learn_kit 0.0.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.gitignore +12 -0
- data/.rspec +3 -0
- data/.rubocop.yml +57 -0
- data/.travis.yml +5 -0
- data/CODE_OF_CONDUCT.md +74 -0
- data/Gemfile +6 -0
- data/LICENSE.txt +21 -0
- data/README.md +72 -0
- data/Rakefile +6 -0
- data/bin/console +14 -0
- data/bin/setup +8 -0
- data/learn_kit.gemspec +30 -0
- data/lib/learn_kit.rb +7 -0
- data/lib/learn_kit/knn.rb +19 -0
- data/lib/learn_kit/knn/predict.rb +79 -0
- data/lib/learn_kit/naive_bayes/gaussian.rb +25 -0
- data/lib/learn_kit/naive_bayes/gaussian/fit.rb +38 -0
- data/lib/learn_kit/naive_bayes/gaussian/predict.rb +59 -0
- data/lib/learn_kit/naive_bayes/gaussian/score.rb +20 -0
- data/lib/learn_kit/version.rb +3 -0
- metadata +134 -0
checksums.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
1
|
+
---
|
2
|
+
SHA256:
|
3
|
+
metadata.gz: ca7aeb09d91fc1451ba01359299e250c379b932a289951ff976b9a8024bc00cb
|
4
|
+
data.tar.gz: f1422a68f87762cedba48736a8bebdac372ae8e9c52f0e3bc750b48d356c1b63
|
5
|
+
SHA512:
|
6
|
+
metadata.gz: a94136b6145991bb659c5b8e2e6306bef7ebb56d0852e479e2f1ae68283afd3eadcee28e730581bf609bfdea8a5e6ece20a21fd892390362c4ec79e663d40b4f
|
7
|
+
data.tar.gz: b1ff7601ce22526978ba5b3981e91fbd821b5e9356097274297213b62a154e7d779df7813d78d6cbf3fa23bc00cb2a52462ee09a03ec0ae9d65e7912ae19d508
|
data/.gitignore
ADDED
data/.rspec
ADDED
data/.rubocop.yml
ADDED
@@ -0,0 +1,57 @@
|
|
1
|
+
AllCops:
|
2
|
+
Exclude:
|
3
|
+
- bin/*
|
4
|
+
TargetRubyVersion: 2.5.0
|
5
|
+
|
6
|
+
Metrics/AbcSize:
|
7
|
+
Enabled: false
|
8
|
+
|
9
|
+
Metrics/BlockLength:
|
10
|
+
Enabled: false
|
11
|
+
|
12
|
+
Metrics/ClassLength:
|
13
|
+
Enabled: false
|
14
|
+
|
15
|
+
Metrics/LineLength:
|
16
|
+
Enabled: false
|
17
|
+
|
18
|
+
Metrics/MethodLength:
|
19
|
+
Enabled: false
|
20
|
+
|
21
|
+
Metrics/ModuleLength:
|
22
|
+
Enabled: false
|
23
|
+
|
24
|
+
Metrics/CyclomaticComplexity:
|
25
|
+
Max: 20
|
26
|
+
|
27
|
+
Layout/IndentationWidth:
|
28
|
+
Width: 2
|
29
|
+
|
30
|
+
Layout/CaseIndentation:
|
31
|
+
EnforcedStyle: case
|
32
|
+
SupportedStyles:
|
33
|
+
- case
|
34
|
+
- end
|
35
|
+
IndentOneStep: true
|
36
|
+
|
37
|
+
Layout/AlignHash:
|
38
|
+
Enabled: false
|
39
|
+
|
40
|
+
Style/GuardClause:
|
41
|
+
Enabled: false
|
42
|
+
|
43
|
+
Naming:
|
44
|
+
Enabled: false
|
45
|
+
|
46
|
+
Style/FormatStringToken:
|
47
|
+
EnforcedStyle: template
|
48
|
+
|
49
|
+
Style/ExpandPathArguments:
|
50
|
+
Enabled: false
|
51
|
+
|
52
|
+
Style/FrozenStringLiteralComment:
|
53
|
+
Enabled: false
|
54
|
+
|
55
|
+
Style/RescueStandardError:
|
56
|
+
Enabled: false
|
57
|
+
|
data/.travis.yml
ADDED
data/CODE_OF_CONDUCT.md
ADDED
@@ -0,0 +1,74 @@
|
|
1
|
+
# Contributor Covenant Code of Conduct
|
2
|
+
|
3
|
+
## Our Pledge
|
4
|
+
|
5
|
+
In the interest of fostering an open and welcoming environment, we as
|
6
|
+
contributors and maintainers pledge to making participation in our project and
|
7
|
+
our community a harassment-free experience for everyone, regardless of age, body
|
8
|
+
size, disability, ethnicity, gender identity and expression, level of experience,
|
9
|
+
nationality, personal appearance, race, religion, or sexual identity and
|
10
|
+
orientation.
|
11
|
+
|
12
|
+
## Our Standards
|
13
|
+
|
14
|
+
Examples of behavior that contributes to creating a positive environment
|
15
|
+
include:
|
16
|
+
|
17
|
+
* Using welcoming and inclusive language
|
18
|
+
* Being respectful of differing viewpoints and experiences
|
19
|
+
* Gracefully accepting constructive criticism
|
20
|
+
* Focusing on what is best for the community
|
21
|
+
* Showing empathy towards other community members
|
22
|
+
|
23
|
+
Examples of unacceptable behavior by participants include:
|
24
|
+
|
25
|
+
* The use of sexualized language or imagery and unwelcome sexual attention or
|
26
|
+
advances
|
27
|
+
* Trolling, insulting/derogatory comments, and personal or political attacks
|
28
|
+
* Public or private harassment
|
29
|
+
* Publishing others' private information, such as a physical or electronic
|
30
|
+
address, without explicit permission
|
31
|
+
* Other conduct which could reasonably be considered inappropriate in a
|
32
|
+
professional setting
|
33
|
+
|
34
|
+
## Our Responsibilities
|
35
|
+
|
36
|
+
Project maintainers are responsible for clarifying the standards of acceptable
|
37
|
+
behavior and are expected to take appropriate and fair corrective action in
|
38
|
+
response to any instances of unacceptable behavior.
|
39
|
+
|
40
|
+
Project maintainers have the right and responsibility to remove, edit, or
|
41
|
+
reject comments, commits, code, wiki edits, issues, and other contributions
|
42
|
+
that are not aligned to this Code of Conduct, or to ban temporarily or
|
43
|
+
permanently any contributor for other behaviors that they deem inappropriate,
|
44
|
+
threatening, offensive, or harmful.
|
45
|
+
|
46
|
+
## Scope
|
47
|
+
|
48
|
+
This Code of Conduct applies both within project spaces and in public spaces
|
49
|
+
when an individual is representing the project or its community. Examples of
|
50
|
+
representing a project or community include using an official project e-mail
|
51
|
+
address, posting via an official social media account, or acting as an appointed
|
52
|
+
representative at an online or offline event. Representation of a project may be
|
53
|
+
further defined and clarified by project maintainers.
|
54
|
+
|
55
|
+
## Enforcement
|
56
|
+
|
57
|
+
Instances of abusive, harassing, or otherwise unacceptable behavior may be
|
58
|
+
reported by contacting the project team at kortirso@gmail.com. All
|
59
|
+
complaints will be reviewed and investigated and will result in a response that
|
60
|
+
is deemed necessary and appropriate to the circumstances. The project team is
|
61
|
+
obligated to maintain confidentiality with regard to the reporter of an incident.
|
62
|
+
Further details of specific enforcement policies may be posted separately.
|
63
|
+
|
64
|
+
Project maintainers who do not follow or enforce the Code of Conduct in good
|
65
|
+
faith may face temporary or permanent repercussions as determined by other
|
66
|
+
members of the project's leadership.
|
67
|
+
|
68
|
+
## Attribution
|
69
|
+
|
70
|
+
This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4,
|
71
|
+
available at [http://contributor-covenant.org/version/1/4][version]
|
72
|
+
|
73
|
+
[homepage]: http://contributor-covenant.org
|
74
|
+
[version]: http://contributor-covenant.org/version/1/4/
|
data/Gemfile
ADDED
data/LICENSE.txt
ADDED
@@ -0,0 +1,21 @@
|
|
1
|
+
The MIT License (MIT)
|
2
|
+
|
3
|
+
Copyright (c) 2018 kortirso
|
4
|
+
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
7
|
+
in the Software without restriction, including without limitation the rights
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
10
|
+
furnished to do so, subject to the following conditions:
|
11
|
+
|
12
|
+
The above copyright notice and this permission notice shall be included in
|
13
|
+
all copies or substantial portions of the Software.
|
14
|
+
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
21
|
+
THE SOFTWARE.
|
data/README.md
ADDED
@@ -0,0 +1,72 @@
|
|
1
|
+
# LearnKit
|
2
|
+
|
3
|
+
|
4
|
+
## Installation
|
5
|
+
|
6
|
+
Add this line to your application's Gemfile:
|
7
|
+
|
8
|
+
```ruby
|
9
|
+
gem 'learn_kit'
|
10
|
+
```
|
11
|
+
|
12
|
+
And then execute:
|
13
|
+
|
14
|
+
$ bundle
|
15
|
+
|
16
|
+
Or install it yourself as:
|
17
|
+
|
18
|
+
$ gem install learn_kit
|
19
|
+
|
20
|
+
### K-Nearest Neighbors
|
21
|
+
|
22
|
+
Initialize classificator with data set consists from labels and features:
|
23
|
+
|
24
|
+
```ruby
|
25
|
+
data_set = { label1: [[-1, -1], [-2, -1], [-3, -2]], label2: [[1, 1], [2, 1], [3, 2], [-2, -2]] }
|
26
|
+
clf = LearnKit::Knn.new(data_set: data_set)
|
27
|
+
```
|
28
|
+
|
29
|
+
Predict label for new feature:
|
30
|
+
|
31
|
+
```ruby
|
32
|
+
clf.predict(k: 3, algorithm: 'brute', weight: 'uniform', point: [-1, -2])
|
33
|
+
```
|
34
|
+
k - number of nearest neighbors
|
35
|
+
algorithm - algorithm for calculation of distances, one of the [brute]
|
36
|
+
weight - method of weighted neighbors, one of the [uniform|distance]
|
37
|
+
point - new feature for prediction
|
38
|
+
|
39
|
+
### Naive Bayes
|
40
|
+
|
41
|
+
#### Gaussian
|
42
|
+
|
43
|
+
Initialize classificator with data set consists from labels and features:
|
44
|
+
|
45
|
+
```ruby
|
46
|
+
data_set = { label1: [[-1, -1], [-2, -1], [-3, -2]], label2: [[1, 1], [2, 1], [3, 2], [-2, -2]] }
|
47
|
+
clf = LearnKit::NaiveBayes::Gaussian.new(data_set: data_set)
|
48
|
+
```
|
49
|
+
|
50
|
+
Make fit of test data:
|
51
|
+
|
52
|
+
```ruby
|
53
|
+
clf.fit
|
54
|
+
```
|
55
|
+
|
56
|
+
Predict label for new feature:
|
57
|
+
|
58
|
+
```ruby
|
59
|
+
clf.predict([-1, -2])
|
60
|
+
```
|
61
|
+
|
62
|
+
Or show probability for all labels:
|
63
|
+
|
64
|
+
```ruby
|
65
|
+
clf.predict_proba([-1, -2])
|
66
|
+
```
|
67
|
+
|
68
|
+
Calculate accuracy for test data:
|
69
|
+
|
70
|
+
```ruby
|
71
|
+
clf.score
|
72
|
+
```
|
data/Rakefile
ADDED
data/bin/console
ADDED
@@ -0,0 +1,14 @@
|
|
1
|
+
#!/usr/bin/env ruby
|
2
|
+
|
3
|
+
require 'bundler/setup'
|
4
|
+
require 'learn_kit'
|
5
|
+
|
6
|
+
# You can add fixtures and/or initialization code here to make experimenting
|
7
|
+
# with your gem easier. You can also use a different console, if you like.
|
8
|
+
|
9
|
+
# (If you use this, don't forget to add pry to your Gemfile!)
|
10
|
+
# require "pry"
|
11
|
+
# Pry.start
|
12
|
+
|
13
|
+
require 'irb'
|
14
|
+
IRB.start(__FILE__)
|
data/bin/setup
ADDED
data/learn_kit.gemspec
ADDED
@@ -0,0 +1,30 @@
|
|
1
|
+
lib = File.expand_path('../lib', __FILE__)
|
2
|
+
$LOAD_PATH.unshift(lib) unless $LOAD_PATH.include?(lib)
|
3
|
+
require 'learn_kit/version'
|
4
|
+
|
5
|
+
Gem::Specification.new do |spec|
|
6
|
+
spec.name = 'learn_kit'
|
7
|
+
spec.version = LearnKit::VERSION
|
8
|
+
spec.authors = ['kortirso']
|
9
|
+
spec.email = ['kortirso@gmail.com']
|
10
|
+
|
11
|
+
spec.summary = 'Machine Learning library'
|
12
|
+
spec.description = 'Tools for machine learning with ruby'
|
13
|
+
spec.homepage = 'https://github.com/kortirso/learn_kit'
|
14
|
+
spec.license = 'MIT'
|
15
|
+
|
16
|
+
spec.files = `git ls-files -z`.split("\x0").reject do |f|
|
17
|
+
f.match(%r{^(test|spec|features)/})
|
18
|
+
end
|
19
|
+
spec.bindir = 'exe'
|
20
|
+
spec.executables = spec.files.grep(%r{^exe/}) { |f| File.basename(f) }
|
21
|
+
spec.require_paths = ['lib']
|
22
|
+
|
23
|
+
spec.required_ruby_version = '>= 2.5.0'
|
24
|
+
|
25
|
+
spec.add_development_dependency 'bundler', '~> 1.15'
|
26
|
+
spec.add_development_dependency 'rake', '~> 10.0'
|
27
|
+
spec.add_development_dependency 'rspec', '~> 3.0'
|
28
|
+
spec.add_development_dependency 'rubocop', '~> 0.57.2'
|
29
|
+
spec.add_dependency 'descriptive_statistics'
|
30
|
+
end
|
data/lib/learn_kit.rb
ADDED
@@ -0,0 +1,19 @@
|
|
1
|
+
require_relative 'knn/predict'
|
2
|
+
|
3
|
+
module LearnKit
|
4
|
+
# K-Nearest Neighbors algorithm
|
5
|
+
class Knn
|
6
|
+
class LearnFailure < StandardError; end
|
7
|
+
|
8
|
+
include LearnKit::Knn::Predict
|
9
|
+
|
10
|
+
attr_reader :data_set, :points
|
11
|
+
|
12
|
+
# input data
|
13
|
+
# { label1: [[f1, f2, f3], [f1, f2, f3]], label2: [[f4, f5, f6], [f4, f5, f6]] }
|
14
|
+
def initialize(args = {})
|
15
|
+
@data_set = args[:data_set]
|
16
|
+
@points = []
|
17
|
+
end
|
18
|
+
end
|
19
|
+
end
|
@@ -0,0 +1,79 @@
|
|
1
|
+
module LearnKit
|
2
|
+
class Knn
|
3
|
+
# Fit test data
|
4
|
+
module Predict
|
5
|
+
UNIFORM_WEIGHT = 1
|
6
|
+
|
7
|
+
# input data
|
8
|
+
# { k: 3, algorithm: 'brute', weight: 'uniform', point: [1, 2, 3] }
|
9
|
+
# algorithms: brute
|
10
|
+
# weights: uniform, distance
|
11
|
+
def predict(args = {})
|
12
|
+
calc_distances(args) if points.size.zero?
|
13
|
+
prediction(sort_points(args))
|
14
|
+
rescue LearnFailure => ex
|
15
|
+
puts "LearnFailure: #{ex.message}"
|
16
|
+
end
|
17
|
+
|
18
|
+
private
|
19
|
+
|
20
|
+
# calc distances
|
21
|
+
def calc_distances(args)
|
22
|
+
case args[:algorithm]
|
23
|
+
when 'brute' then brute_algorithm(args)
|
24
|
+
else []
|
25
|
+
end
|
26
|
+
end
|
27
|
+
|
28
|
+
# calculation with brute algorithm
|
29
|
+
def brute_algorithm(args)
|
30
|
+
data_set.keys.each do |key|
|
31
|
+
data_set[key].each do |value|
|
32
|
+
raise LearnFailure, "Different points size, error key - #{key}, error value - #{value}" if args[:point].size != value.size
|
33
|
+
points << { distance: calc_distance(args[:point], value), label: key }
|
34
|
+
end
|
35
|
+
end
|
36
|
+
end
|
37
|
+
|
38
|
+
# sort points by distance, select first K, add weight
|
39
|
+
def sort_points(args)
|
40
|
+
points
|
41
|
+
.sort_by { |point| point[:distance] }
|
42
|
+
.first(args[:k])
|
43
|
+
.map do |point|
|
44
|
+
point[:weight] = calc_point_weight(args[:weight], point[:distance])
|
45
|
+
point
|
46
|
+
end
|
47
|
+
end
|
48
|
+
|
49
|
+
# calc distance between 2 points
|
50
|
+
def calc_distance(point1, point2, summ = 0)
|
51
|
+
point1.each.with_index do |a, index|
|
52
|
+
summ += (a - point2[index])**2
|
53
|
+
end
|
54
|
+
Math.sqrt(summ)
|
55
|
+
end
|
56
|
+
|
57
|
+
# prediction
|
58
|
+
def prediction(sorted_points, result = {})
|
59
|
+
sorted_points.each do |point|
|
60
|
+
if result[point[:label]].nil?
|
61
|
+
result[point[:label]] = point[:weight]
|
62
|
+
else
|
63
|
+
result[point[:label]] += point[:weight]
|
64
|
+
end
|
65
|
+
end
|
66
|
+
result.sort_by { |_k, v| v }.reverse[0][0]
|
67
|
+
end
|
68
|
+
|
69
|
+
# calc point weight based on selected type
|
70
|
+
def calc_point_weight(weight, distance)
|
71
|
+
case weight
|
72
|
+
when 'uniform' then UNIFORM_WEIGHT
|
73
|
+
when 'distance' then 1 / distance**2
|
74
|
+
else UNIFORM_WEIGHT
|
75
|
+
end
|
76
|
+
end
|
77
|
+
end
|
78
|
+
end
|
79
|
+
end
|
@@ -0,0 +1,25 @@
|
|
1
|
+
require_relative 'gaussian/fit'
|
2
|
+
require_relative 'gaussian/predict'
|
3
|
+
require_relative 'gaussian/score'
|
4
|
+
|
5
|
+
module LearnKit
|
6
|
+
module NaiveBayes
|
7
|
+
# Gaussian NB
|
8
|
+
class Gaussian
|
9
|
+
include LearnKit::NaiveBayes::Gaussian::Fit
|
10
|
+
include LearnKit::NaiveBayes::Gaussian::Predict
|
11
|
+
include LearnKit::NaiveBayes::Gaussian::Score
|
12
|
+
|
13
|
+
attr_reader :data_set, :labels, :feature_size, :fit_results
|
14
|
+
|
15
|
+
# input data
|
16
|
+
# { label1: [[f1, f2, f3], [f1, f2, f3]], label2: [[f4, f5, f6], [f4, f5, f6]] }
|
17
|
+
def initialize(args = {})
|
18
|
+
@data_set = args[:data_set]
|
19
|
+
@labels = data_set.keys
|
20
|
+
@feature_size = data_set.values.first[0].size
|
21
|
+
@fit_results = {}
|
22
|
+
end
|
23
|
+
end
|
24
|
+
end
|
25
|
+
end
|
@@ -0,0 +1,38 @@
|
|
1
|
+
require 'descriptive_statistics'
|
2
|
+
|
3
|
+
module LearnKit
|
4
|
+
module NaiveBayes
|
5
|
+
class Gaussian
|
6
|
+
# Fit test data
|
7
|
+
module Fit
|
8
|
+
# output data
|
9
|
+
# { label1: [{fs_std1: 1, fs_mean1: 2, fs_var1: 3}, {..}, {..}], label2: [{fs_std1: 1, fs_mean1: 2, fs_var1: 3}, {..}, {..}] }
|
10
|
+
def fit
|
11
|
+
labels.each do |label_name|
|
12
|
+
fit_results[label_name] = []
|
13
|
+
(0...feature_size).each do |index|
|
14
|
+
fs = feature_set(index, label_name)
|
15
|
+
# statistical properties of the feature set
|
16
|
+
fs_std = fs.standard_deviation
|
17
|
+
fs_mean = fs.mean
|
18
|
+
fs_var = fs.variance
|
19
|
+
fit_results[label_name] << { fs_std: fs_std, fs_mean: fs_mean, fs_var: fs_var }
|
20
|
+
end
|
21
|
+
end
|
22
|
+
end
|
23
|
+
|
24
|
+
private
|
25
|
+
|
26
|
+
# Get all the features of a certain index in a given label in one set
|
27
|
+
# index - feature index in training set
|
28
|
+
# label_name - label name
|
29
|
+
def feature_set(index, label_name, feature_set = [])
|
30
|
+
data_set[label_name].each do |feature|
|
31
|
+
feature_set << feature[index]
|
32
|
+
end
|
33
|
+
feature_set
|
34
|
+
end
|
35
|
+
end
|
36
|
+
end
|
37
|
+
end
|
38
|
+
end
|
@@ -0,0 +1,59 @@
|
|
1
|
+
module LearnKit
|
2
|
+
module NaiveBayes
|
3
|
+
class Gaussian
|
4
|
+
# Predict new data
|
5
|
+
module Predict
|
6
|
+
# returns prediction of label for feature
|
7
|
+
# input data
|
8
|
+
# [f1, f2, f3]
|
9
|
+
# output data
|
10
|
+
# :label2
|
11
|
+
def predict(feature_values)
|
12
|
+
res = labels.sort_by do |label_name|
|
13
|
+
class_probability(feature_values, label_name)
|
14
|
+
end
|
15
|
+
res[-1]
|
16
|
+
end
|
17
|
+
|
18
|
+
# returns labels with probabilities
|
19
|
+
# input data
|
20
|
+
# [f1, f2, f3]
|
21
|
+
# output data
|
22
|
+
# { label1: 0.01, label2: 0.02 }
|
23
|
+
def predict_proba(feature_values, result = {})
|
24
|
+
labels.each do |label_name|
|
25
|
+
result[label_name] = class_probability(feature_values, label_name)
|
26
|
+
end
|
27
|
+
result
|
28
|
+
end
|
29
|
+
|
30
|
+
private
|
31
|
+
|
32
|
+
# compute the final naive Bayesian probability for a given set of features being a part of a given label
|
33
|
+
def class_probability(feature_values, label_name)
|
34
|
+
class_fraction = 1.0 / labels.size
|
35
|
+
feature_bayes = feature_mult(feature_values, label_name)
|
36
|
+
feature_bayes * class_fraction
|
37
|
+
end
|
38
|
+
|
39
|
+
# multiply together the feature probabilities for all of the features in a label for given values
|
40
|
+
def feature_mult(feature_values, label_name, res = 1.0)
|
41
|
+
feature_values.each.with_index do |feature_value, index|
|
42
|
+
res *= feature_probability(index, feature_value, label_name)
|
43
|
+
end
|
44
|
+
res
|
45
|
+
end
|
46
|
+
|
47
|
+
def feature_probability(index, value, label_name)
|
48
|
+
# select result from training
|
49
|
+
fit_result = fit_results[label_name][index]
|
50
|
+
# deal with the edge case of a 0 standard deviation
|
51
|
+
return fit_result[:fs_mean] == value ? 1.0 : 0.0 if fit_result[:fs_std].zero?
|
52
|
+
# calculate the gaussian probability
|
53
|
+
exp = - ((value - fit_result[:fs_mean])**2) / (2 * fit_result[:fs_var])
|
54
|
+
(1.0 / Math.sqrt(2 * Math::PI * fit_result[:fs_var])) * (Math::E**exp)
|
55
|
+
end
|
56
|
+
end
|
57
|
+
end
|
58
|
+
end
|
59
|
+
end
|
@@ -0,0 +1,20 @@
|
|
1
|
+
module LearnKit
|
2
|
+
module NaiveBayes
|
3
|
+
class Gaussian
|
4
|
+
# Calc accuracy for test data
|
5
|
+
module Score
|
6
|
+
# calculate accuracy for test data
|
7
|
+
def score(total = 0, correct = 0)
|
8
|
+
labels.each do |label_name|
|
9
|
+
data_set[label_name].each do |feature|
|
10
|
+
predicted_label = predict(feature)
|
11
|
+
correct += 1 if predicted_label == label_name
|
12
|
+
total += 1
|
13
|
+
end
|
14
|
+
end
|
15
|
+
total.zero? ? 0 : (correct * 100.0 / total).round(4)
|
16
|
+
end
|
17
|
+
end
|
18
|
+
end
|
19
|
+
end
|
20
|
+
end
|
metadata
ADDED
@@ -0,0 +1,134 @@
|
|
1
|
+
--- !ruby/object:Gem::Specification
|
2
|
+
name: learn_kit
|
3
|
+
version: !ruby/object:Gem::Version
|
4
|
+
version: 0.0.1
|
5
|
+
platform: ruby
|
6
|
+
authors:
|
7
|
+
- kortirso
|
8
|
+
autorequire:
|
9
|
+
bindir: exe
|
10
|
+
cert_chain: []
|
11
|
+
date: 2018-09-14 00:00:00.000000000 Z
|
12
|
+
dependencies:
|
13
|
+
- !ruby/object:Gem::Dependency
|
14
|
+
name: bundler
|
15
|
+
requirement: !ruby/object:Gem::Requirement
|
16
|
+
requirements:
|
17
|
+
- - "~>"
|
18
|
+
- !ruby/object:Gem::Version
|
19
|
+
version: '1.15'
|
20
|
+
type: :development
|
21
|
+
prerelease: false
|
22
|
+
version_requirements: !ruby/object:Gem::Requirement
|
23
|
+
requirements:
|
24
|
+
- - "~>"
|
25
|
+
- !ruby/object:Gem::Version
|
26
|
+
version: '1.15'
|
27
|
+
- !ruby/object:Gem::Dependency
|
28
|
+
name: rake
|
29
|
+
requirement: !ruby/object:Gem::Requirement
|
30
|
+
requirements:
|
31
|
+
- - "~>"
|
32
|
+
- !ruby/object:Gem::Version
|
33
|
+
version: '10.0'
|
34
|
+
type: :development
|
35
|
+
prerelease: false
|
36
|
+
version_requirements: !ruby/object:Gem::Requirement
|
37
|
+
requirements:
|
38
|
+
- - "~>"
|
39
|
+
- !ruby/object:Gem::Version
|
40
|
+
version: '10.0'
|
41
|
+
- !ruby/object:Gem::Dependency
|
42
|
+
name: rspec
|
43
|
+
requirement: !ruby/object:Gem::Requirement
|
44
|
+
requirements:
|
45
|
+
- - "~>"
|
46
|
+
- !ruby/object:Gem::Version
|
47
|
+
version: '3.0'
|
48
|
+
type: :development
|
49
|
+
prerelease: false
|
50
|
+
version_requirements: !ruby/object:Gem::Requirement
|
51
|
+
requirements:
|
52
|
+
- - "~>"
|
53
|
+
- !ruby/object:Gem::Version
|
54
|
+
version: '3.0'
|
55
|
+
- !ruby/object:Gem::Dependency
|
56
|
+
name: rubocop
|
57
|
+
requirement: !ruby/object:Gem::Requirement
|
58
|
+
requirements:
|
59
|
+
- - "~>"
|
60
|
+
- !ruby/object:Gem::Version
|
61
|
+
version: 0.57.2
|
62
|
+
type: :development
|
63
|
+
prerelease: false
|
64
|
+
version_requirements: !ruby/object:Gem::Requirement
|
65
|
+
requirements:
|
66
|
+
- - "~>"
|
67
|
+
- !ruby/object:Gem::Version
|
68
|
+
version: 0.57.2
|
69
|
+
- !ruby/object:Gem::Dependency
|
70
|
+
name: descriptive_statistics
|
71
|
+
requirement: !ruby/object:Gem::Requirement
|
72
|
+
requirements:
|
73
|
+
- - ">="
|
74
|
+
- !ruby/object:Gem::Version
|
75
|
+
version: '0'
|
76
|
+
type: :runtime
|
77
|
+
prerelease: false
|
78
|
+
version_requirements: !ruby/object:Gem::Requirement
|
79
|
+
requirements:
|
80
|
+
- - ">="
|
81
|
+
- !ruby/object:Gem::Version
|
82
|
+
version: '0'
|
83
|
+
description: Tools for machine learning with ruby
|
84
|
+
email:
|
85
|
+
- kortirso@gmail.com
|
86
|
+
executables: []
|
87
|
+
extensions: []
|
88
|
+
extra_rdoc_files: []
|
89
|
+
files:
|
90
|
+
- ".gitignore"
|
91
|
+
- ".rspec"
|
92
|
+
- ".rubocop.yml"
|
93
|
+
- ".travis.yml"
|
94
|
+
- CODE_OF_CONDUCT.md
|
95
|
+
- Gemfile
|
96
|
+
- LICENSE.txt
|
97
|
+
- README.md
|
98
|
+
- Rakefile
|
99
|
+
- bin/console
|
100
|
+
- bin/setup
|
101
|
+
- learn_kit.gemspec
|
102
|
+
- lib/learn_kit.rb
|
103
|
+
- lib/learn_kit/knn.rb
|
104
|
+
- lib/learn_kit/knn/predict.rb
|
105
|
+
- lib/learn_kit/naive_bayes/gaussian.rb
|
106
|
+
- lib/learn_kit/naive_bayes/gaussian/fit.rb
|
107
|
+
- lib/learn_kit/naive_bayes/gaussian/predict.rb
|
108
|
+
- lib/learn_kit/naive_bayes/gaussian/score.rb
|
109
|
+
- lib/learn_kit/version.rb
|
110
|
+
homepage: https://github.com/kortirso/learn_kit
|
111
|
+
licenses:
|
112
|
+
- MIT
|
113
|
+
metadata: {}
|
114
|
+
post_install_message:
|
115
|
+
rdoc_options: []
|
116
|
+
require_paths:
|
117
|
+
- lib
|
118
|
+
required_ruby_version: !ruby/object:Gem::Requirement
|
119
|
+
requirements:
|
120
|
+
- - ">="
|
121
|
+
- !ruby/object:Gem::Version
|
122
|
+
version: 2.5.0
|
123
|
+
required_rubygems_version: !ruby/object:Gem::Requirement
|
124
|
+
requirements:
|
125
|
+
- - ">="
|
126
|
+
- !ruby/object:Gem::Version
|
127
|
+
version: '0'
|
128
|
+
requirements: []
|
129
|
+
rubyforge_project:
|
130
|
+
rubygems_version: 2.7.6
|
131
|
+
signing_key:
|
132
|
+
specification_version: 4
|
133
|
+
summary: Machine Learning library
|
134
|
+
test_files: []
|