google-cloud-monitoring 0.34.2 → 0.35.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/lib/google/cloud/monitoring/v3/alert_policy_service_client.rb +5 -5
- data/lib/google/cloud/monitoring/v3/doc/google/monitoring/v3/alert.rb +4 -0
- data/lib/google/cloud/monitoring/v3/doc/google/monitoring/v3/alert_service.rb +5 -5
- data/lib/google/cloud/monitoring/v3/doc/google/monitoring/v3/common.rb +253 -210
- data/lib/google/cloud/monitoring/v3/doc/google/monitoring/v3/group_service.rb +7 -7
- data/lib/google/cloud/monitoring/v3/doc/google/monitoring/v3/metric_service.rb +13 -13
- data/lib/google/cloud/monitoring/v3/doc/google/monitoring/v3/notification.rb +3 -0
- data/lib/google/cloud/monitoring/v3/doc/google/monitoring/v3/notification_service.rb +12 -12
- data/lib/google/cloud/monitoring/v3/doc/google/monitoring/v3/service_service.rb +13 -13
- data/lib/google/cloud/monitoring/v3/doc/google/monitoring/v3/uptime_service.rb +5 -5
- data/lib/google/cloud/monitoring/v3/group_service_client.rb +7 -7
- data/lib/google/cloud/monitoring/v3/metric_service_client.rb +13 -13
- data/lib/google/cloud/monitoring/v3/notification_channel_service_client.rb +12 -12
- data/lib/google/cloud/monitoring/v3/service_monitoring_service_client.rb +13 -13
- data/lib/google/cloud/monitoring/v3/uptime_check_service_client.rb +5 -5
- data/lib/google/cloud/monitoring/version.rb +1 -1
- data/lib/google/monitoring/v3/alert_pb.rb +1 -0
- data/lib/google/monitoring/v3/alert_service_pb.rb +3 -1
- data/lib/google/monitoring/v3/group_pb.rb +1 -0
- data/lib/google/monitoring/v3/group_service_pb.rb +3 -1
- data/lib/google/monitoring/v3/metric_service_pb.rb +3 -1
- data/lib/google/monitoring/v3/notification_pb.rb +2 -0
- data/lib/google/monitoring/v3/notification_service_pb.rb +3 -1
- data/lib/google/monitoring/v3/service_pb.rb +1 -0
- data/lib/google/monitoring/v3/service_service_pb.rb +3 -1
- data/lib/google/monitoring/v3/uptime_pb.rb +1 -0
- data/lib/google/monitoring/v3/uptime_service_pb.rb +3 -1
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: fee166ee580d75f5444f9e5e83666e171ab57011f7052630cd88ad81ea1c07ee
|
4
|
+
data.tar.gz: 53070f57c04736c8253f139ef784cc92595ef338e9088878534a3d47eb124112
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 200a7c5e1017f81a1c2a1d17c704b6a928a72bb03994c28d601c061d6be781177838d4663b4582d4ca6d4ba77ad51783abb7d13a69ba9656a4456b7b515a8c28
|
7
|
+
data.tar.gz: 17193c67b1f292123856337ef6dc65baf8afaaba6608ae2aef5e16e931ead582d42c501270becca67833842381245dc32a7b1cbbde75bae2c8e7064a8877dad3
|
@@ -286,7 +286,7 @@ module Google
|
|
286
286
|
# Lists the existing alerting policies for the project.
|
287
287
|
#
|
288
288
|
# @param name [String]
|
289
|
-
# The project whose alert policies are to be listed. The format is
|
289
|
+
# Required. The project whose alert policies are to be listed. The format is
|
290
290
|
#
|
291
291
|
# projects/[PROJECT_ID]
|
292
292
|
#
|
@@ -365,7 +365,7 @@ module Google
|
|
365
365
|
# Gets a single alerting policy.
|
366
366
|
#
|
367
367
|
# @param name [String]
|
368
|
-
# The alerting policy to retrieve. The format is
|
368
|
+
# Required. The alerting policy to retrieve. The format is
|
369
369
|
#
|
370
370
|
# projects/[PROJECT_ID]/alertPolicies/[ALERT_POLICY_ID]
|
371
371
|
# @param options [Google::Gax::CallOptions]
|
@@ -397,7 +397,7 @@ module Google
|
|
397
397
|
# Creates a new alerting policy.
|
398
398
|
#
|
399
399
|
# @param name [String]
|
400
|
-
# The project in which to create the alerting policy. The format is
|
400
|
+
# Required. The project in which to create the alerting policy. The format is
|
401
401
|
# `projects/[PROJECT_ID]`.
|
402
402
|
#
|
403
403
|
# Note that this field names the parent container in which the alerting
|
@@ -406,7 +406,7 @@ module Google
|
|
406
406
|
# representation of this name as a prefix but adds a suffix of the form
|
407
407
|
# `/alertPolicies/[POLICY_ID]`, identifying the policy in the container.
|
408
408
|
# @param alert_policy [Google::Monitoring::V3::AlertPolicy | Hash]
|
409
|
-
# The requested alerting policy. You should omit the `name` field in this
|
409
|
+
# Required. The requested alerting policy. You should omit the `name` field in this
|
410
410
|
# policy. The name will be returned in the new policy, including
|
411
411
|
# a new [ALERT_POLICY_ID] value.
|
412
412
|
# A hash of the same form as `Google::Monitoring::V3::AlertPolicy`
|
@@ -445,7 +445,7 @@ module Google
|
|
445
445
|
# Deletes an alerting policy.
|
446
446
|
#
|
447
447
|
# @param name [String]
|
448
|
-
# The alerting policy to delete. The format is:
|
448
|
+
# Required. The alerting policy to delete. The format is:
|
449
449
|
#
|
450
450
|
# projects/[PROJECT_ID]/alertPolicies/[ALERT_POLICY_ID]
|
451
451
|
#
|
@@ -60,10 +60,14 @@ module Google
|
|
60
60
|
# OR according to the `combiner` field. If the combined conditions evaluate
|
61
61
|
# to true, then an incident is created. A policy can have from one to six
|
62
62
|
# conditions.
|
63
|
+
# If |condition_time_series_uery_language| is present, it must be the only
|
64
|
+
# |condition|.
|
63
65
|
# @!attribute [rw] combiner
|
64
66
|
# @return [Google::Monitoring::V3::AlertPolicy::ConditionCombinerType]
|
65
67
|
# How to combine the results of multiple conditions to determine if an
|
66
68
|
# incident should be opened.
|
69
|
+
# If condition_time_series_query_language is present, this must be
|
70
|
+
# COMBINE_UNSPECIFIED.
|
67
71
|
# @!attribute [rw] enabled
|
68
72
|
# @return [Google::Protobuf::BoolValue]
|
69
73
|
# Whether or not the policy is enabled. On write, the default interpretation
|
@@ -19,7 +19,7 @@ module Google
|
|
19
19
|
# The protocol for the `CreateAlertPolicy` request.
|
20
20
|
# @!attribute [rw] name
|
21
21
|
# @return [String]
|
22
|
-
# The project in which to create the alerting policy. The format is
|
22
|
+
# Required. The project in which to create the alerting policy. The format is
|
23
23
|
# `projects/[PROJECT_ID]`.
|
24
24
|
#
|
25
25
|
# Note that this field names the parent container in which the alerting
|
@@ -29,7 +29,7 @@ module Google
|
|
29
29
|
# `/alertPolicies/[POLICY_ID]`, identifying the policy in the container.
|
30
30
|
# @!attribute [rw] alert_policy
|
31
31
|
# @return [Google::Monitoring::V3::AlertPolicy]
|
32
|
-
# The requested alerting policy. You should omit the `name` field in this
|
32
|
+
# Required. The requested alerting policy. You should omit the `name` field in this
|
33
33
|
# policy. The name will be returned in the new policy, including
|
34
34
|
# a new [ALERT_POLICY_ID] value.
|
35
35
|
class CreateAlertPolicyRequest; end
|
@@ -37,7 +37,7 @@ module Google
|
|
37
37
|
# The protocol for the `GetAlertPolicy` request.
|
38
38
|
# @!attribute [rw] name
|
39
39
|
# @return [String]
|
40
|
-
# The alerting policy to retrieve. The format is
|
40
|
+
# Required. The alerting policy to retrieve. The format is
|
41
41
|
#
|
42
42
|
# projects/[PROJECT_ID]/alertPolicies/[ALERT_POLICY_ID]
|
43
43
|
class GetAlertPolicyRequest; end
|
@@ -45,7 +45,7 @@ module Google
|
|
45
45
|
# The protocol for the `ListAlertPolicies` request.
|
46
46
|
# @!attribute [rw] name
|
47
47
|
# @return [String]
|
48
|
-
# The project whose alert policies are to be listed. The format is
|
48
|
+
# Required. The project whose alert policies are to be listed. The format is
|
49
49
|
#
|
50
50
|
# projects/[PROJECT_ID]
|
51
51
|
#
|
@@ -125,7 +125,7 @@ module Google
|
|
125
125
|
# The protocol for the `DeleteAlertPolicy` request.
|
126
126
|
# @!attribute [rw] name
|
127
127
|
# @return [String]
|
128
|
-
# The alerting policy to delete. The format is:
|
128
|
+
# Required. The alerting policy to delete. The format is:
|
129
129
|
#
|
130
130
|
# projects/[PROJECT_ID]/alertPolicies/[ALERT_POLICY_ID]
|
131
131
|
#
|
@@ -64,329 +64,372 @@ module Google
|
|
64
64
|
# later than the end time.
|
65
65
|
class TimeInterval; end
|
66
66
|
|
67
|
-
# Describes how to combine multiple time series to provide different
|
68
|
-
# the data. Aggregation
|
69
|
-
# series
|
70
|
-
#
|
71
|
-
#
|
72
|
-
#
|
67
|
+
# Describes how to combine multiple time series to provide a different view of
|
68
|
+
# the data. Aggregation of time series is done in two steps. First, each time
|
69
|
+
# series in the set is _aligned_ to the same time interval boundaries, then the
|
70
|
+
# set of time series is optionally _reduced_ in number.
|
71
|
+
#
|
72
|
+
# Alignment consists of applying the `per_series_aligner` operation
|
73
|
+
# to each time series after its data has been divided into regular
|
74
|
+
# `alignment_period` time intervals. This process takes _all_ of the data
|
75
|
+
# points in an alignment period, applies a mathematical transformation such as
|
76
|
+
# averaging, minimum, maximum, delta, etc., and converts them into a single
|
77
|
+
# data point per period.
|
78
|
+
#
|
79
|
+
# Reduction is when the aligned and transformed time series can optionally be
|
80
|
+
# combined, reducing the number of time series through similar mathematical
|
81
|
+
# transformations. Reduction involves applying a `cross_series_reducer` to
|
82
|
+
# all the time series, optionally sorting the time series into subsets with
|
83
|
+
# `group_by_fields`, and applying the reducer to each subset.
|
84
|
+
#
|
85
|
+
# The raw time series data can contain a huge amount of information from
|
86
|
+
# multiple sources. Alignment and reduction transforms this mass of data into
|
87
|
+
# a more manageable and representative collection of data, for example "the
|
88
|
+
# 95% latency across the average of all tasks in a cluster". This
|
89
|
+
# representative data can be more easily graphed and comprehended, and the
|
90
|
+
# individual time series data is still available for later drilldown. For more
|
91
|
+
# details, see [Aggregating Time
|
92
|
+
# Series](/monitoring/api/v3/metrics#aggregating_time_series).
|
73
93
|
# @!attribute [rw] alignment_period
|
74
94
|
# @return [Google::Protobuf::Duration]
|
75
|
-
# The
|
76
|
-
#
|
77
|
-
#
|
78
|
-
#
|
79
|
-
#
|
80
|
-
#
|
81
|
-
#
|
82
|
-
#
|
95
|
+
# The `alignment_period` specifies a time interval, in seconds, that is used
|
96
|
+
# to divide the data in all the
|
97
|
+
# {Google::Monitoring::V3::TimeSeries time series} into consistent blocks of
|
98
|
+
# time. This will be done before the per-series aligner can be applied to
|
99
|
+
# the data.
|
100
|
+
#
|
101
|
+
# The value must be at least 60 seconds. If a per-series aligner other than
|
102
|
+
# `ALIGN_NONE` is specified, this field is required or an error is returned.
|
103
|
+
# If no per-series aligner is specified, or the aligner `ALIGN_NONE` is
|
104
|
+
# specified, then this field is ignored.
|
83
105
|
# @!attribute [rw] per_series_aligner
|
84
106
|
# @return [Google::Monitoring::V3::Aggregation::Aligner]
|
85
|
-
#
|
86
|
-
#
|
87
|
-
#
|
88
|
-
#
|
107
|
+
# An `Aligner` describes how to bring the data points in a single
|
108
|
+
# time series into temporal alignment. Except for `ALIGN_NONE`, all
|
109
|
+
# alignments cause all the data points in an `alignment_period` to be
|
110
|
+
# mathematically grouped together, resulting in a single data point for
|
111
|
+
# each `alignment_period` with end timestamp at the end of the period.
|
112
|
+
#
|
113
|
+
# Not all alignment operations may be applied to all time series. The valid
|
114
|
+
# choices depend on the `metric_kind` and `value_type` of the original time
|
115
|
+
# series. Alignment can change the `metric_kind` or the `value_type` of
|
89
116
|
# the time series.
|
90
117
|
#
|
91
118
|
# Time series data must be aligned in order to perform cross-time
|
92
|
-
# series reduction. If `
|
93
|
-
# `
|
94
|
-
# and `
|
119
|
+
# series reduction. If `cross_series_reducer` is specified, then
|
120
|
+
# `per_series_aligner` must be specified and not equal to `ALIGN_NONE`
|
121
|
+
# and `alignment_period` must be specified; otherwise, an error is
|
95
122
|
# returned.
|
96
123
|
# @!attribute [rw] cross_series_reducer
|
97
124
|
# @return [Google::Monitoring::V3::Aggregation::Reducer]
|
98
|
-
# The
|
99
|
-
#
|
100
|
-
#
|
101
|
-
# series. Reduction may change the metric type of value type of the
|
102
|
-
# time series.
|
125
|
+
# The reduction operation to be used to combine time series into a single
|
126
|
+
# time series, where the value of each data point in the resulting series is
|
127
|
+
# a function of all the already aligned values in the input time series.
|
103
128
|
#
|
104
|
-
#
|
105
|
-
#
|
106
|
-
#
|
107
|
-
#
|
108
|
-
#
|
129
|
+
# Not all reducer operations can be applied to all time series. The valid
|
130
|
+
# choices depend on the `metric_kind` and the `value_type` of the original
|
131
|
+
# time series. Reduction can yield a time series with a different
|
132
|
+
# `metric_kind` or `value_type` than the input time series.
|
133
|
+
#
|
134
|
+
# Time series data must first be aligned (see `per_series_aligner`) in order
|
135
|
+
# to perform cross-time series reduction. If `cross_series_reducer` is
|
136
|
+
# specified, then `per_series_aligner` must be specified, and must not be
|
137
|
+
# `ALIGN_NONE`. An `alignment_period` must also be specified; otherwise, an
|
138
|
+
# error is returned.
|
109
139
|
# @!attribute [rw] group_by_fields
|
110
140
|
# @return [Array<String>]
|
111
|
-
# The set of fields to preserve when `
|
112
|
-
# specified. The `
|
141
|
+
# The set of fields to preserve when `cross_series_reducer` is
|
142
|
+
# specified. The `group_by_fields` determine how the time series are
|
113
143
|
# partitioned into subsets prior to applying the aggregation
|
114
|
-
#
|
144
|
+
# operation. Each subset contains time series that have the same
|
115
145
|
# value for each of the grouping fields. Each individual time
|
116
146
|
# series is a member of exactly one subset. The
|
117
|
-
# `
|
147
|
+
# `cross_series_reducer` is applied to each subset of time series.
|
118
148
|
# It is not possible to reduce across different resource types, so
|
119
149
|
# this field implicitly contains `resource.type`. Fields not
|
120
|
-
# specified in `
|
121
|
-
# `
|
150
|
+
# specified in `group_by_fields` are aggregated away. If
|
151
|
+
# `group_by_fields` is not specified and all the time series have
|
122
152
|
# the same resource type, then the time series are aggregated into
|
123
|
-
# a single output time series. If `
|
153
|
+
# a single output time series. If `cross_series_reducer` is not
|
124
154
|
# defined, this field is ignored.
|
125
155
|
class Aggregation
|
126
|
-
# The Aligner
|
127
|
-
# time series
|
156
|
+
# The `Aligner` specifies the operation that will be applied to the data
|
157
|
+
# points in each alignment period in a time series. Except for
|
158
|
+
# `ALIGN_NONE`, which specifies that no operation be applied, each alignment
|
159
|
+
# operation replaces the set of data values in each alignment period with
|
160
|
+
# a single value: the result of applying the operation to the data values.
|
161
|
+
# An aligned time series has a single data value at the end of each
|
162
|
+
# `alignment_period`.
|
163
|
+
#
|
164
|
+
# An alignment operation can change the data type of the values, too. For
|
165
|
+
# example, if you apply a counting operation to boolean values, the data
|
166
|
+
# `value_type` in the original time series is `BOOLEAN`, but the `value_type`
|
167
|
+
# in the aligned result is `INT64`.
|
128
168
|
module Aligner
|
129
|
-
# No alignment. Raw data is returned. Not valid if cross-
|
130
|
-
#
|
131
|
-
#
|
169
|
+
# No alignment. Raw data is returned. Not valid if cross-series reduction
|
170
|
+
# is requested. The `value_type` of the result is the same as the
|
171
|
+
# `value_type` of the input.
|
132
172
|
ALIGN_NONE = 0
|
133
173
|
|
134
|
-
# Align and convert to
|
135
|
-
#
|
136
|
-
#
|
137
|
-
# period be increased. The value type of the result is the same
|
138
|
-
# as the value type of the input.
|
174
|
+
# Align and convert to
|
175
|
+
# {Google::Api::MetricDescriptor::MetricKind::DELTA DELTA}.
|
176
|
+
# The output is `delta = y1 - y0`.
|
139
177
|
#
|
140
|
-
#
|
141
|
-
#
|
178
|
+
# This alignment is valid for
|
179
|
+
# {Google::Api::MetricDescriptor::MetricKind::CUMULATIVE CUMULATIVE} and
|
180
|
+
# `DELTA` metrics. If the selected alignment period results in periods
|
181
|
+
# with no data, then the aligned value for such a period is created by
|
182
|
+
# interpolation. The `value_type` of the aligned result is the same as
|
183
|
+
# the `value_type` of the input.
|
142
184
|
ALIGN_DELTA = 1
|
143
185
|
|
144
|
-
# Align and convert to a rate.
|
145
|
-
#
|
146
|
-
#
|
147
|
-
#
|
186
|
+
# Align and convert to a rate. The result is computed as
|
187
|
+
# `rate = (y1 - y0)/(t1 - t0)`, or "delta over time".
|
188
|
+
# Think of this aligner as providing the slope of the line that passes
|
189
|
+
# through the value at the start and at the end of the `alignment_period`.
|
148
190
|
#
|
149
|
-
#
|
150
|
-
#
|
151
|
-
#
|
152
|
-
#
|
191
|
+
# This aligner is valid for `CUMULATIVE`
|
192
|
+
# and `DELTA` metrics with numeric values. If the selected alignment
|
193
|
+
# period results in periods with no data, then the aligned value for
|
194
|
+
# such a period is created by interpolation. The output is a `GAUGE`
|
195
|
+
# metric with `value_type` `DOUBLE`.
|
153
196
|
#
|
154
|
-
# If, by rate, you
|
155
|
-
# `ALIGN_PERCENT_CHANGE` aligner
|
197
|
+
# If, by "rate", you mean "percentage change", see the
|
198
|
+
# `ALIGN_PERCENT_CHANGE` aligner instead.
|
156
199
|
ALIGN_RATE = 2
|
157
200
|
|
158
|
-
# Align by interpolating between adjacent points around the
|
159
|
-
# period boundary. This
|
160
|
-
#
|
161
|
-
#
|
201
|
+
# Align by interpolating between adjacent points around the alignment
|
202
|
+
# period boundary. This aligner is valid for `GAUGE` metrics with
|
203
|
+
# numeric values. The `value_type` of the aligned result is the same as the
|
204
|
+
# `value_type` of the input.
|
162
205
|
ALIGN_INTERPOLATE = 3
|
163
206
|
|
164
|
-
# Align by
|
165
|
-
#
|
166
|
-
#
|
167
|
-
#
|
207
|
+
# Align by moving the most recent data point before the end of the
|
208
|
+
# alignment period to the boundary at the end of the alignment
|
209
|
+
# period. This aligner is valid for `GAUGE` metrics. The `value_type` of
|
210
|
+
# the aligned result is the same as the `value_type` of the input.
|
168
211
|
ALIGN_NEXT_OLDER = 4
|
169
212
|
|
170
|
-
# Align time series
|
171
|
-
#
|
172
|
-
#
|
173
|
-
#
|
174
|
-
# type of the input.
|
213
|
+
# Align the time series by returning the minimum value in each alignment
|
214
|
+
# period. This aligner is valid for `GAUGE` and `DELTA` metrics with
|
215
|
+
# numeric values. The `value_type` of the aligned result is the same as
|
216
|
+
# the `value_type` of the input.
|
175
217
|
ALIGN_MIN = 10
|
176
218
|
|
177
|
-
# Align time series
|
178
|
-
#
|
179
|
-
#
|
180
|
-
#
|
181
|
-
# type of the input.
|
219
|
+
# Align the time series by returning the maximum value in each alignment
|
220
|
+
# period. This aligner is valid for `GAUGE` and `DELTA` metrics with
|
221
|
+
# numeric values. The `value_type` of the aligned result is the same as
|
222
|
+
# the `value_type` of the input.
|
182
223
|
ALIGN_MAX = 11
|
183
224
|
|
184
|
-
# Align time series
|
185
|
-
#
|
186
|
-
#
|
187
|
-
# metrics with numeric values. The value type of the output is
|
188
|
-
# {Google::Api::MetricDescriptor::ValueType::DOUBLE DOUBLE}.
|
225
|
+
# Align the time series by returning the mean value in each alignment
|
226
|
+
# period. This aligner is valid for `GAUGE` and `DELTA` metrics with
|
227
|
+
# numeric values. The `value_type` of the aligned result is `DOUBLE`.
|
189
228
|
ALIGN_MEAN = 12
|
190
229
|
|
191
|
-
# Align time series
|
192
|
-
#
|
193
|
-
#
|
194
|
-
#
|
195
|
-
# {Google::Api::MetricDescriptor::ValueType::INT64 INT64}.
|
230
|
+
# Align the time series by returning the number of values in each alignment
|
231
|
+
# period. This aligner is valid for `GAUGE` and `DELTA` metrics with
|
232
|
+
# numeric or Boolean values. The `value_type` of the aligned result is
|
233
|
+
# `INT64`.
|
196
234
|
ALIGN_COUNT = 13
|
197
235
|
|
198
|
-
# Align time series
|
199
|
-
#
|
200
|
-
#
|
201
|
-
#
|
202
|
-
# same as the value type of the input.
|
236
|
+
# Align the time series by returning the sum of the values in each
|
237
|
+
# alignment period. This aligner is valid for `GAUGE` and `DELTA`
|
238
|
+
# metrics with numeric and distribution values. The `value_type` of the
|
239
|
+
# aligned result is the same as the `value_type` of the input.
|
203
240
|
ALIGN_SUM = 14
|
204
241
|
|
205
|
-
# Align time series
|
206
|
-
#
|
207
|
-
#
|
208
|
-
#
|
209
|
-
# {Google::Api::MetricDescriptor::ValueType::DOUBLE DOUBLE}.
|
242
|
+
# Align the time series by returning the standard deviation of the values
|
243
|
+
# in each alignment period. This aligner is valid for `GAUGE` and
|
244
|
+
# `DELTA` metrics with numeric values. The `value_type` of the output is
|
245
|
+
# `DOUBLE`.
|
210
246
|
ALIGN_STDDEV = 15
|
211
247
|
|
212
|
-
# Align time series
|
213
|
-
#
|
214
|
-
#
|
215
|
-
# Boolean values. The value type of the output is
|
216
|
-
# {Google::Api::MetricDescriptor::ValueType::INT64 INT64}.
|
248
|
+
# Align the time series by returning the number of `True` values in
|
249
|
+
# each alignment period. This aligner is valid for `GAUGE` metrics with
|
250
|
+
# Boolean values. The `value_type` of the output is `INT64`.
|
217
251
|
ALIGN_COUNT_TRUE = 16
|
218
252
|
|
219
|
-
# Align time series
|
220
|
-
#
|
221
|
-
#
|
222
|
-
# Boolean values. The value type of the output is
|
223
|
-
# {Google::Api::MetricDescriptor::ValueType::INT64 INT64}.
|
253
|
+
# Align the time series by returning the number of `False` values in
|
254
|
+
# each alignment period. This aligner is valid for `GAUGE` metrics with
|
255
|
+
# Boolean values. The `value_type` of the output is `INT64`.
|
224
256
|
ALIGN_COUNT_FALSE = 24
|
225
257
|
|
226
|
-
# Align time series
|
227
|
-
#
|
228
|
-
#
|
229
|
-
#
|
230
|
-
# {Google::Api::MetricDescriptor::ValueType::DOUBLE DOUBLE}.
|
258
|
+
# Align the time series by returning the ratio of the number of `True`
|
259
|
+
# values to the total number of values in each alignment period. This
|
260
|
+
# aligner is valid for `GAUGE` metrics with Boolean values. The output
|
261
|
+
# value is in the range [0.0, 1.0] and has `value_type` `DOUBLE`.
|
231
262
|
ALIGN_FRACTION_TRUE = 17
|
232
263
|
|
233
|
-
# Align time series
|
234
|
-
#
|
235
|
-
#
|
236
|
-
#
|
237
|
-
#
|
264
|
+
# Align the time series by using [percentile
|
265
|
+
# aggregation](https://en.wikipedia.org/wiki/Percentile). The resulting
|
266
|
+
# data point in each alignment period is the 99th percentile of all data
|
267
|
+
# points in the period. This aligner is valid for `GAUGE` and `DELTA`
|
268
|
+
# metrics with distribution values. The output is a `GAUGE` metric with
|
269
|
+
# `value_type` `DOUBLE`.
|
238
270
|
ALIGN_PERCENTILE_99 = 18
|
239
271
|
|
240
|
-
# Align time series
|
241
|
-
#
|
242
|
-
#
|
243
|
-
#
|
244
|
-
#
|
272
|
+
# Align the time series by using [percentile
|
273
|
+
# aggregation](https://en.wikipedia.org/wiki/Percentile). The resulting
|
274
|
+
# data point in each alignment period is the 95th percentile of all data
|
275
|
+
# points in the period. This aligner is valid for `GAUGE` and `DELTA`
|
276
|
+
# metrics with distribution values. The output is a `GAUGE` metric with
|
277
|
+
# `value_type` `DOUBLE`.
|
245
278
|
ALIGN_PERCENTILE_95 = 19
|
246
279
|
|
247
|
-
# Align time series
|
248
|
-
#
|
249
|
-
#
|
250
|
-
#
|
251
|
-
#
|
280
|
+
# Align the time series by using [percentile
|
281
|
+
# aggregation](https://en.wikipedia.org/wiki/Percentile). The resulting
|
282
|
+
# data point in each alignment period is the 50th percentile of all data
|
283
|
+
# points in the period. This aligner is valid for `GAUGE` and `DELTA`
|
284
|
+
# metrics with distribution values. The output is a `GAUGE` metric with
|
285
|
+
# `value_type` `DOUBLE`.
|
252
286
|
ALIGN_PERCENTILE_50 = 20
|
253
287
|
|
254
|
-
# Align time series
|
255
|
-
#
|
256
|
-
#
|
257
|
-
#
|
258
|
-
#
|
288
|
+
# Align the time series by using [percentile
|
289
|
+
# aggregation](https://en.wikipedia.org/wiki/Percentile). The resulting
|
290
|
+
# data point in each alignment period is the 5th percentile of all data
|
291
|
+
# points in the period. This aligner is valid for `GAUGE` and `DELTA`
|
292
|
+
# metrics with distribution values. The output is a `GAUGE` metric with
|
293
|
+
# `value_type` `DOUBLE`.
|
259
294
|
ALIGN_PERCENTILE_05 = 21
|
260
295
|
|
261
|
-
# Align and convert to a percentage change. This
|
262
|
-
#
|
263
|
-
#
|
264
|
-
#
|
265
|
-
#
|
266
|
-
#
|
267
|
-
#
|
268
|
-
#
|
296
|
+
# Align and convert to a percentage change. This aligner is valid for
|
297
|
+
# `GAUGE` and `DELTA` metrics with numeric values. This alignment returns
|
298
|
+
# `((current - previous)/previous) * 100`, where the value of `previous` is
|
299
|
+
# determined based on the `alignment_period`.
|
300
|
+
#
|
301
|
+
# If the values of `current` and `previous` are both 0, then the returned
|
302
|
+
# value is 0. If only `previous` is 0, the returned value is infinity.
|
303
|
+
#
|
304
|
+
# A 10-minute moving mean is computed at each point of the alignment period
|
269
305
|
# prior to the above calculation to smooth the metric and prevent false
|
270
|
-
# positives from very short
|
271
|
-
#
|
272
|
-
#
|
273
|
-
#
|
274
|
-
#
|
275
|
-
#
|
306
|
+
# positives from very short-lived spikes. The moving mean is only
|
307
|
+
# applicable for data whose values are `>= 0`. Any values `< 0` are
|
308
|
+
# treated as a missing datapoint, and are ignored. While `DELTA`
|
309
|
+
# metrics are accepted by this alignment, special care should be taken that
|
310
|
+
# the values for the metric will always be positive. The output is a
|
311
|
+
# `GAUGE` metric with `value_type` `DOUBLE`.
|
276
312
|
ALIGN_PERCENT_CHANGE = 23
|
277
313
|
end
|
278
314
|
|
279
|
-
# A Reducer describes how to aggregate data points from multiple
|
280
|
-
# time series into a single time series
|
315
|
+
# A Reducer operation describes how to aggregate data points from multiple
|
316
|
+
# time series into a single time series, where the value of each data point
|
317
|
+
# in the resulting series is a function of all the already aligned values in
|
318
|
+
# the input time series.
|
281
319
|
module Reducer
|
282
|
-
# No cross-time series reduction. The output of the
|
320
|
+
# No cross-time series reduction. The output of the `Aligner` is
|
283
321
|
# returned.
|
284
322
|
REDUCE_NONE = 0
|
285
323
|
|
286
|
-
# Reduce by computing the mean across time series for each
|
287
|
-
# alignment period. This reducer is valid for
|
288
|
-
#
|
289
|
-
#
|
324
|
+
# Reduce by computing the mean value across time series for each
|
325
|
+
# alignment period. This reducer is valid for
|
326
|
+
# {Google::Api::MetricDescriptor::MetricKind::DELTA DELTA} and
|
327
|
+
# {Google::Api::MetricDescriptor::MetricKind::GAUGE GAUGE} metrics with
|
328
|
+
# numeric or distribution values. The `value_type` of the output is
|
329
|
+
# {Google::Api::MetricDescriptor::ValueType::DOUBLE DOUBLE}.
|
290
330
|
REDUCE_MEAN = 1
|
291
331
|
|
292
|
-
# Reduce by computing the minimum across time series for each
|
293
|
-
# alignment period. This reducer is valid for
|
294
|
-
#
|
295
|
-
#
|
332
|
+
# Reduce by computing the minimum value across time series for each
|
333
|
+
# alignment period. This reducer is valid for `DELTA` and `GAUGE` metrics
|
334
|
+
# with numeric values. The `value_type` of the output is the same as the
|
335
|
+
# `value_type` of the input.
|
296
336
|
REDUCE_MIN = 2
|
297
337
|
|
298
|
-
# Reduce by computing the maximum across time series for each
|
299
|
-
# alignment period. This reducer is valid for
|
300
|
-
#
|
301
|
-
#
|
338
|
+
# Reduce by computing the maximum value across time series for each
|
339
|
+
# alignment period. This reducer is valid for `DELTA` and `GAUGE` metrics
|
340
|
+
# with numeric values. The `value_type` of the output is the same as the
|
341
|
+
# `value_type` of the input.
|
302
342
|
REDUCE_MAX = 3
|
303
343
|
|
304
344
|
# Reduce by computing the sum across time series for each
|
305
|
-
# alignment period. This reducer is valid for
|
306
|
-
#
|
307
|
-
# the
|
345
|
+
# alignment period. This reducer is valid for `DELTA` and `GAUGE` metrics
|
346
|
+
# with numeric and distribution values. The `value_type` of the output is
|
347
|
+
# the same as the `value_type` of the input.
|
308
348
|
REDUCE_SUM = 4
|
309
349
|
|
310
350
|
# Reduce by computing the standard deviation across time series
|
311
|
-
# for each alignment period. This reducer is valid for
|
312
|
-
#
|
313
|
-
# the output is
|
351
|
+
# for each alignment period. This reducer is valid for `DELTA` and
|
352
|
+
# `GAUGE` metrics with numeric or distribution values. The `value_type`
|
353
|
+
# of the output is `DOUBLE`.
|
314
354
|
REDUCE_STDDEV = 5
|
315
355
|
|
316
|
-
# Reduce by computing the
|
317
|
-
# for each alignment period. This reducer is valid for
|
318
|
-
#
|
319
|
-
#
|
320
|
-
# {Google::Api::MetricDescriptor::ValueType::INT64 INT64}.
|
356
|
+
# Reduce by computing the number of data points across time series
|
357
|
+
# for each alignment period. This reducer is valid for `DELTA` and
|
358
|
+
# `GAUGE` metrics of numeric, Boolean, distribution, and string
|
359
|
+
# `value_type`. The `value_type` of the output is `INT64`.
|
321
360
|
REDUCE_COUNT = 6
|
322
361
|
|
323
|
-
# Reduce by computing the
|
324
|
-
# series for each alignment period. This reducer is valid for
|
325
|
-
#
|
326
|
-
#
|
362
|
+
# Reduce by computing the number of `True`-valued data points across time
|
363
|
+
# series for each alignment period. This reducer is valid for `DELTA` and
|
364
|
+
# `GAUGE` metrics of Boolean `value_type`. The `value_type` of the output
|
365
|
+
# is `INT64`.
|
327
366
|
REDUCE_COUNT_TRUE = 7
|
328
367
|
|
329
|
-
# Reduce by computing the
|
330
|
-
# series for each alignment period. This reducer is valid for
|
331
|
-
#
|
332
|
-
#
|
368
|
+
# Reduce by computing the number of `False`-valued data points across time
|
369
|
+
# series for each alignment period. This reducer is valid for `DELTA` and
|
370
|
+
# `GAUGE` metrics of Boolean `value_type`. The `value_type` of the output
|
371
|
+
# is `INT64`.
|
333
372
|
REDUCE_COUNT_FALSE = 15
|
334
373
|
|
335
|
-
# Reduce by computing the
|
336
|
-
#
|
337
|
-
#
|
338
|
-
# range [0, 1] and has
|
339
|
-
#
|
374
|
+
# Reduce by computing the ratio of the number of `True`-valued data points
|
375
|
+
# to the total number of data points for each alignment period. This
|
376
|
+
# reducer is valid for `DELTA` and `GAUGE` metrics of Boolean `value_type`.
|
377
|
+
# The output value is in the range [0.0, 1.0] and has `value_type`
|
378
|
+
# `DOUBLE`.
|
340
379
|
REDUCE_FRACTION_TRUE = 8
|
341
380
|
|
342
|
-
# Reduce by computing 99th
|
343
|
-
#
|
344
|
-
#
|
345
|
-
#
|
381
|
+
# Reduce by computing the [99th
|
382
|
+
# percentile](https://en.wikipedia.org/wiki/Percentile) of data points
|
383
|
+
# across time series for each alignment period. This reducer is valid for
|
384
|
+
# `GAUGE` and `DELTA` metrics of numeric and distribution type. The value
|
385
|
+
# of the output is `DOUBLE`.
|
346
386
|
REDUCE_PERCENTILE_99 = 9
|
347
387
|
|
348
|
-
# Reduce by computing 95th
|
349
|
-
#
|
350
|
-
#
|
351
|
-
#
|
388
|
+
# Reduce by computing the [95th
|
389
|
+
# percentile](https://en.wikipedia.org/wiki/Percentile) of data points
|
390
|
+
# across time series for each alignment period. This reducer is valid for
|
391
|
+
# `GAUGE` and `DELTA` metrics of numeric and distribution type. The value
|
392
|
+
# of the output is `DOUBLE`.
|
352
393
|
REDUCE_PERCENTILE_95 = 10
|
353
394
|
|
354
|
-
# Reduce by computing 50th
|
355
|
-
#
|
356
|
-
#
|
357
|
-
#
|
395
|
+
# Reduce by computing the [50th
|
396
|
+
# percentile](https://en.wikipedia.org/wiki/Percentile) of data points
|
397
|
+
# across time series for each alignment period. This reducer is valid for
|
398
|
+
# `GAUGE` and `DELTA` metrics of numeric and distribution type. The value
|
399
|
+
# of the output is `DOUBLE`.
|
358
400
|
REDUCE_PERCENTILE_50 = 11
|
359
401
|
|
360
|
-
# Reduce by computing 5th
|
361
|
-
#
|
362
|
-
#
|
363
|
-
#
|
402
|
+
# Reduce by computing the [5th
|
403
|
+
# percentile](https://en.wikipedia.org/wiki/Percentile) of data points
|
404
|
+
# across time series for each alignment period. This reducer is valid for
|
405
|
+
# `GAUGE` and `DELTA` metrics of numeric and distribution type. The value
|
406
|
+
# of the output is `DOUBLE`.
|
364
407
|
REDUCE_PERCENTILE_05 = 12
|
365
408
|
end
|
366
409
|
end
|
367
410
|
|
368
|
-
# Specifies an ordering relationship on two arguments,
|
369
|
-
# right
|
411
|
+
# Specifies an ordering relationship on two arguments, called `left` and
|
412
|
+
# `right`.
|
370
413
|
module ComparisonType
|
371
414
|
# No ordering relationship is specified.
|
372
415
|
COMPARISON_UNSPECIFIED = 0
|
373
416
|
|
374
|
-
#
|
417
|
+
# True if the left argument is greater than the right argument.
|
375
418
|
COMPARISON_GT = 1
|
376
419
|
|
377
|
-
#
|
420
|
+
# True if the left argument is greater than or equal to the right argument.
|
378
421
|
COMPARISON_GE = 2
|
379
422
|
|
380
|
-
#
|
423
|
+
# True if the left argument is less than the right argument.
|
381
424
|
COMPARISON_LT = 3
|
382
425
|
|
383
|
-
#
|
426
|
+
# True if the left argument is less than or equal to the right argument.
|
384
427
|
COMPARISON_LE = 4
|
385
428
|
|
386
|
-
#
|
429
|
+
# True if the left argument is equal to the right argument.
|
387
430
|
COMPARISON_EQ = 5
|
388
431
|
|
389
|
-
#
|
432
|
+
# True if the left argument is not equal to the right argument.
|
390
433
|
COMPARISON_NE = 6
|
391
434
|
end
|
392
435
|
|