langchainrb 0.3.13 → 0.3.14
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +9 -0
- data/Gemfile.lock +1 -1
- data/README.md +1 -0
- data/lib/langchain/data.rb +16 -0
- data/lib/langchain/loader.rb +4 -3
- data/lib/langchain.rb +1 -0
- data/lib/llm/base.rb +5 -0
- data/lib/llm/cohere.rb +17 -0
- data/lib/llm/google_palm.rb +20 -0
- data/lib/llm/hugging_face.rb +4 -0
- data/lib/llm/openai.rb +29 -0
- data/lib/llm/prompts/summarize_template.json +5 -0
- data/lib/llm/replicate.rb +29 -0
- data/lib/vectorsearch/base.rb +1 -1
- data/lib/vectorsearch/weaviate.rb +13 -36
- data/lib/version.rb +1 -1
- metadata +4 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 33c9436ac8d6a73dc06d30f63c11e4f246b3705aa8934765a53ee59325c3a9cd
|
4
|
+
data.tar.gz: 9cc85603694f9367dd162e25379029a345aa0b5c88cccf303c2af114d43a4010
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: ca5e81638625939d11999a64d44c92fc57c762a934aa8fd5b110c3f5aacc9a736ab5f02da4366e7a1b9b9ec0335dd1eb1683f5b9d90bd97c81914ea0a698dc7c
|
7
|
+
data.tar.gz: aff49ef9451bcbc9a97d181757a5b913737cbfbb4fc3ca49d423cbd2e59a4a71091816e98c2996ff7f8292cb6e0c0d69931a4f3e4e36e2a69fdd7f745640e266
|
data/CHANGELOG.md
CHANGED
@@ -1,5 +1,14 @@
|
|
1
1
|
## [Unreleased]
|
2
2
|
|
3
|
+
## [0.3.14] - 2023-05-28
|
4
|
+
- 🔍 Vectorsearch
|
5
|
+
- Not relying on Weaviate modules anymore
|
6
|
+
- Adding missing specs for Qdrant and Milvus classes
|
7
|
+
- 🚚 Loaders
|
8
|
+
- Add Langchain::Data result object for data loaders
|
9
|
+
- 🗣️ LLMs
|
10
|
+
- Add `summarize()` method to the LLMs
|
11
|
+
|
3
12
|
## [0.3.13] - 2023-05-26
|
4
13
|
- 🔍 Vectorsearch
|
5
14
|
- Pgvector support
|
data/Gemfile.lock
CHANGED
data/README.md
CHANGED
@@ -321,6 +321,7 @@ Langchain.logger.level = :info
|
|
321
321
|
[<img style="border-radius:50%" alt="Andrei Bondarev" src="https://avatars.githubusercontent.com/u/541665?v=4" width="80" height="80" class="avatar">](https://github.com/andreibondarev)
|
322
322
|
[<img style="border-radius:50%" alt="Rafael Figueiredo" src="https://avatars.githubusercontent.com/u/35845775?v=4" width="80" height="80" class="avatar">](https://github.com/rafaelqfigueiredo)
|
323
323
|
[<img style="border-radius:50%" alt="Ricky Chilcott" src="https://avatars.githubusercontent.com/u/445759?v=4" width="80" height="80" class="avatar">](https://github.com/rickychilcott)
|
324
|
+
[<img style="border-radius:50%" alt="Alex Chaplinsky" src="https://avatars.githubusercontent.com/u/695947?v=4" width="80" height="80" class="avatar">](https://github.com/alchaplinsky)
|
324
325
|
|
325
326
|
(Criteria for becoming an Honorary Contributor or Core Contributor is pending...)
|
326
327
|
|
data/lib/langchain/loader.rb
CHANGED
@@ -58,11 +58,12 @@ module Langchain
|
|
58
58
|
end
|
59
59
|
|
60
60
|
def process(&block)
|
61
|
-
|
61
|
+
raw_data, kind = yield
|
62
62
|
|
63
|
-
raise UnknownFormatError unless
|
63
|
+
raise UnknownFormatError unless kind
|
64
64
|
|
65
|
-
Langchain::Processors.const_get(
|
65
|
+
processor = Langchain::Processors.const_get(kind).new
|
66
|
+
Langchain::Data.new(processor.parse(raw_data), source: @path)
|
66
67
|
end
|
67
68
|
|
68
69
|
def find_processor(constant, value)
|
data/lib/langchain.rb
CHANGED
data/lib/llm/base.rb
CHANGED
@@ -33,6 +33,11 @@ module LLM
|
|
33
33
|
raise NotImplementedError, "#{self.class.name} does not support generating embeddings"
|
34
34
|
end
|
35
35
|
|
36
|
+
# Method supported by an LLM that summarizes a given text
|
37
|
+
def summarize(...)
|
38
|
+
raise NotImplementedError, "#{self.class.name} does not support summarization"
|
39
|
+
end
|
40
|
+
|
36
41
|
# Ensure that the LLM value passed in is supported
|
37
42
|
# @param llm [Symbol] The LLM to use
|
38
43
|
def self.validate_llm!(llm:)
|
data/lib/llm/cohere.rb
CHANGED
@@ -16,9 +16,12 @@ module LLM
|
|
16
16
|
@client = ::Cohere::Client.new(api_key: api_key)
|
17
17
|
end
|
18
18
|
|
19
|
+
#
|
19
20
|
# Generate an embedding for a given text
|
21
|
+
#
|
20
22
|
# @param text [String] The text to generate an embedding for
|
21
23
|
# @return [Hash] The embedding
|
24
|
+
#
|
22
25
|
def embed(text:)
|
23
26
|
response = client.embed(
|
24
27
|
texts: [text],
|
@@ -27,9 +30,12 @@ module LLM
|
|
27
30
|
response.dig("embeddings").first
|
28
31
|
end
|
29
32
|
|
33
|
+
#
|
30
34
|
# Generate a completion for a given prompt
|
35
|
+
#
|
31
36
|
# @param prompt [String] The prompt to generate a completion for
|
32
37
|
# @return [Hash] The completion
|
38
|
+
#
|
33
39
|
def complete(prompt:, **params)
|
34
40
|
default_params = {
|
35
41
|
prompt: prompt,
|
@@ -51,5 +57,16 @@ module LLM
|
|
51
57
|
def chat(...)
|
52
58
|
complete(...)
|
53
59
|
end
|
60
|
+
|
61
|
+
# Generate a summary in English for a given text
|
62
|
+
#
|
63
|
+
# More parameters available to extend this method with: https://github.com/andreibondarev/cohere-ruby/blob/0.9.4/lib/cohere/client.rb#L107-L115
|
64
|
+
#
|
65
|
+
# @param text [String] The text to generate a summary for
|
66
|
+
# @return [String] The summary
|
67
|
+
def summarize(text:)
|
68
|
+
response = client.summarize(text: text)
|
69
|
+
response.dig("summary")
|
70
|
+
end
|
54
71
|
end
|
55
72
|
end
|
data/lib/llm/google_palm.rb
CHANGED
@@ -81,5 +81,25 @@ module LLM
|
|
81
81
|
response = client.generate_chat_message(**default_params)
|
82
82
|
response.dig("candidates", 0, "content")
|
83
83
|
end
|
84
|
+
|
85
|
+
#
|
86
|
+
# Generate a summarization for a given text
|
87
|
+
#
|
88
|
+
# @param text [String] The text to generate a summarization for
|
89
|
+
# @return [String] The summarization
|
90
|
+
#
|
91
|
+
def summarize(text:)
|
92
|
+
prompt_template = Prompt.load_from_path(
|
93
|
+
file_path: Langchain.root.join("llm/prompts/summarize_template.json")
|
94
|
+
)
|
95
|
+
prompt = prompt_template.format(text: text)
|
96
|
+
|
97
|
+
complete(
|
98
|
+
prompt: prompt,
|
99
|
+
temperature: DEFAULTS[:temperature],
|
100
|
+
# Most models have a context length of 2048 tokens (except for the newest models, which support 4096).
|
101
|
+
max_tokens: 2048
|
102
|
+
)
|
103
|
+
end
|
84
104
|
end
|
85
105
|
end
|
data/lib/llm/hugging_face.rb
CHANGED
@@ -12,6 +12,7 @@ module LLM
|
|
12
12
|
|
13
13
|
#
|
14
14
|
# Intialize the HuggingFace LLM
|
15
|
+
#
|
15
16
|
# @param api_key [String] The API key to use
|
16
17
|
#
|
17
18
|
def initialize(api_key:)
|
@@ -21,9 +22,12 @@ module LLM
|
|
21
22
|
@client = ::HuggingFace::InferenceApi.new(api_token: api_key)
|
22
23
|
end
|
23
24
|
|
25
|
+
#
|
24
26
|
# Generate an embedding for a given text
|
27
|
+
#
|
25
28
|
# @param text [String] The text to embed
|
26
29
|
# @return [Array] The embedding
|
30
|
+
#
|
27
31
|
def embed(text:)
|
28
32
|
client.embedding(
|
29
33
|
input: text,
|
data/lib/llm/openai.rb
CHANGED
@@ -18,9 +18,12 @@ module LLM
|
|
18
18
|
@client = ::OpenAI::Client.new(access_token: api_key)
|
19
19
|
end
|
20
20
|
|
21
|
+
#
|
21
22
|
# Generate an embedding for a given text
|
23
|
+
#
|
22
24
|
# @param text [String] The text to generate an embedding for
|
23
25
|
# @return [Array] The embedding
|
26
|
+
#
|
24
27
|
def embed(text:)
|
25
28
|
response = client.embeddings(
|
26
29
|
parameters: {
|
@@ -31,9 +34,12 @@ module LLM
|
|
31
34
|
response.dig("data").first.dig("embedding")
|
32
35
|
end
|
33
36
|
|
37
|
+
#
|
34
38
|
# Generate a completion for a given prompt
|
39
|
+
#
|
35
40
|
# @param prompt [String] The prompt to generate a completion for
|
36
41
|
# @return [String] The completion
|
42
|
+
#
|
37
43
|
def complete(prompt:, **params)
|
38
44
|
default_params = {
|
39
45
|
model: DEFAULTS[:completion_model_name],
|
@@ -51,9 +57,12 @@ module LLM
|
|
51
57
|
response.dig("choices", 0, "text")
|
52
58
|
end
|
53
59
|
|
60
|
+
#
|
54
61
|
# Generate a chat completion for a given prompt
|
62
|
+
#
|
55
63
|
# @param prompt [String] The prompt to generate a chat completion for
|
56
64
|
# @return [String] The chat completion
|
65
|
+
#
|
57
66
|
def chat(prompt:, **params)
|
58
67
|
default_params = {
|
59
68
|
model: DEFAULTS[:chat_completion_model_name],
|
@@ -71,5 +80,25 @@ module LLM
|
|
71
80
|
response = client.chat(parameters: default_params)
|
72
81
|
response.dig("choices", 0, "message", "content")
|
73
82
|
end
|
83
|
+
|
84
|
+
#
|
85
|
+
# Generate a summary for a given text
|
86
|
+
#
|
87
|
+
# @param text [String] The text to generate a summary for
|
88
|
+
# @return [String] The summary
|
89
|
+
#
|
90
|
+
def summarize(text:)
|
91
|
+
prompt_template = Prompt.load_from_path(
|
92
|
+
file_path: Langchain.root.join("llm/prompts/summarize_template.json")
|
93
|
+
)
|
94
|
+
prompt = prompt_template.format(text: text)
|
95
|
+
|
96
|
+
complete(
|
97
|
+
prompt: prompt,
|
98
|
+
temperature: DEFAULTS[:temperature],
|
99
|
+
# Most models have a context length of 2048 tokens (except for the newest models, which support 4096).
|
100
|
+
max_tokens: 2048
|
101
|
+
)
|
102
|
+
end
|
74
103
|
end
|
75
104
|
end
|
data/lib/llm/replicate.rb
CHANGED
@@ -23,8 +23,11 @@ module LLM
|
|
23
23
|
dimension: 384
|
24
24
|
}.freeze
|
25
25
|
|
26
|
+
#
|
26
27
|
# Intialize the Replicate LLM
|
28
|
+
#
|
27
29
|
# @param api_key [String] The API key to use
|
30
|
+
#
|
28
31
|
def initialize(api_key:)
|
29
32
|
depends_on "replicate-ruby"
|
30
33
|
require "replicate"
|
@@ -36,9 +39,12 @@ module LLM
|
|
36
39
|
@client = ::Replicate.client
|
37
40
|
end
|
38
41
|
|
42
|
+
#
|
39
43
|
# Generate an embedding for a given text
|
44
|
+
#
|
40
45
|
# @param text [String] The text to generate an embedding for
|
41
46
|
# @return [Hash] The embedding
|
47
|
+
#
|
42
48
|
def embed(text:)
|
43
49
|
response = embeddings_model.predict(input: text)
|
44
50
|
|
@@ -50,9 +56,12 @@ module LLM
|
|
50
56
|
response.output
|
51
57
|
end
|
52
58
|
|
59
|
+
#
|
53
60
|
# Generate a completion for a given prompt
|
61
|
+
#
|
54
62
|
# @param prompt [String] The prompt to generate a completion for
|
55
63
|
# @return [Hash] The completion
|
64
|
+
#
|
56
65
|
def complete(prompt:, **params)
|
57
66
|
response = completion_model.predict(prompt: prompt)
|
58
67
|
|
@@ -73,6 +82,26 @@ module LLM
|
|
73
82
|
complete(...)
|
74
83
|
end
|
75
84
|
|
85
|
+
#
|
86
|
+
# Generate a summary for a given text
|
87
|
+
#
|
88
|
+
# @param text [String] The text to generate a summary for
|
89
|
+
# @return [String] The summary
|
90
|
+
#
|
91
|
+
def summarize(text:)
|
92
|
+
prompt_template = Prompt.load_from_path(
|
93
|
+
file_path: Langchain.root.join("llm/prompts/summarize_template.json")
|
94
|
+
)
|
95
|
+
prompt = prompt_template.format(text: text)
|
96
|
+
|
97
|
+
complete(
|
98
|
+
prompt: prompt,
|
99
|
+
temperature: DEFAULTS[:temperature],
|
100
|
+
# Most models have a context length of 2048 tokens (except for the newest models, which support 4096).
|
101
|
+
max_tokens: 2048
|
102
|
+
)
|
103
|
+
end
|
104
|
+
|
76
105
|
alias_method :generate_embedding, :embed
|
77
106
|
|
78
107
|
private
|
data/lib/vectorsearch/base.rb
CHANGED
@@ -14,9 +14,7 @@ module Vectorsearch
|
|
14
14
|
|
15
15
|
@client = ::Weaviate::Client.new(
|
16
16
|
url: url,
|
17
|
-
api_key: api_key
|
18
|
-
model_service: llm,
|
19
|
-
model_service_api_key: llm_api_key
|
17
|
+
api_key: api_key
|
20
18
|
)
|
21
19
|
@index_name = index_name
|
22
20
|
|
@@ -30,7 +28,8 @@ module Vectorsearch
|
|
30
28
|
objects = Array(texts).map do |text|
|
31
29
|
{
|
32
30
|
class: index_name,
|
33
|
-
properties: {content: text}
|
31
|
+
properties: {content: text},
|
32
|
+
vector: llm_client.embed(text: text)
|
34
33
|
}
|
35
34
|
end
|
36
35
|
|
@@ -43,11 +42,7 @@ module Vectorsearch
|
|
43
42
|
def create_default_schema
|
44
43
|
client.schema.create(
|
45
44
|
class_name: index_name,
|
46
|
-
vectorizer: "
|
47
|
-
# TODO: Figure out a way to optionally enable it
|
48
|
-
# "module_config": {
|
49
|
-
# "qna-openai": {}
|
50
|
-
# },
|
45
|
+
vectorizer: "none",
|
51
46
|
properties: [
|
52
47
|
# TODO: Allow passing in your own IDs
|
53
48
|
{
|
@@ -63,14 +58,9 @@ module Vectorsearch
|
|
63
58
|
# @param k [Integer|String] The number of results to return
|
64
59
|
# @return [Hash] The search results
|
65
60
|
def similarity_search(query:, k: 4)
|
66
|
-
|
61
|
+
embedding = llm_client.embed(text: query)
|
67
62
|
|
68
|
-
|
69
|
-
class_name: index_name,
|
70
|
-
near_text: near_text,
|
71
|
-
limit: k.to_s,
|
72
|
-
fields: "content _additional { id }"
|
73
|
-
)
|
63
|
+
similarity_search_by_vector(embedding: embedding, k: k)
|
74
64
|
end
|
75
65
|
|
76
66
|
# Return documents similar to the vector
|
@@ -92,29 +82,16 @@ module Vectorsearch
|
|
92
82
|
# @param question [String] The question to ask
|
93
83
|
# @return [Hash] The answer
|
94
84
|
def ask(question:)
|
95
|
-
|
96
|
-
# The Cohere support is on the way: https://github.com/weaviate/weaviate/pull/2600
|
97
|
-
if llm == :openai
|
98
|
-
ask_object = "{ question: \"#{question}\" }"
|
99
|
-
|
100
|
-
client.query.get(
|
101
|
-
class_name: index_name,
|
102
|
-
ask: ask_object,
|
103
|
-
limit: "1",
|
104
|
-
fields: "_additional { answer { result } }"
|
105
|
-
)
|
106
|
-
elsif llm == :cohere
|
107
|
-
search_results = similarity_search(query: question)
|
85
|
+
search_results = similarity_search(query: question)
|
108
86
|
|
109
|
-
|
110
|
-
|
111
|
-
|
112
|
-
|
87
|
+
context = search_results.map do |result|
|
88
|
+
result.dig("content").to_s
|
89
|
+
end
|
90
|
+
context = context.join("\n---\n")
|
113
91
|
|
114
|
-
|
92
|
+
prompt = generate_prompt(question: question, context: context)
|
115
93
|
|
116
|
-
|
117
|
-
end
|
94
|
+
llm_client.chat(prompt: prompt)
|
118
95
|
end
|
119
96
|
end
|
120
97
|
end
|
data/lib/version.rb
CHANGED
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: langchainrb
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.3.
|
4
|
+
version: 0.3.14
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Andrei Bondarev
|
8
8
|
autorequire:
|
9
9
|
bindir: exe
|
10
10
|
cert_chain: []
|
11
|
-
date: 2023-05-
|
11
|
+
date: 2023-05-28 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: dotenv-rails
|
@@ -316,6 +316,7 @@ files:
|
|
316
316
|
- lib/agent/chain_of_thought_agent/chain_of_thought_agent_prompt.json
|
317
317
|
- lib/dependency_helper.rb
|
318
318
|
- lib/langchain.rb
|
319
|
+
- lib/langchain/data.rb
|
319
320
|
- lib/langchain/loader.rb
|
320
321
|
- lib/langchain/processors/base.rb
|
321
322
|
- lib/langchain/processors/csv.rb
|
@@ -331,6 +332,7 @@ files:
|
|
331
332
|
- lib/llm/google_palm.rb
|
332
333
|
- lib/llm/hugging_face.rb
|
333
334
|
- lib/llm/openai.rb
|
335
|
+
- lib/llm/prompts/summarize_template.json
|
334
336
|
- lib/llm/replicate.rb
|
335
337
|
- lib/prompt/base.rb
|
336
338
|
- lib/prompt/few_shot_prompt_template.rb
|