google-cloud-monitoring 0.34.2 → 0.35.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/lib/google/cloud/monitoring/v3/alert_policy_service_client.rb +5 -5
- data/lib/google/cloud/monitoring/v3/doc/google/monitoring/v3/alert.rb +4 -0
- data/lib/google/cloud/monitoring/v3/doc/google/monitoring/v3/alert_service.rb +5 -5
- data/lib/google/cloud/monitoring/v3/doc/google/monitoring/v3/common.rb +253 -210
- data/lib/google/cloud/monitoring/v3/doc/google/monitoring/v3/group_service.rb +7 -7
- data/lib/google/cloud/monitoring/v3/doc/google/monitoring/v3/metric_service.rb +13 -13
- data/lib/google/cloud/monitoring/v3/doc/google/monitoring/v3/notification.rb +3 -0
- data/lib/google/cloud/monitoring/v3/doc/google/monitoring/v3/notification_service.rb +12 -12
- data/lib/google/cloud/monitoring/v3/doc/google/monitoring/v3/service_service.rb +13 -13
- data/lib/google/cloud/monitoring/v3/doc/google/monitoring/v3/uptime_service.rb +5 -5
- data/lib/google/cloud/monitoring/v3/group_service_client.rb +7 -7
- data/lib/google/cloud/monitoring/v3/metric_service_client.rb +13 -13
- data/lib/google/cloud/monitoring/v3/notification_channel_service_client.rb +12 -12
- data/lib/google/cloud/monitoring/v3/service_monitoring_service_client.rb +13 -13
- data/lib/google/cloud/monitoring/v3/uptime_check_service_client.rb +5 -5
- data/lib/google/cloud/monitoring/version.rb +1 -1
- data/lib/google/monitoring/v3/alert_pb.rb +1 -0
- data/lib/google/monitoring/v3/alert_service_pb.rb +3 -1
- data/lib/google/monitoring/v3/group_pb.rb +1 -0
- data/lib/google/monitoring/v3/group_service_pb.rb +3 -1
- data/lib/google/monitoring/v3/metric_service_pb.rb +3 -1
- data/lib/google/monitoring/v3/notification_pb.rb +2 -0
- data/lib/google/monitoring/v3/notification_service_pb.rb +3 -1
- data/lib/google/monitoring/v3/service_pb.rb +1 -0
- data/lib/google/monitoring/v3/service_service_pb.rb +3 -1
- data/lib/google/monitoring/v3/uptime_pb.rb +1 -0
- data/lib/google/monitoring/v3/uptime_service_pb.rb +3 -1
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: fee166ee580d75f5444f9e5e83666e171ab57011f7052630cd88ad81ea1c07ee
|
4
|
+
data.tar.gz: 53070f57c04736c8253f139ef784cc92595ef338e9088878534a3d47eb124112
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 200a7c5e1017f81a1c2a1d17c704b6a928a72bb03994c28d601c061d6be781177838d4663b4582d4ca6d4ba77ad51783abb7d13a69ba9656a4456b7b515a8c28
|
7
|
+
data.tar.gz: 17193c67b1f292123856337ef6dc65baf8afaaba6608ae2aef5e16e931ead582d42c501270becca67833842381245dc32a7b1cbbde75bae2c8e7064a8877dad3
|
@@ -286,7 +286,7 @@ module Google
|
|
286
286
|
# Lists the existing alerting policies for the project.
|
287
287
|
#
|
288
288
|
# @param name [String]
|
289
|
-
# The project whose alert policies are to be listed. The format is
|
289
|
+
# Required. The project whose alert policies are to be listed. The format is
|
290
290
|
#
|
291
291
|
# projects/[PROJECT_ID]
|
292
292
|
#
|
@@ -365,7 +365,7 @@ module Google
|
|
365
365
|
# Gets a single alerting policy.
|
366
366
|
#
|
367
367
|
# @param name [String]
|
368
|
-
# The alerting policy to retrieve. The format is
|
368
|
+
# Required. The alerting policy to retrieve. The format is
|
369
369
|
#
|
370
370
|
# projects/[PROJECT_ID]/alertPolicies/[ALERT_POLICY_ID]
|
371
371
|
# @param options [Google::Gax::CallOptions]
|
@@ -397,7 +397,7 @@ module Google
|
|
397
397
|
# Creates a new alerting policy.
|
398
398
|
#
|
399
399
|
# @param name [String]
|
400
|
-
# The project in which to create the alerting policy. The format is
|
400
|
+
# Required. The project in which to create the alerting policy. The format is
|
401
401
|
# `projects/[PROJECT_ID]`.
|
402
402
|
#
|
403
403
|
# Note that this field names the parent container in which the alerting
|
@@ -406,7 +406,7 @@ module Google
|
|
406
406
|
# representation of this name as a prefix but adds a suffix of the form
|
407
407
|
# `/alertPolicies/[POLICY_ID]`, identifying the policy in the container.
|
408
408
|
# @param alert_policy [Google::Monitoring::V3::AlertPolicy | Hash]
|
409
|
-
# The requested alerting policy. You should omit the `name` field in this
|
409
|
+
# Required. The requested alerting policy. You should omit the `name` field in this
|
410
410
|
# policy. The name will be returned in the new policy, including
|
411
411
|
# a new [ALERT_POLICY_ID] value.
|
412
412
|
# A hash of the same form as `Google::Monitoring::V3::AlertPolicy`
|
@@ -445,7 +445,7 @@ module Google
|
|
445
445
|
# Deletes an alerting policy.
|
446
446
|
#
|
447
447
|
# @param name [String]
|
448
|
-
# The alerting policy to delete. The format is:
|
448
|
+
# Required. The alerting policy to delete. The format is:
|
449
449
|
#
|
450
450
|
# projects/[PROJECT_ID]/alertPolicies/[ALERT_POLICY_ID]
|
451
451
|
#
|
@@ -60,10 +60,14 @@ module Google
|
|
60
60
|
# OR according to the `combiner` field. If the combined conditions evaluate
|
61
61
|
# to true, then an incident is created. A policy can have from one to six
|
62
62
|
# conditions.
|
63
|
+
# If |condition_time_series_uery_language| is present, it must be the only
|
64
|
+
# |condition|.
|
63
65
|
# @!attribute [rw] combiner
|
64
66
|
# @return [Google::Monitoring::V3::AlertPolicy::ConditionCombinerType]
|
65
67
|
# How to combine the results of multiple conditions to determine if an
|
66
68
|
# incident should be opened.
|
69
|
+
# If condition_time_series_query_language is present, this must be
|
70
|
+
# COMBINE_UNSPECIFIED.
|
67
71
|
# @!attribute [rw] enabled
|
68
72
|
# @return [Google::Protobuf::BoolValue]
|
69
73
|
# Whether or not the policy is enabled. On write, the default interpretation
|
@@ -19,7 +19,7 @@ module Google
|
|
19
19
|
# The protocol for the `CreateAlertPolicy` request.
|
20
20
|
# @!attribute [rw] name
|
21
21
|
# @return [String]
|
22
|
-
# The project in which to create the alerting policy. The format is
|
22
|
+
# Required. The project in which to create the alerting policy. The format is
|
23
23
|
# `projects/[PROJECT_ID]`.
|
24
24
|
#
|
25
25
|
# Note that this field names the parent container in which the alerting
|
@@ -29,7 +29,7 @@ module Google
|
|
29
29
|
# `/alertPolicies/[POLICY_ID]`, identifying the policy in the container.
|
30
30
|
# @!attribute [rw] alert_policy
|
31
31
|
# @return [Google::Monitoring::V3::AlertPolicy]
|
32
|
-
# The requested alerting policy. You should omit the `name` field in this
|
32
|
+
# Required. The requested alerting policy. You should omit the `name` field in this
|
33
33
|
# policy. The name will be returned in the new policy, including
|
34
34
|
# a new [ALERT_POLICY_ID] value.
|
35
35
|
class CreateAlertPolicyRequest; end
|
@@ -37,7 +37,7 @@ module Google
|
|
37
37
|
# The protocol for the `GetAlertPolicy` request.
|
38
38
|
# @!attribute [rw] name
|
39
39
|
# @return [String]
|
40
|
-
# The alerting policy to retrieve. The format is
|
40
|
+
# Required. The alerting policy to retrieve. The format is
|
41
41
|
#
|
42
42
|
# projects/[PROJECT_ID]/alertPolicies/[ALERT_POLICY_ID]
|
43
43
|
class GetAlertPolicyRequest; end
|
@@ -45,7 +45,7 @@ module Google
|
|
45
45
|
# The protocol for the `ListAlertPolicies` request.
|
46
46
|
# @!attribute [rw] name
|
47
47
|
# @return [String]
|
48
|
-
# The project whose alert policies are to be listed. The format is
|
48
|
+
# Required. The project whose alert policies are to be listed. The format is
|
49
49
|
#
|
50
50
|
# projects/[PROJECT_ID]
|
51
51
|
#
|
@@ -125,7 +125,7 @@ module Google
|
|
125
125
|
# The protocol for the `DeleteAlertPolicy` request.
|
126
126
|
# @!attribute [rw] name
|
127
127
|
# @return [String]
|
128
|
-
# The alerting policy to delete. The format is:
|
128
|
+
# Required. The alerting policy to delete. The format is:
|
129
129
|
#
|
130
130
|
# projects/[PROJECT_ID]/alertPolicies/[ALERT_POLICY_ID]
|
131
131
|
#
|
@@ -64,329 +64,372 @@ module Google
|
|
64
64
|
# later than the end time.
|
65
65
|
class TimeInterval; end
|
66
66
|
|
67
|
-
# Describes how to combine multiple time series to provide different
|
68
|
-
# the data. Aggregation
|
69
|
-
# series
|
70
|
-
#
|
71
|
-
#
|
72
|
-
#
|
67
|
+
# Describes how to combine multiple time series to provide a different view of
|
68
|
+
# the data. Aggregation of time series is done in two steps. First, each time
|
69
|
+
# series in the set is _aligned_ to the same time interval boundaries, then the
|
70
|
+
# set of time series is optionally _reduced_ in number.
|
71
|
+
#
|
72
|
+
# Alignment consists of applying the `per_series_aligner` operation
|
73
|
+
# to each time series after its data has been divided into regular
|
74
|
+
# `alignment_period` time intervals. This process takes _all_ of the data
|
75
|
+
# points in an alignment period, applies a mathematical transformation such as
|
76
|
+
# averaging, minimum, maximum, delta, etc., and converts them into a single
|
77
|
+
# data point per period.
|
78
|
+
#
|
79
|
+
# Reduction is when the aligned and transformed time series can optionally be
|
80
|
+
# combined, reducing the number of time series through similar mathematical
|
81
|
+
# transformations. Reduction involves applying a `cross_series_reducer` to
|
82
|
+
# all the time series, optionally sorting the time series into subsets with
|
83
|
+
# `group_by_fields`, and applying the reducer to each subset.
|
84
|
+
#
|
85
|
+
# The raw time series data can contain a huge amount of information from
|
86
|
+
# multiple sources. Alignment and reduction transforms this mass of data into
|
87
|
+
# a more manageable and representative collection of data, for example "the
|
88
|
+
# 95% latency across the average of all tasks in a cluster". This
|
89
|
+
# representative data can be more easily graphed and comprehended, and the
|
90
|
+
# individual time series data is still available for later drilldown. For more
|
91
|
+
# details, see [Aggregating Time
|
92
|
+
# Series](/monitoring/api/v3/metrics#aggregating_time_series).
|
73
93
|
# @!attribute [rw] alignment_period
|
74
94
|
# @return [Google::Protobuf::Duration]
|
75
|
-
# The
|
76
|
-
#
|
77
|
-
#
|
78
|
-
#
|
79
|
-
#
|
80
|
-
#
|
81
|
-
#
|
82
|
-
#
|
95
|
+
# The `alignment_period` specifies a time interval, in seconds, that is used
|
96
|
+
# to divide the data in all the
|
97
|
+
# {Google::Monitoring::V3::TimeSeries time series} into consistent blocks of
|
98
|
+
# time. This will be done before the per-series aligner can be applied to
|
99
|
+
# the data.
|
100
|
+
#
|
101
|
+
# The value must be at least 60 seconds. If a per-series aligner other than
|
102
|
+
# `ALIGN_NONE` is specified, this field is required or an error is returned.
|
103
|
+
# If no per-series aligner is specified, or the aligner `ALIGN_NONE` is
|
104
|
+
# specified, then this field is ignored.
|
83
105
|
# @!attribute [rw] per_series_aligner
|
84
106
|
# @return [Google::Monitoring::V3::Aggregation::Aligner]
|
85
|
-
#
|
86
|
-
#
|
87
|
-
#
|
88
|
-
#
|
107
|
+
# An `Aligner` describes how to bring the data points in a single
|
108
|
+
# time series into temporal alignment. Except for `ALIGN_NONE`, all
|
109
|
+
# alignments cause all the data points in an `alignment_period` to be
|
110
|
+
# mathematically grouped together, resulting in a single data point for
|
111
|
+
# each `alignment_period` with end timestamp at the end of the period.
|
112
|
+
#
|
113
|
+
# Not all alignment operations may be applied to all time series. The valid
|
114
|
+
# choices depend on the `metric_kind` and `value_type` of the original time
|
115
|
+
# series. Alignment can change the `metric_kind` or the `value_type` of
|
89
116
|
# the time series.
|
90
117
|
#
|
91
118
|
# Time series data must be aligned in order to perform cross-time
|
92
|
-
# series reduction. If `
|
93
|
-
# `
|
94
|
-
# and `
|
119
|
+
# series reduction. If `cross_series_reducer` is specified, then
|
120
|
+
# `per_series_aligner` must be specified and not equal to `ALIGN_NONE`
|
121
|
+
# and `alignment_period` must be specified; otherwise, an error is
|
95
122
|
# returned.
|
96
123
|
# @!attribute [rw] cross_series_reducer
|
97
124
|
# @return [Google::Monitoring::V3::Aggregation::Reducer]
|
98
|
-
# The
|
99
|
-
#
|
100
|
-
#
|
101
|
-
# series. Reduction may change the metric type of value type of the
|
102
|
-
# time series.
|
125
|
+
# The reduction operation to be used to combine time series into a single
|
126
|
+
# time series, where the value of each data point in the resulting series is
|
127
|
+
# a function of all the already aligned values in the input time series.
|
103
128
|
#
|
104
|
-
#
|
105
|
-
#
|
106
|
-
#
|
107
|
-
#
|
108
|
-
#
|
129
|
+
# Not all reducer operations can be applied to all time series. The valid
|
130
|
+
# choices depend on the `metric_kind` and the `value_type` of the original
|
131
|
+
# time series. Reduction can yield a time series with a different
|
132
|
+
# `metric_kind` or `value_type` than the input time series.
|
133
|
+
#
|
134
|
+
# Time series data must first be aligned (see `per_series_aligner`) in order
|
135
|
+
# to perform cross-time series reduction. If `cross_series_reducer` is
|
136
|
+
# specified, then `per_series_aligner` must be specified, and must not be
|
137
|
+
# `ALIGN_NONE`. An `alignment_period` must also be specified; otherwise, an
|
138
|
+
# error is returned.
|
109
139
|
# @!attribute [rw] group_by_fields
|
110
140
|
# @return [Array<String>]
|
111
|
-
# The set of fields to preserve when `
|
112
|
-
# specified. The `
|
141
|
+
# The set of fields to preserve when `cross_series_reducer` is
|
142
|
+
# specified. The `group_by_fields` determine how the time series are
|
113
143
|
# partitioned into subsets prior to applying the aggregation
|
114
|
-
#
|
144
|
+
# operation. Each subset contains time series that have the same
|
115
145
|
# value for each of the grouping fields. Each individual time
|
116
146
|
# series is a member of exactly one subset. The
|
117
|
-
# `
|
147
|
+
# `cross_series_reducer` is applied to each subset of time series.
|
118
148
|
# It is not possible to reduce across different resource types, so
|
119
149
|
# this field implicitly contains `resource.type`. Fields not
|
120
|
-
# specified in `
|
121
|
-
# `
|
150
|
+
# specified in `group_by_fields` are aggregated away. If
|
151
|
+
# `group_by_fields` is not specified and all the time series have
|
122
152
|
# the same resource type, then the time series are aggregated into
|
123
|
-
# a single output time series. If `
|
153
|
+
# a single output time series. If `cross_series_reducer` is not
|
124
154
|
# defined, this field is ignored.
|
125
155
|
class Aggregation
|
126
|
-
# The Aligner
|
127
|
-
# time series
|
156
|
+
# The `Aligner` specifies the operation that will be applied to the data
|
157
|
+
# points in each alignment period in a time series. Except for
|
158
|
+
# `ALIGN_NONE`, which specifies that no operation be applied, each alignment
|
159
|
+
# operation replaces the set of data values in each alignment period with
|
160
|
+
# a single value: the result of applying the operation to the data values.
|
161
|
+
# An aligned time series has a single data value at the end of each
|
162
|
+
# `alignment_period`.
|
163
|
+
#
|
164
|
+
# An alignment operation can change the data type of the values, too. For
|
165
|
+
# example, if you apply a counting operation to boolean values, the data
|
166
|
+
# `value_type` in the original time series is `BOOLEAN`, but the `value_type`
|
167
|
+
# in the aligned result is `INT64`.
|
128
168
|
module Aligner
|
129
|
-
# No alignment. Raw data is returned. Not valid if cross-
|
130
|
-
#
|
131
|
-
#
|
169
|
+
# No alignment. Raw data is returned. Not valid if cross-series reduction
|
170
|
+
# is requested. The `value_type` of the result is the same as the
|
171
|
+
# `value_type` of the input.
|
132
172
|
ALIGN_NONE = 0
|
133
173
|
|
134
|
-
# Align and convert to
|
135
|
-
#
|
136
|
-
#
|
137
|
-
# period be increased. The value type of the result is the same
|
138
|
-
# as the value type of the input.
|
174
|
+
# Align and convert to
|
175
|
+
# {Google::Api::MetricDescriptor::MetricKind::DELTA DELTA}.
|
176
|
+
# The output is `delta = y1 - y0`.
|
139
177
|
#
|
140
|
-
#
|
141
|
-
#
|
178
|
+
# This alignment is valid for
|
179
|
+
# {Google::Api::MetricDescriptor::MetricKind::CUMULATIVE CUMULATIVE} and
|
180
|
+
# `DELTA` metrics. If the selected alignment period results in periods
|
181
|
+
# with no data, then the aligned value for such a period is created by
|
182
|
+
# interpolation. The `value_type` of the aligned result is the same as
|
183
|
+
# the `value_type` of the input.
|
142
184
|
ALIGN_DELTA = 1
|
143
185
|
|
144
|
-
# Align and convert to a rate.
|
145
|
-
#
|
146
|
-
#
|
147
|
-
#
|
186
|
+
# Align and convert to a rate. The result is computed as
|
187
|
+
# `rate = (y1 - y0)/(t1 - t0)`, or "delta over time".
|
188
|
+
# Think of this aligner as providing the slope of the line that passes
|
189
|
+
# through the value at the start and at the end of the `alignment_period`.
|
148
190
|
#
|
149
|
-
#
|
150
|
-
#
|
151
|
-
#
|
152
|
-
#
|
191
|
+
# This aligner is valid for `CUMULATIVE`
|
192
|
+
# and `DELTA` metrics with numeric values. If the selected alignment
|
193
|
+
# period results in periods with no data, then the aligned value for
|
194
|
+
# such a period is created by interpolation. The output is a `GAUGE`
|
195
|
+
# metric with `value_type` `DOUBLE`.
|
153
196
|
#
|
154
|
-
# If, by rate, you
|
155
|
-
# `ALIGN_PERCENT_CHANGE` aligner
|
197
|
+
# If, by "rate", you mean "percentage change", see the
|
198
|
+
# `ALIGN_PERCENT_CHANGE` aligner instead.
|
156
199
|
ALIGN_RATE = 2
|
157
200
|
|
158
|
-
# Align by interpolating between adjacent points around the
|
159
|
-
# period boundary. This
|
160
|
-
#
|
161
|
-
#
|
201
|
+
# Align by interpolating between adjacent points around the alignment
|
202
|
+
# period boundary. This aligner is valid for `GAUGE` metrics with
|
203
|
+
# numeric values. The `value_type` of the aligned result is the same as the
|
204
|
+
# `value_type` of the input.
|
162
205
|
ALIGN_INTERPOLATE = 3
|
163
206
|
|
164
|
-
# Align by
|
165
|
-
#
|
166
|
-
#
|
167
|
-
#
|
207
|
+
# Align by moving the most recent data point before the end of the
|
208
|
+
# alignment period to the boundary at the end of the alignment
|
209
|
+
# period. This aligner is valid for `GAUGE` metrics. The `value_type` of
|
210
|
+
# the aligned result is the same as the `value_type` of the input.
|
168
211
|
ALIGN_NEXT_OLDER = 4
|
169
212
|
|
170
|
-
# Align time series
|
171
|
-
#
|
172
|
-
#
|
173
|
-
#
|
174
|
-
# type of the input.
|
213
|
+
# Align the time series by returning the minimum value in each alignment
|
214
|
+
# period. This aligner is valid for `GAUGE` and `DELTA` metrics with
|
215
|
+
# numeric values. The `value_type` of the aligned result is the same as
|
216
|
+
# the `value_type` of the input.
|
175
217
|
ALIGN_MIN = 10
|
176
218
|
|
177
|
-
# Align time series
|
178
|
-
#
|
179
|
-
#
|
180
|
-
#
|
181
|
-
# type of the input.
|
219
|
+
# Align the time series by returning the maximum value in each alignment
|
220
|
+
# period. This aligner is valid for `GAUGE` and `DELTA` metrics with
|
221
|
+
# numeric values. The `value_type` of the aligned result is the same as
|
222
|
+
# the `value_type` of the input.
|
182
223
|
ALIGN_MAX = 11
|
183
224
|
|
184
|
-
# Align time series
|
185
|
-
#
|
186
|
-
#
|
187
|
-
# metrics with numeric values. The value type of the output is
|
188
|
-
# {Google::Api::MetricDescriptor::ValueType::DOUBLE DOUBLE}.
|
225
|
+
# Align the time series by returning the mean value in each alignment
|
226
|
+
# period. This aligner is valid for `GAUGE` and `DELTA` metrics with
|
227
|
+
# numeric values. The `value_type` of the aligned result is `DOUBLE`.
|
189
228
|
ALIGN_MEAN = 12
|
190
229
|
|
191
|
-
# Align time series
|
192
|
-
#
|
193
|
-
#
|
194
|
-
#
|
195
|
-
# {Google::Api::MetricDescriptor::ValueType::INT64 INT64}.
|
230
|
+
# Align the time series by returning the number of values in each alignment
|
231
|
+
# period. This aligner is valid for `GAUGE` and `DELTA` metrics with
|
232
|
+
# numeric or Boolean values. The `value_type` of the aligned result is
|
233
|
+
# `INT64`.
|
196
234
|
ALIGN_COUNT = 13
|
197
235
|
|
198
|
-
# Align time series
|
199
|
-
#
|
200
|
-
#
|
201
|
-
#
|
202
|
-
# same as the value type of the input.
|
236
|
+
# Align the time series by returning the sum of the values in each
|
237
|
+
# alignment period. This aligner is valid for `GAUGE` and `DELTA`
|
238
|
+
# metrics with numeric and distribution values. The `value_type` of the
|
239
|
+
# aligned result is the same as the `value_type` of the input.
|
203
240
|
ALIGN_SUM = 14
|
204
241
|
|
205
|
-
# Align time series
|
206
|
-
#
|
207
|
-
#
|
208
|
-
#
|
209
|
-
# {Google::Api::MetricDescriptor::ValueType::DOUBLE DOUBLE}.
|
242
|
+
# Align the time series by returning the standard deviation of the values
|
243
|
+
# in each alignment period. This aligner is valid for `GAUGE` and
|
244
|
+
# `DELTA` metrics with numeric values. The `value_type` of the output is
|
245
|
+
# `DOUBLE`.
|
210
246
|
ALIGN_STDDEV = 15
|
211
247
|
|
212
|
-
# Align time series
|
213
|
-
#
|
214
|
-
#
|
215
|
-
# Boolean values. The value type of the output is
|
216
|
-
# {Google::Api::MetricDescriptor::ValueType::INT64 INT64}.
|
248
|
+
# Align the time series by returning the number of `True` values in
|
249
|
+
# each alignment period. This aligner is valid for `GAUGE` metrics with
|
250
|
+
# Boolean values. The `value_type` of the output is `INT64`.
|
217
251
|
ALIGN_COUNT_TRUE = 16
|
218
252
|
|
219
|
-
# Align time series
|
220
|
-
#
|
221
|
-
#
|
222
|
-
# Boolean values. The value type of the output is
|
223
|
-
# {Google::Api::MetricDescriptor::ValueType::INT64 INT64}.
|
253
|
+
# Align the time series by returning the number of `False` values in
|
254
|
+
# each alignment period. This aligner is valid for `GAUGE` metrics with
|
255
|
+
# Boolean values. The `value_type` of the output is `INT64`.
|
224
256
|
ALIGN_COUNT_FALSE = 24
|
225
257
|
|
226
|
-
# Align time series
|
227
|
-
#
|
228
|
-
#
|
229
|
-
#
|
230
|
-
# {Google::Api::MetricDescriptor::ValueType::DOUBLE DOUBLE}.
|
258
|
+
# Align the time series by returning the ratio of the number of `True`
|
259
|
+
# values to the total number of values in each alignment period. This
|
260
|
+
# aligner is valid for `GAUGE` metrics with Boolean values. The output
|
261
|
+
# value is in the range [0.0, 1.0] and has `value_type` `DOUBLE`.
|
231
262
|
ALIGN_FRACTION_TRUE = 17
|
232
263
|
|
233
|
-
# Align time series
|
234
|
-
#
|
235
|
-
#
|
236
|
-
#
|
237
|
-
#
|
264
|
+
# Align the time series by using [percentile
|
265
|
+
# aggregation](https://en.wikipedia.org/wiki/Percentile). The resulting
|
266
|
+
# data point in each alignment period is the 99th percentile of all data
|
267
|
+
# points in the period. This aligner is valid for `GAUGE` and `DELTA`
|
268
|
+
# metrics with distribution values. The output is a `GAUGE` metric with
|
269
|
+
# `value_type` `DOUBLE`.
|
238
270
|
ALIGN_PERCENTILE_99 = 18
|
239
271
|
|
240
|
-
# Align time series
|
241
|
-
#
|
242
|
-
#
|
243
|
-
#
|
244
|
-
#
|
272
|
+
# Align the time series by using [percentile
|
273
|
+
# aggregation](https://en.wikipedia.org/wiki/Percentile). The resulting
|
274
|
+
# data point in each alignment period is the 95th percentile of all data
|
275
|
+
# points in the period. This aligner is valid for `GAUGE` and `DELTA`
|
276
|
+
# metrics with distribution values. The output is a `GAUGE` metric with
|
277
|
+
# `value_type` `DOUBLE`.
|
245
278
|
ALIGN_PERCENTILE_95 = 19
|
246
279
|
|
247
|
-
# Align time series
|
248
|
-
#
|
249
|
-
#
|
250
|
-
#
|
251
|
-
#
|
280
|
+
# Align the time series by using [percentile
|
281
|
+
# aggregation](https://en.wikipedia.org/wiki/Percentile). The resulting
|
282
|
+
# data point in each alignment period is the 50th percentile of all data
|
283
|
+
# points in the period. This aligner is valid for `GAUGE` and `DELTA`
|
284
|
+
# metrics with distribution values. The output is a `GAUGE` metric with
|
285
|
+
# `value_type` `DOUBLE`.
|
252
286
|
ALIGN_PERCENTILE_50 = 20
|
253
287
|
|
254
|
-
# Align time series
|
255
|
-
#
|
256
|
-
#
|
257
|
-
#
|
258
|
-
#
|
288
|
+
# Align the time series by using [percentile
|
289
|
+
# aggregation](https://en.wikipedia.org/wiki/Percentile). The resulting
|
290
|
+
# data point in each alignment period is the 5th percentile of all data
|
291
|
+
# points in the period. This aligner is valid for `GAUGE` and `DELTA`
|
292
|
+
# metrics with distribution values. The output is a `GAUGE` metric with
|
293
|
+
# `value_type` `DOUBLE`.
|
259
294
|
ALIGN_PERCENTILE_05 = 21
|
260
295
|
|
261
|
-
# Align and convert to a percentage change. This
|
262
|
-
#
|
263
|
-
#
|
264
|
-
#
|
265
|
-
#
|
266
|
-
#
|
267
|
-
#
|
268
|
-
#
|
296
|
+
# Align and convert to a percentage change. This aligner is valid for
|
297
|
+
# `GAUGE` and `DELTA` metrics with numeric values. This alignment returns
|
298
|
+
# `((current - previous)/previous) * 100`, where the value of `previous` is
|
299
|
+
# determined based on the `alignment_period`.
|
300
|
+
#
|
301
|
+
# If the values of `current` and `previous` are both 0, then the returned
|
302
|
+
# value is 0. If only `previous` is 0, the returned value is infinity.
|
303
|
+
#
|
304
|
+
# A 10-minute moving mean is computed at each point of the alignment period
|
269
305
|
# prior to the above calculation to smooth the metric and prevent false
|
270
|
-
# positives from very short
|
271
|
-
#
|
272
|
-
#
|
273
|
-
#
|
274
|
-
#
|
275
|
-
#
|
306
|
+
# positives from very short-lived spikes. The moving mean is only
|
307
|
+
# applicable for data whose values are `>= 0`. Any values `< 0` are
|
308
|
+
# treated as a missing datapoint, and are ignored. While `DELTA`
|
309
|
+
# metrics are accepted by this alignment, special care should be taken that
|
310
|
+
# the values for the metric will always be positive. The output is a
|
311
|
+
# `GAUGE` metric with `value_type` `DOUBLE`.
|
276
312
|
ALIGN_PERCENT_CHANGE = 23
|
277
313
|
end
|
278
314
|
|
279
|
-
# A Reducer describes how to aggregate data points from multiple
|
280
|
-
# time series into a single time series
|
315
|
+
# A Reducer operation describes how to aggregate data points from multiple
|
316
|
+
# time series into a single time series, where the value of each data point
|
317
|
+
# in the resulting series is a function of all the already aligned values in
|
318
|
+
# the input time series.
|
281
319
|
module Reducer
|
282
|
-
# No cross-time series reduction. The output of the
|
320
|
+
# No cross-time series reduction. The output of the `Aligner` is
|
283
321
|
# returned.
|
284
322
|
REDUCE_NONE = 0
|
285
323
|
|
286
|
-
# Reduce by computing the mean across time series for each
|
287
|
-
# alignment period. This reducer is valid for
|
288
|
-
#
|
289
|
-
#
|
324
|
+
# Reduce by computing the mean value across time series for each
|
325
|
+
# alignment period. This reducer is valid for
|
326
|
+
# {Google::Api::MetricDescriptor::MetricKind::DELTA DELTA} and
|
327
|
+
# {Google::Api::MetricDescriptor::MetricKind::GAUGE GAUGE} metrics with
|
328
|
+
# numeric or distribution values. The `value_type` of the output is
|
329
|
+
# {Google::Api::MetricDescriptor::ValueType::DOUBLE DOUBLE}.
|
290
330
|
REDUCE_MEAN = 1
|
291
331
|
|
292
|
-
# Reduce by computing the minimum across time series for each
|
293
|
-
# alignment period. This reducer is valid for
|
294
|
-
#
|
295
|
-
#
|
332
|
+
# Reduce by computing the minimum value across time series for each
|
333
|
+
# alignment period. This reducer is valid for `DELTA` and `GAUGE` metrics
|
334
|
+
# with numeric values. The `value_type` of the output is the same as the
|
335
|
+
# `value_type` of the input.
|
296
336
|
REDUCE_MIN = 2
|
297
337
|
|
298
|
-
# Reduce by computing the maximum across time series for each
|
299
|
-
# alignment period. This reducer is valid for
|
300
|
-
#
|
301
|
-
#
|
338
|
+
# Reduce by computing the maximum value across time series for each
|
339
|
+
# alignment period. This reducer is valid for `DELTA` and `GAUGE` metrics
|
340
|
+
# with numeric values. The `value_type` of the output is the same as the
|
341
|
+
# `value_type` of the input.
|
302
342
|
REDUCE_MAX = 3
|
303
343
|
|
304
344
|
# Reduce by computing the sum across time series for each
|
305
|
-
# alignment period. This reducer is valid for
|
306
|
-
#
|
307
|
-
# the
|
345
|
+
# alignment period. This reducer is valid for `DELTA` and `GAUGE` metrics
|
346
|
+
# with numeric and distribution values. The `value_type` of the output is
|
347
|
+
# the same as the `value_type` of the input.
|
308
348
|
REDUCE_SUM = 4
|
309
349
|
|
310
350
|
# Reduce by computing the standard deviation across time series
|
311
|
-
# for each alignment period. This reducer is valid for
|
312
|
-
#
|
313
|
-
# the output is
|
351
|
+
# for each alignment period. This reducer is valid for `DELTA` and
|
352
|
+
# `GAUGE` metrics with numeric or distribution values. The `value_type`
|
353
|
+
# of the output is `DOUBLE`.
|
314
354
|
REDUCE_STDDEV = 5
|
315
355
|
|
316
|
-
# Reduce by computing the
|
317
|
-
# for each alignment period. This reducer is valid for
|
318
|
-
#
|
319
|
-
#
|
320
|
-
# {Google::Api::MetricDescriptor::ValueType::INT64 INT64}.
|
356
|
+
# Reduce by computing the number of data points across time series
|
357
|
+
# for each alignment period. This reducer is valid for `DELTA` and
|
358
|
+
# `GAUGE` metrics of numeric, Boolean, distribution, and string
|
359
|
+
# `value_type`. The `value_type` of the output is `INT64`.
|
321
360
|
REDUCE_COUNT = 6
|
322
361
|
|
323
|
-
# Reduce by computing the
|
324
|
-
# series for each alignment period. This reducer is valid for
|
325
|
-
#
|
326
|
-
#
|
362
|
+
# Reduce by computing the number of `True`-valued data points across time
|
363
|
+
# series for each alignment period. This reducer is valid for `DELTA` and
|
364
|
+
# `GAUGE` metrics of Boolean `value_type`. The `value_type` of the output
|
365
|
+
# is `INT64`.
|
327
366
|
REDUCE_COUNT_TRUE = 7
|
328
367
|
|
329
|
-
# Reduce by computing the
|
330
|
-
# series for each alignment period. This reducer is valid for
|
331
|
-
#
|
332
|
-
#
|
368
|
+
# Reduce by computing the number of `False`-valued data points across time
|
369
|
+
# series for each alignment period. This reducer is valid for `DELTA` and
|
370
|
+
# `GAUGE` metrics of Boolean `value_type`. The `value_type` of the output
|
371
|
+
# is `INT64`.
|
333
372
|
REDUCE_COUNT_FALSE = 15
|
334
373
|
|
335
|
-
# Reduce by computing the
|
336
|
-
#
|
337
|
-
#
|
338
|
-
# range [0, 1] and has
|
339
|
-
#
|
374
|
+
# Reduce by computing the ratio of the number of `True`-valued data points
|
375
|
+
# to the total number of data points for each alignment period. This
|
376
|
+
# reducer is valid for `DELTA` and `GAUGE` metrics of Boolean `value_type`.
|
377
|
+
# The output value is in the range [0.0, 1.0] and has `value_type`
|
378
|
+
# `DOUBLE`.
|
340
379
|
REDUCE_FRACTION_TRUE = 8
|
341
380
|
|
342
|
-
# Reduce by computing 99th
|
343
|
-
#
|
344
|
-
#
|
345
|
-
#
|
381
|
+
# Reduce by computing the [99th
|
382
|
+
# percentile](https://en.wikipedia.org/wiki/Percentile) of data points
|
383
|
+
# across time series for each alignment period. This reducer is valid for
|
384
|
+
# `GAUGE` and `DELTA` metrics of numeric and distribution type. The value
|
385
|
+
# of the output is `DOUBLE`.
|
346
386
|
REDUCE_PERCENTILE_99 = 9
|
347
387
|
|
348
|
-
# Reduce by computing 95th
|
349
|
-
#
|
350
|
-
#
|
351
|
-
#
|
388
|
+
# Reduce by computing the [95th
|
389
|
+
# percentile](https://en.wikipedia.org/wiki/Percentile) of data points
|
390
|
+
# across time series for each alignment period. This reducer is valid for
|
391
|
+
# `GAUGE` and `DELTA` metrics of numeric and distribution type. The value
|
392
|
+
# of the output is `DOUBLE`.
|
352
393
|
REDUCE_PERCENTILE_95 = 10
|
353
394
|
|
354
|
-
# Reduce by computing 50th
|
355
|
-
#
|
356
|
-
#
|
357
|
-
#
|
395
|
+
# Reduce by computing the [50th
|
396
|
+
# percentile](https://en.wikipedia.org/wiki/Percentile) of data points
|
397
|
+
# across time series for each alignment period. This reducer is valid for
|
398
|
+
# `GAUGE` and `DELTA` metrics of numeric and distribution type. The value
|
399
|
+
# of the output is `DOUBLE`.
|
358
400
|
REDUCE_PERCENTILE_50 = 11
|
359
401
|
|
360
|
-
# Reduce by computing 5th
|
361
|
-
#
|
362
|
-
#
|
363
|
-
#
|
402
|
+
# Reduce by computing the [5th
|
403
|
+
# percentile](https://en.wikipedia.org/wiki/Percentile) of data points
|
404
|
+
# across time series for each alignment period. This reducer is valid for
|
405
|
+
# `GAUGE` and `DELTA` metrics of numeric and distribution type. The value
|
406
|
+
# of the output is `DOUBLE`.
|
364
407
|
REDUCE_PERCENTILE_05 = 12
|
365
408
|
end
|
366
409
|
end
|
367
410
|
|
368
|
-
# Specifies an ordering relationship on two arguments,
|
369
|
-
# right
|
411
|
+
# Specifies an ordering relationship on two arguments, called `left` and
|
412
|
+
# `right`.
|
370
413
|
module ComparisonType
|
371
414
|
# No ordering relationship is specified.
|
372
415
|
COMPARISON_UNSPECIFIED = 0
|
373
416
|
|
374
|
-
#
|
417
|
+
# True if the left argument is greater than the right argument.
|
375
418
|
COMPARISON_GT = 1
|
376
419
|
|
377
|
-
#
|
420
|
+
# True if the left argument is greater than or equal to the right argument.
|
378
421
|
COMPARISON_GE = 2
|
379
422
|
|
380
|
-
#
|
423
|
+
# True if the left argument is less than the right argument.
|
381
424
|
COMPARISON_LT = 3
|
382
425
|
|
383
|
-
#
|
426
|
+
# True if the left argument is less than or equal to the right argument.
|
384
427
|
COMPARISON_LE = 4
|
385
428
|
|
386
|
-
#
|
429
|
+
# True if the left argument is equal to the right argument.
|
387
430
|
COMPARISON_EQ = 5
|
388
431
|
|
389
|
-
#
|
432
|
+
# True if the left argument is not equal to the right argument.
|
390
433
|
COMPARISON_NE = 6
|
391
434
|
end
|
392
435
|
|