learn_kit 0.0.1

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml ADDED
@@ -0,0 +1,7 @@
1
+ ---
2
+ SHA256:
3
+ metadata.gz: ca7aeb09d91fc1451ba01359299e250c379b932a289951ff976b9a8024bc00cb
4
+ data.tar.gz: f1422a68f87762cedba48736a8bebdac372ae8e9c52f0e3bc750b48d356c1b63
5
+ SHA512:
6
+ metadata.gz: a94136b6145991bb659c5b8e2e6306bef7ebb56d0852e479e2f1ae68283afd3eadcee28e730581bf609bfdea8a5e6ece20a21fd892390362c4ec79e663d40b4f
7
+ data.tar.gz: b1ff7601ce22526978ba5b3981e91fbd821b5e9356097274297213b62a154e7d779df7813d78d6cbf3fa23bc00cb2a52462ee09a03ec0ae9d65e7912ae19d508
data/.gitignore ADDED
@@ -0,0 +1,12 @@
1
+ /.bundle/
2
+ /.yardoc
3
+ /Gemfile.lock
4
+ /_yardoc/
5
+ /coverage/
6
+ /doc/
7
+ /pkg/
8
+ /spec/reports/
9
+ /tmp/
10
+
11
+ # rspec failure tracking
12
+ .rspec_status
data/.rspec ADDED
@@ -0,0 +1,3 @@
1
+ --require spec_helper
2
+ --format documentation
3
+ --color
data/.rubocop.yml ADDED
@@ -0,0 +1,57 @@
1
+ AllCops:
2
+ Exclude:
3
+ - bin/*
4
+ TargetRubyVersion: 2.5.0
5
+
6
+ Metrics/AbcSize:
7
+ Enabled: false
8
+
9
+ Metrics/BlockLength:
10
+ Enabled: false
11
+
12
+ Metrics/ClassLength:
13
+ Enabled: false
14
+
15
+ Metrics/LineLength:
16
+ Enabled: false
17
+
18
+ Metrics/MethodLength:
19
+ Enabled: false
20
+
21
+ Metrics/ModuleLength:
22
+ Enabled: false
23
+
24
+ Metrics/CyclomaticComplexity:
25
+ Max: 20
26
+
27
+ Layout/IndentationWidth:
28
+ Width: 2
29
+
30
+ Layout/CaseIndentation:
31
+ EnforcedStyle: case
32
+ SupportedStyles:
33
+ - case
34
+ - end
35
+ IndentOneStep: true
36
+
37
+ Layout/AlignHash:
38
+ Enabled: false
39
+
40
+ Style/GuardClause:
41
+ Enabled: false
42
+
43
+ Naming:
44
+ Enabled: false
45
+
46
+ Style/FormatStringToken:
47
+ EnforcedStyle: template
48
+
49
+ Style/ExpandPathArguments:
50
+ Enabled: false
51
+
52
+ Style/FrozenStringLiteralComment:
53
+ Enabled: false
54
+
55
+ Style/RescueStandardError:
56
+ Enabled: false
57
+
data/.travis.yml ADDED
@@ -0,0 +1,5 @@
1
+ sudo: false
2
+ language: ruby
3
+ rvm:
4
+ - 2.5.1
5
+ before_install: gem install bundler -v 1.15.4
@@ -0,0 +1,74 @@
1
+ # Contributor Covenant Code of Conduct
2
+
3
+ ## Our Pledge
4
+
5
+ In the interest of fostering an open and welcoming environment, we as
6
+ contributors and maintainers pledge to making participation in our project and
7
+ our community a harassment-free experience for everyone, regardless of age, body
8
+ size, disability, ethnicity, gender identity and expression, level of experience,
9
+ nationality, personal appearance, race, religion, or sexual identity and
10
+ orientation.
11
+
12
+ ## Our Standards
13
+
14
+ Examples of behavior that contributes to creating a positive environment
15
+ include:
16
+
17
+ * Using welcoming and inclusive language
18
+ * Being respectful of differing viewpoints and experiences
19
+ * Gracefully accepting constructive criticism
20
+ * Focusing on what is best for the community
21
+ * Showing empathy towards other community members
22
+
23
+ Examples of unacceptable behavior by participants include:
24
+
25
+ * The use of sexualized language or imagery and unwelcome sexual attention or
26
+ advances
27
+ * Trolling, insulting/derogatory comments, and personal or political attacks
28
+ * Public or private harassment
29
+ * Publishing others' private information, such as a physical or electronic
30
+ address, without explicit permission
31
+ * Other conduct which could reasonably be considered inappropriate in a
32
+ professional setting
33
+
34
+ ## Our Responsibilities
35
+
36
+ Project maintainers are responsible for clarifying the standards of acceptable
37
+ behavior and are expected to take appropriate and fair corrective action in
38
+ response to any instances of unacceptable behavior.
39
+
40
+ Project maintainers have the right and responsibility to remove, edit, or
41
+ reject comments, commits, code, wiki edits, issues, and other contributions
42
+ that are not aligned to this Code of Conduct, or to ban temporarily or
43
+ permanently any contributor for other behaviors that they deem inappropriate,
44
+ threatening, offensive, or harmful.
45
+
46
+ ## Scope
47
+
48
+ This Code of Conduct applies both within project spaces and in public spaces
49
+ when an individual is representing the project or its community. Examples of
50
+ representing a project or community include using an official project e-mail
51
+ address, posting via an official social media account, or acting as an appointed
52
+ representative at an online or offline event. Representation of a project may be
53
+ further defined and clarified by project maintainers.
54
+
55
+ ## Enforcement
56
+
57
+ Instances of abusive, harassing, or otherwise unacceptable behavior may be
58
+ reported by contacting the project team at kortirso@gmail.com. All
59
+ complaints will be reviewed and investigated and will result in a response that
60
+ is deemed necessary and appropriate to the circumstances. The project team is
61
+ obligated to maintain confidentiality with regard to the reporter of an incident.
62
+ Further details of specific enforcement policies may be posted separately.
63
+
64
+ Project maintainers who do not follow or enforce the Code of Conduct in good
65
+ faith may face temporary or permanent repercussions as determined by other
66
+ members of the project's leadership.
67
+
68
+ ## Attribution
69
+
70
+ This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4,
71
+ available at [http://contributor-covenant.org/version/1/4][version]
72
+
73
+ [homepage]: http://contributor-covenant.org
74
+ [version]: http://contributor-covenant.org/version/1/4/
data/Gemfile ADDED
@@ -0,0 +1,6 @@
1
+ source 'https://rubygems.org'
2
+
3
+ git_source(:github) { |repo_name| "https://github.com/#{repo_name}" }
4
+
5
+ # Specify your gem's dependencies in open_street_map.gemspec
6
+ gemspec
data/LICENSE.txt ADDED
@@ -0,0 +1,21 @@
1
+ The MIT License (MIT)
2
+
3
+ Copyright (c) 2018 kortirso
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in
13
+ all copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
21
+ THE SOFTWARE.
data/README.md ADDED
@@ -0,0 +1,72 @@
1
+ # LearnKit
2
+
3
+
4
+ ## Installation
5
+
6
+ Add this line to your application's Gemfile:
7
+
8
+ ```ruby
9
+ gem 'learn_kit'
10
+ ```
11
+
12
+ And then execute:
13
+
14
+ $ bundle
15
+
16
+ Or install it yourself as:
17
+
18
+ $ gem install learn_kit
19
+
20
+ ### K-Nearest Neighbors
21
+
22
+ Initialize classificator with data set consists from labels and features:
23
+
24
+ ```ruby
25
+ data_set = { label1: [[-1, -1], [-2, -1], [-3, -2]], label2: [[1, 1], [2, 1], [3, 2], [-2, -2]] }
26
+ clf = LearnKit::Knn.new(data_set: data_set)
27
+ ```
28
+
29
+ Predict label for new feature:
30
+
31
+ ```ruby
32
+ clf.predict(k: 3, algorithm: 'brute', weight: 'uniform', point: [-1, -2])
33
+ ```
34
+ k - number of nearest neighbors
35
+ algorithm - algorithm for calculation of distances, one of the [brute]
36
+ weight - method of weighted neighbors, one of the [uniform|distance]
37
+ point - new feature for prediction
38
+
39
+ ### Naive Bayes
40
+
41
+ #### Gaussian
42
+
43
+ Initialize classificator with data set consists from labels and features:
44
+
45
+ ```ruby
46
+ data_set = { label1: [[-1, -1], [-2, -1], [-3, -2]], label2: [[1, 1], [2, 1], [3, 2], [-2, -2]] }
47
+ clf = LearnKit::NaiveBayes::Gaussian.new(data_set: data_set)
48
+ ```
49
+
50
+ Make fit of test data:
51
+
52
+ ```ruby
53
+ clf.fit
54
+ ```
55
+
56
+ Predict label for new feature:
57
+
58
+ ```ruby
59
+ clf.predict([-1, -2])
60
+ ```
61
+
62
+ Or show probability for all labels:
63
+
64
+ ```ruby
65
+ clf.predict_proba([-1, -2])
66
+ ```
67
+
68
+ Calculate accuracy for test data:
69
+
70
+ ```ruby
71
+ clf.score
72
+ ```
data/Rakefile ADDED
@@ -0,0 +1,6 @@
1
+ require 'bundler/gem_tasks'
2
+ require 'rspec/core/rake_task'
3
+
4
+ RSpec::Core::RakeTask.new(:spec)
5
+
6
+ task default: :spec
data/bin/console ADDED
@@ -0,0 +1,14 @@
1
+ #!/usr/bin/env ruby
2
+
3
+ require 'bundler/setup'
4
+ require 'learn_kit'
5
+
6
+ # You can add fixtures and/or initialization code here to make experimenting
7
+ # with your gem easier. You can also use a different console, if you like.
8
+
9
+ # (If you use this, don't forget to add pry to your Gemfile!)
10
+ # require "pry"
11
+ # Pry.start
12
+
13
+ require 'irb'
14
+ IRB.start(__FILE__)
data/bin/setup ADDED
@@ -0,0 +1,8 @@
1
+ #!/usr/bin/env bash
2
+ set -euo pipefail
3
+ IFS=$'\n\t'
4
+ set -vx
5
+
6
+ bundle install
7
+
8
+ # Do any other automated setup that you need to do here
data/learn_kit.gemspec ADDED
@@ -0,0 +1,30 @@
1
+ lib = File.expand_path('../lib', __FILE__)
2
+ $LOAD_PATH.unshift(lib) unless $LOAD_PATH.include?(lib)
3
+ require 'learn_kit/version'
4
+
5
+ Gem::Specification.new do |spec|
6
+ spec.name = 'learn_kit'
7
+ spec.version = LearnKit::VERSION
8
+ spec.authors = ['kortirso']
9
+ spec.email = ['kortirso@gmail.com']
10
+
11
+ spec.summary = 'Machine Learning library'
12
+ spec.description = 'Tools for machine learning with ruby'
13
+ spec.homepage = 'https://github.com/kortirso/learn_kit'
14
+ spec.license = 'MIT'
15
+
16
+ spec.files = `git ls-files -z`.split("\x0").reject do |f|
17
+ f.match(%r{^(test|spec|features)/})
18
+ end
19
+ spec.bindir = 'exe'
20
+ spec.executables = spec.files.grep(%r{^exe/}) { |f| File.basename(f) }
21
+ spec.require_paths = ['lib']
22
+
23
+ spec.required_ruby_version = '>= 2.5.0'
24
+
25
+ spec.add_development_dependency 'bundler', '~> 1.15'
26
+ spec.add_development_dependency 'rake', '~> 10.0'
27
+ spec.add_development_dependency 'rspec', '~> 3.0'
28
+ spec.add_development_dependency 'rubocop', '~> 0.57.2'
29
+ spec.add_dependency 'descriptive_statistics'
30
+ end
data/lib/learn_kit.rb ADDED
@@ -0,0 +1,7 @@
1
+ require_relative 'learn_kit/version'
2
+ require_relative 'learn_kit/naive_bayes/gaussian'
3
+ require_relative 'learn_kit/knn'
4
+
5
+ # main module
6
+ module LearnKit
7
+ end
@@ -0,0 +1,19 @@
1
+ require_relative 'knn/predict'
2
+
3
+ module LearnKit
4
+ # K-Nearest Neighbors algorithm
5
+ class Knn
6
+ class LearnFailure < StandardError; end
7
+
8
+ include LearnKit::Knn::Predict
9
+
10
+ attr_reader :data_set, :points
11
+
12
+ # input data
13
+ # { label1: [[f1, f2, f3], [f1, f2, f3]], label2: [[f4, f5, f6], [f4, f5, f6]] }
14
+ def initialize(args = {})
15
+ @data_set = args[:data_set]
16
+ @points = []
17
+ end
18
+ end
19
+ end
@@ -0,0 +1,79 @@
1
+ module LearnKit
2
+ class Knn
3
+ # Fit test data
4
+ module Predict
5
+ UNIFORM_WEIGHT = 1
6
+
7
+ # input data
8
+ # { k: 3, algorithm: 'brute', weight: 'uniform', point: [1, 2, 3] }
9
+ # algorithms: brute
10
+ # weights: uniform, distance
11
+ def predict(args = {})
12
+ calc_distances(args) if points.size.zero?
13
+ prediction(sort_points(args))
14
+ rescue LearnFailure => ex
15
+ puts "LearnFailure: #{ex.message}"
16
+ end
17
+
18
+ private
19
+
20
+ # calc distances
21
+ def calc_distances(args)
22
+ case args[:algorithm]
23
+ when 'brute' then brute_algorithm(args)
24
+ else []
25
+ end
26
+ end
27
+
28
+ # calculation with brute algorithm
29
+ def brute_algorithm(args)
30
+ data_set.keys.each do |key|
31
+ data_set[key].each do |value|
32
+ raise LearnFailure, "Different points size, error key - #{key}, error value - #{value}" if args[:point].size != value.size
33
+ points << { distance: calc_distance(args[:point], value), label: key }
34
+ end
35
+ end
36
+ end
37
+
38
+ # sort points by distance, select first K, add weight
39
+ def sort_points(args)
40
+ points
41
+ .sort_by { |point| point[:distance] }
42
+ .first(args[:k])
43
+ .map do |point|
44
+ point[:weight] = calc_point_weight(args[:weight], point[:distance])
45
+ point
46
+ end
47
+ end
48
+
49
+ # calc distance between 2 points
50
+ def calc_distance(point1, point2, summ = 0)
51
+ point1.each.with_index do |a, index|
52
+ summ += (a - point2[index])**2
53
+ end
54
+ Math.sqrt(summ)
55
+ end
56
+
57
+ # prediction
58
+ def prediction(sorted_points, result = {})
59
+ sorted_points.each do |point|
60
+ if result[point[:label]].nil?
61
+ result[point[:label]] = point[:weight]
62
+ else
63
+ result[point[:label]] += point[:weight]
64
+ end
65
+ end
66
+ result.sort_by { |_k, v| v }.reverse[0][0]
67
+ end
68
+
69
+ # calc point weight based on selected type
70
+ def calc_point_weight(weight, distance)
71
+ case weight
72
+ when 'uniform' then UNIFORM_WEIGHT
73
+ when 'distance' then 1 / distance**2
74
+ else UNIFORM_WEIGHT
75
+ end
76
+ end
77
+ end
78
+ end
79
+ end
@@ -0,0 +1,25 @@
1
+ require_relative 'gaussian/fit'
2
+ require_relative 'gaussian/predict'
3
+ require_relative 'gaussian/score'
4
+
5
+ module LearnKit
6
+ module NaiveBayes
7
+ # Gaussian NB
8
+ class Gaussian
9
+ include LearnKit::NaiveBayes::Gaussian::Fit
10
+ include LearnKit::NaiveBayes::Gaussian::Predict
11
+ include LearnKit::NaiveBayes::Gaussian::Score
12
+
13
+ attr_reader :data_set, :labels, :feature_size, :fit_results
14
+
15
+ # input data
16
+ # { label1: [[f1, f2, f3], [f1, f2, f3]], label2: [[f4, f5, f6], [f4, f5, f6]] }
17
+ def initialize(args = {})
18
+ @data_set = args[:data_set]
19
+ @labels = data_set.keys
20
+ @feature_size = data_set.values.first[0].size
21
+ @fit_results = {}
22
+ end
23
+ end
24
+ end
25
+ end
@@ -0,0 +1,38 @@
1
+ require 'descriptive_statistics'
2
+
3
+ module LearnKit
4
+ module NaiveBayes
5
+ class Gaussian
6
+ # Fit test data
7
+ module Fit
8
+ # output data
9
+ # { label1: [{fs_std1: 1, fs_mean1: 2, fs_var1: 3}, {..}, {..}], label2: [{fs_std1: 1, fs_mean1: 2, fs_var1: 3}, {..}, {..}] }
10
+ def fit
11
+ labels.each do |label_name|
12
+ fit_results[label_name] = []
13
+ (0...feature_size).each do |index|
14
+ fs = feature_set(index, label_name)
15
+ # statistical properties of the feature set
16
+ fs_std = fs.standard_deviation
17
+ fs_mean = fs.mean
18
+ fs_var = fs.variance
19
+ fit_results[label_name] << { fs_std: fs_std, fs_mean: fs_mean, fs_var: fs_var }
20
+ end
21
+ end
22
+ end
23
+
24
+ private
25
+
26
+ # Get all the features of a certain index in a given label in one set
27
+ # index - feature index in training set
28
+ # label_name - label name
29
+ def feature_set(index, label_name, feature_set = [])
30
+ data_set[label_name].each do |feature|
31
+ feature_set << feature[index]
32
+ end
33
+ feature_set
34
+ end
35
+ end
36
+ end
37
+ end
38
+ end
@@ -0,0 +1,59 @@
1
+ module LearnKit
2
+ module NaiveBayes
3
+ class Gaussian
4
+ # Predict new data
5
+ module Predict
6
+ # returns prediction of label for feature
7
+ # input data
8
+ # [f1, f2, f3]
9
+ # output data
10
+ # :label2
11
+ def predict(feature_values)
12
+ res = labels.sort_by do |label_name|
13
+ class_probability(feature_values, label_name)
14
+ end
15
+ res[-1]
16
+ end
17
+
18
+ # returns labels with probabilities
19
+ # input data
20
+ # [f1, f2, f3]
21
+ # output data
22
+ # { label1: 0.01, label2: 0.02 }
23
+ def predict_proba(feature_values, result = {})
24
+ labels.each do |label_name|
25
+ result[label_name] = class_probability(feature_values, label_name)
26
+ end
27
+ result
28
+ end
29
+
30
+ private
31
+
32
+ # compute the final naive Bayesian probability for a given set of features being a part of a given label
33
+ def class_probability(feature_values, label_name)
34
+ class_fraction = 1.0 / labels.size
35
+ feature_bayes = feature_mult(feature_values, label_name)
36
+ feature_bayes * class_fraction
37
+ end
38
+
39
+ # multiply together the feature probabilities for all of the features in a label for given values
40
+ def feature_mult(feature_values, label_name, res = 1.0)
41
+ feature_values.each.with_index do |feature_value, index|
42
+ res *= feature_probability(index, feature_value, label_name)
43
+ end
44
+ res
45
+ end
46
+
47
+ def feature_probability(index, value, label_name)
48
+ # select result from training
49
+ fit_result = fit_results[label_name][index]
50
+ # deal with the edge case of a 0 standard deviation
51
+ return fit_result[:fs_mean] == value ? 1.0 : 0.0 if fit_result[:fs_std].zero?
52
+ # calculate the gaussian probability
53
+ exp = - ((value - fit_result[:fs_mean])**2) / (2 * fit_result[:fs_var])
54
+ (1.0 / Math.sqrt(2 * Math::PI * fit_result[:fs_var])) * (Math::E**exp)
55
+ end
56
+ end
57
+ end
58
+ end
59
+ end
@@ -0,0 +1,20 @@
1
+ module LearnKit
2
+ module NaiveBayes
3
+ class Gaussian
4
+ # Calc accuracy for test data
5
+ module Score
6
+ # calculate accuracy for test data
7
+ def score(total = 0, correct = 0)
8
+ labels.each do |label_name|
9
+ data_set[label_name].each do |feature|
10
+ predicted_label = predict(feature)
11
+ correct += 1 if predicted_label == label_name
12
+ total += 1
13
+ end
14
+ end
15
+ total.zero? ? 0 : (correct * 100.0 / total).round(4)
16
+ end
17
+ end
18
+ end
19
+ end
20
+ end
@@ -0,0 +1,3 @@
1
+ module LearnKit
2
+ VERSION = '0.0.1'.freeze
3
+ end
metadata ADDED
@@ -0,0 +1,134 @@
1
+ --- !ruby/object:Gem::Specification
2
+ name: learn_kit
3
+ version: !ruby/object:Gem::Version
4
+ version: 0.0.1
5
+ platform: ruby
6
+ authors:
7
+ - kortirso
8
+ autorequire:
9
+ bindir: exe
10
+ cert_chain: []
11
+ date: 2018-09-14 00:00:00.000000000 Z
12
+ dependencies:
13
+ - !ruby/object:Gem::Dependency
14
+ name: bundler
15
+ requirement: !ruby/object:Gem::Requirement
16
+ requirements:
17
+ - - "~>"
18
+ - !ruby/object:Gem::Version
19
+ version: '1.15'
20
+ type: :development
21
+ prerelease: false
22
+ version_requirements: !ruby/object:Gem::Requirement
23
+ requirements:
24
+ - - "~>"
25
+ - !ruby/object:Gem::Version
26
+ version: '1.15'
27
+ - !ruby/object:Gem::Dependency
28
+ name: rake
29
+ requirement: !ruby/object:Gem::Requirement
30
+ requirements:
31
+ - - "~>"
32
+ - !ruby/object:Gem::Version
33
+ version: '10.0'
34
+ type: :development
35
+ prerelease: false
36
+ version_requirements: !ruby/object:Gem::Requirement
37
+ requirements:
38
+ - - "~>"
39
+ - !ruby/object:Gem::Version
40
+ version: '10.0'
41
+ - !ruby/object:Gem::Dependency
42
+ name: rspec
43
+ requirement: !ruby/object:Gem::Requirement
44
+ requirements:
45
+ - - "~>"
46
+ - !ruby/object:Gem::Version
47
+ version: '3.0'
48
+ type: :development
49
+ prerelease: false
50
+ version_requirements: !ruby/object:Gem::Requirement
51
+ requirements:
52
+ - - "~>"
53
+ - !ruby/object:Gem::Version
54
+ version: '3.0'
55
+ - !ruby/object:Gem::Dependency
56
+ name: rubocop
57
+ requirement: !ruby/object:Gem::Requirement
58
+ requirements:
59
+ - - "~>"
60
+ - !ruby/object:Gem::Version
61
+ version: 0.57.2
62
+ type: :development
63
+ prerelease: false
64
+ version_requirements: !ruby/object:Gem::Requirement
65
+ requirements:
66
+ - - "~>"
67
+ - !ruby/object:Gem::Version
68
+ version: 0.57.2
69
+ - !ruby/object:Gem::Dependency
70
+ name: descriptive_statistics
71
+ requirement: !ruby/object:Gem::Requirement
72
+ requirements:
73
+ - - ">="
74
+ - !ruby/object:Gem::Version
75
+ version: '0'
76
+ type: :runtime
77
+ prerelease: false
78
+ version_requirements: !ruby/object:Gem::Requirement
79
+ requirements:
80
+ - - ">="
81
+ - !ruby/object:Gem::Version
82
+ version: '0'
83
+ description: Tools for machine learning with ruby
84
+ email:
85
+ - kortirso@gmail.com
86
+ executables: []
87
+ extensions: []
88
+ extra_rdoc_files: []
89
+ files:
90
+ - ".gitignore"
91
+ - ".rspec"
92
+ - ".rubocop.yml"
93
+ - ".travis.yml"
94
+ - CODE_OF_CONDUCT.md
95
+ - Gemfile
96
+ - LICENSE.txt
97
+ - README.md
98
+ - Rakefile
99
+ - bin/console
100
+ - bin/setup
101
+ - learn_kit.gemspec
102
+ - lib/learn_kit.rb
103
+ - lib/learn_kit/knn.rb
104
+ - lib/learn_kit/knn/predict.rb
105
+ - lib/learn_kit/naive_bayes/gaussian.rb
106
+ - lib/learn_kit/naive_bayes/gaussian/fit.rb
107
+ - lib/learn_kit/naive_bayes/gaussian/predict.rb
108
+ - lib/learn_kit/naive_bayes/gaussian/score.rb
109
+ - lib/learn_kit/version.rb
110
+ homepage: https://github.com/kortirso/learn_kit
111
+ licenses:
112
+ - MIT
113
+ metadata: {}
114
+ post_install_message:
115
+ rdoc_options: []
116
+ require_paths:
117
+ - lib
118
+ required_ruby_version: !ruby/object:Gem::Requirement
119
+ requirements:
120
+ - - ">="
121
+ - !ruby/object:Gem::Version
122
+ version: 2.5.0
123
+ required_rubygems_version: !ruby/object:Gem::Requirement
124
+ requirements:
125
+ - - ">="
126
+ - !ruby/object:Gem::Version
127
+ version: '0'
128
+ requirements: []
129
+ rubyforge_project:
130
+ rubygems_version: 2.7.6
131
+ signing_key:
132
+ specification_version: 4
133
+ summary: Machine Learning library
134
+ test_files: []