suffix = cex[high...]
56
+
57
+ _, prefix_state = hypothesis.run(prefix)
58
+ [state_to_prefix[prefix_state], cex[low], suffix]
59
+ end
60
+ end
61
+ end
@@ -0,0 +1,199 @@
1
+ # frozen_string_literal: true
2
+
3
+ module Lernen
4
+ # ClassificationTree is a classification tree implementation.
5
+ class ClassificationTree
6
+ Node = Data.define(:suffix, :edges)
7
+ Leaf = Data.define(:prefix)
8
+
9
+ private_constant :Node, :Leaf
10
+
11
+ def initialize(alphabet, sul, cex:, automaton_type:, cex_processing:)
12
+ @alphabet = alphabet
13
+ @sul = sul
14
+ @automaton_type = automaton_type
15
+ @cex_processing = cex_processing
16
+
17
+ @paths = {}
18
+
19
+ case @automaton_type
20
+ in :dfa | :moore
21
+ @root = Node[[], {}]
22
+
23
+ empty_out = sul.query_empty
24
+ @root.edges[empty_out] = Leaf[[]]
25
+ @paths[[]] = [empty_out]
26
+
27
+ cex_out = sul.query(cex).last
28
+ @root.edges[cex_out] = Leaf[cex]
29
+ @paths[cex] = [cex_out]
30
+ in :mealy
31
+ suffix = [cex.last]
32
+ @root = Node[suffix, {}]
33
+
34
+ suffix_out = sul.query(suffix).last
35
+ @root.edges[suffix_out] = Leaf[[]]
36
+ @paths[[]] = [suffix_out]
37
+
38
+ cex_out = sul.query(cex).last
39
+ @root.edges[cex_out] = Leaf[cex]
40
+ @paths[cex] = [cex_out]
41
+ end
42
+ end
43
+
44
+ # Returns a prefix classified by `word`.
45
+ def sift(word)
46
+ node = @root
47
+ path = []
48
+
49
+ until node.is_a?(Leaf)
50
+ inputs = word + node.suffix
51
+ out = @sul.query(inputs).last
52
+ path << out
53
+
54
+ unless node.edges.include?(out)
55
+ node.edges[out] = Leaf[word]
56
+ @paths[word] = path
57
+ end
58
+
59
+ node = node.edges[out]
60
+ end
61
+
62
+ node.prefix
63
+ end
64
+
65
+ # Constructs a hypothesis automaton from this classification tree.
66
+ def to_hypothesis
67
+ transitions = {}
68
+
69
+ queue = []
70
+ prefix_to_state = {}
71
+
72
+ queue << []
73
+ prefix_to_state[[]] = prefix_to_state.size
74
+
75
+ until queue.empty?
76
+ prefix = queue.shift
77
+ state = prefix_to_state[prefix]
78
+ @alphabet.each do |input|
79
+ word = prefix + [input]
80
+ next_prefix = sift(word)
81
+
82
+ unless prefix_to_state.include?(next_prefix)
83
+ prefix_to_state[next_prefix] = prefix_to_state.size
84
+ queue << next_prefix
85
+ end
86
+
87
+ next_state = prefix_to_state[next_prefix]
88
+ case @automaton_type
89
+ in :dfa | :moore
90
+ transitions[[state, input]] = next_state
91
+ in :mealy
92
+ output = @sul.query(word).last
93
+ transitions[[state, input]] = [output, next_state]
94
+ end
95
+ end
96
+ end
97
+
98
+ state_to_prefix = prefix_to_state.to_h { |q, i| [i, q] }
99
+ automaton =
100
+ case @automaton_type
101
+ in :dfa
102
+ accept_states = state_to_prefix.to_a.filter { |(_, q)| @paths[q][0] }.to_set { |(i, _)| i }
103
+ DFA.new(0, accept_states, transitions)
104
+ in :moore
105
+ outputs = state_to_prefix.transform_values { |q| @paths[q][0] }
106
+ Moore.new(0, outputs, transitions)
107
+ in :mealy
108
+ Mealy.new(0, transitions)
109
+ end
110
+
111
+ [automaton, state_to_prefix]
112
+ end
113
+
114
+ # Update this classification tree by the given `cex`.
115
+ def process_cex(hypothesis, cex, state_to_prefix)
116
+ old_prefix, new_input, new_suffix =
117
+ CexProcessor.process(@sul, hypothesis, cex, state_to_prefix, cex_processing: @cex_processing)
118
+
119
+ _, old_prefix_state = hypothesis.run(old_prefix)
120
+ new_prefix = state_to_prefix[old_prefix_state] + [new_input]
121
+ new_prefix_out = @sul.query(new_prefix + new_suffix).last
122
+
123
+ _, old_node_state = hypothesis.run(old_prefix + [new_input])
124
+ old_node_prefix = state_to_prefix[old_node_state]
125
+ old_node_out = @sul.query(old_node_prefix + new_suffix).last
126
+
127
+ old_node_path = @paths[old_node_prefix]
128
+ parent = @root
129
+ old_node = @root.edges[old_node_path.first]
130
+ old_node_path[1..].each do |out|
131
+ parent = old_node
132
+ old_node = old_node.edges[out]
133
+ end
134
+
135
+ new_node = Node[new_suffix, {}]
136
+ parent.edges[old_node_path.last] = new_node
137
+
138
+ new_node.edges[new_prefix_out] = Leaf[new_prefix]
139
+ @paths[new_prefix] = old_node_path + [new_prefix_out]
140
+
141
+ new_node.edges[old_node_out] = Leaf[old_node_prefix]
142
+ @paths[old_node_prefix] = old_node_path + [old_node_out]
143
+ end
144
+ end
145
+
146
+ # KearnsVazirani is an implementation of the Kearns-Vazirani automata learning algorithm.
147
+ module KearnsVazirani
148
+ # Runs the Kearns-Vazirani algoritghm and returns an inferred automaton.
149
+ def self.learn(alphabet, sul, oracle, automaton_type:, cex_processing: :binary, max_learning_rounds: nil)
150
+ hypothesis = construct_first_hypothesis(alphabet, sul, automaton_type)
151
+ cex = oracle.find_cex(hypothesis)
152
+ return hypothesis if cex.nil?
153
+
154
+ classification_tree = ClassificationTree.new(alphabet, sul, cex:, automaton_type:, cex_processing:)
155
+ learning_rounds = 0
156
+
157
+ loop do
158
+ break if max_learning_rounds && learning_rounds == max_learning_rounds
159
+ learning_rounds += 1
160
+
161
+ hypothesis, state_to_prefix = classification_tree.to_hypothesis
162
+ cex = oracle.find_cex(hypothesis)
163
+ break if cex.nil?
164
+
165
+ classification_tree.process_cex(hypothesis, cex, state_to_prefix)
166
+ end
167
+
168
+ hypothesis, = classification_tree.to_hypothesis
169
+ hypothesis
170
+ end
171
+
172
+ # Constructs the first hypothesis automaton.
173
+ def self.construct_first_hypothesis(alphabet, sul, automaton_type)
174
+ transitions = {}
175
+ alphabet.each do |a|
176
+ case automaton_type
177
+ in :dfa | :moore
178
+ transitions[[0, a]] = 0
179
+ in :mealy
180
+ out = sul.query([a]).last
181
+ transitions[[0, a]] = [out, 0]
182
+ end
183
+ end
184
+
185
+ case automaton_type
186
+ in :dfa
187
+ accept_states = sul.query_empty ? Set[0] : Set.new
188
+ DFA.new(0, accept_states, transitions)
189
+ in :moore
190
+ outputs = { 0 => sul.query_empty }
191
+ Moore.new(0, outputs, transitions)
192
+ in :mealy
193
+ Mealy.new(0, transitions)
194
+ end
195
+ end
196
+
197
+ private_class_method :construct_first_hypothesis
198
+ end
199
+ end