google-cloud-bigquery 0.20.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/lib/google-cloud-bigquery.rb +122 -0
- data/lib/google/cloud/bigquery.rb +353 -0
- data/lib/google/cloud/bigquery/copy_job.rb +99 -0
- data/lib/google/cloud/bigquery/credentials.rb +31 -0
- data/lib/google/cloud/bigquery/data.rb +244 -0
- data/lib/google/cloud/bigquery/dataset.rb +758 -0
- data/lib/google/cloud/bigquery/dataset/access.rb +509 -0
- data/lib/google/cloud/bigquery/dataset/list.rb +171 -0
- data/lib/google/cloud/bigquery/extract_job.rb +120 -0
- data/lib/google/cloud/bigquery/insert_response.rb +83 -0
- data/lib/google/cloud/bigquery/job.rb +301 -0
- data/lib/google/cloud/bigquery/job/list.rb +174 -0
- data/lib/google/cloud/bigquery/load_job.rb +203 -0
- data/lib/google/cloud/bigquery/project.rb +481 -0
- data/lib/google/cloud/bigquery/query_data.rb +238 -0
- data/lib/google/cloud/bigquery/query_job.rb +139 -0
- data/lib/google/cloud/bigquery/schema.rb +361 -0
- data/lib/google/cloud/bigquery/service.rb +502 -0
- data/lib/google/cloud/bigquery/table.rb +1141 -0
- data/lib/google/cloud/bigquery/table/list.rb +182 -0
- data/lib/google/cloud/bigquery/version.rb +22 -0
- data/lib/google/cloud/bigquery/view.rb +478 -0
- metadata +208 -0
checksums.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
1
|
+
---
|
2
|
+
SHA1:
|
3
|
+
metadata.gz: 59023c44b0659ebbbfe3154585a39e06177f690f
|
4
|
+
data.tar.gz: 8577d120217e1134d3e9077f94982edb64882780
|
5
|
+
SHA512:
|
6
|
+
metadata.gz: c265d96170b9ff9080617bab8c14e2ae0a2a0093a2fe526664545bc8c97d1ac159000d71d3b56616ee125f0f63f9ae24f51828b280c6a2bd06e045d08c6dc5db
|
7
|
+
data.tar.gz: bd886ccf5f8a66ce36249e28e81e2a5f24299ba3537331d88852abb95812653e2bff5661b65fe450c9598598425af52b2c6cba063762ce4c741ce6594de1450e
|
@@ -0,0 +1,122 @@
|
|
1
|
+
# Copyright 2016 Google Inc. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
##
|
16
|
+
# This file is here to be autorequired by bundler, so that the .bigquery and
|
17
|
+
# #bigquery methods can be available, but the library and all dependencies won't
|
18
|
+
# be loaded until required and used.
|
19
|
+
|
20
|
+
|
21
|
+
gem "google-cloud-core"
|
22
|
+
require "google/cloud"
|
23
|
+
|
24
|
+
module Google
|
25
|
+
module Cloud
|
26
|
+
##
|
27
|
+
# Creates a new object for connecting to the BigQuery service.
|
28
|
+
# Each call creates a new connection.
|
29
|
+
#
|
30
|
+
# For more information on connecting to Google Cloud see the [Authentication
|
31
|
+
# Guide](https://googlecloudplatform.github.io/google-cloud-ruby/#/docs/guides/authentication).
|
32
|
+
#
|
33
|
+
# @param [String, Array<String>] scope The OAuth 2.0 scopes controlling the
|
34
|
+
# set of resources and operations that the connection can access. See
|
35
|
+
# [Using OAuth 2.0 to Access Google
|
36
|
+
# APIs](https://developers.google.com/identity/protocols/OAuth2).
|
37
|
+
#
|
38
|
+
# The default scope is:
|
39
|
+
#
|
40
|
+
# * `https://www.googleapis.com/auth/bigquery`
|
41
|
+
# @param [Integer] retries Number of times to retry requests on server
|
42
|
+
# error. The default value is `3`. Optional.
|
43
|
+
# @param [Integer] timeout Default request timeout in seconds. Optional.
|
44
|
+
#
|
45
|
+
# @return [Google::Cloud::Bigquery::Project]
|
46
|
+
#
|
47
|
+
# @example
|
48
|
+
# require "google/cloud"
|
49
|
+
#
|
50
|
+
# gcloud = Google::Cloud.new
|
51
|
+
# bigquery = gcloud.bigquery
|
52
|
+
# dataset = bigquery.dataset "my-dataset"
|
53
|
+
# table = dataset.table "my-table"
|
54
|
+
# table.data.each do |row|
|
55
|
+
# puts row
|
56
|
+
# end
|
57
|
+
#
|
58
|
+
# @example The default scope can be overridden with the `scope` option:
|
59
|
+
# require "google/cloud"
|
60
|
+
#
|
61
|
+
# gcloud = Google::Cloud.new
|
62
|
+
# platform_scope = "https://www.googleapis.com/auth/cloud-platform"
|
63
|
+
# bigquery = gcloud.bigquery scope: platform_scope
|
64
|
+
#
|
65
|
+
def bigquery scope: nil, retries: nil, timeout: nil
|
66
|
+
Google::Cloud.bigquery @project, @keyfile, scope: scope,
|
67
|
+
retries: (retries || @retries),
|
68
|
+
timeout: (timeout || @timeout)
|
69
|
+
end
|
70
|
+
|
71
|
+
##
|
72
|
+
# Creates a new `Project` instance connected to the BigQuery service.
|
73
|
+
# Each call creates a new connection.
|
74
|
+
#
|
75
|
+
# For more information on connecting to Google Cloud see the [Authentication
|
76
|
+
# Guide](https://googlecloudplatform.github.io/google-cloud-ruby/#/docs/guides/authentication).
|
77
|
+
#
|
78
|
+
# @param [String] project Identifier for a BigQuery project. If not present,
|
79
|
+
# the default project for the credentials is used.
|
80
|
+
# @param [String, Hash] keyfile Keyfile downloaded from Google Cloud. If
|
81
|
+
# file path the file must be readable.
|
82
|
+
# @param [String, Array<String>] scope The OAuth 2.0 scopes controlling the
|
83
|
+
# set of resources and operations that the connection can access. See
|
84
|
+
# [Using OAuth 2.0 to Access Google
|
85
|
+
# APIs](https://developers.google.com/identity/protocols/OAuth2).
|
86
|
+
#
|
87
|
+
# The default scope is:
|
88
|
+
#
|
89
|
+
# * `https://www.googleapis.com/auth/bigquery`
|
90
|
+
# @param [Integer] retries Number of times to retry requests on server
|
91
|
+
# error. The default value is `3`. Optional.
|
92
|
+
# @param [Integer] timeout Default timeout to use in requests. Optional.
|
93
|
+
#
|
94
|
+
# @return [Google::Cloud::Bigquery::Project]
|
95
|
+
#
|
96
|
+
# @example
|
97
|
+
# require "google/cloud/bigquery"
|
98
|
+
#
|
99
|
+
# bigquery = Google::Cloud.bigquery
|
100
|
+
# dataset = bigquery.dataset "my_dataset"
|
101
|
+
# table = dataset.table "my_table"
|
102
|
+
#
|
103
|
+
def self.bigquery project = nil, keyfile = nil, scope: nil, retries: nil,
|
104
|
+
timeout: nil
|
105
|
+
require "google/cloud/bigquery"
|
106
|
+
project ||= Google::Cloud::Bigquery::Project.default_project
|
107
|
+
project = project.to_s # Always cast to a string
|
108
|
+
fail ArgumentError, "project is missing" if project.empty?
|
109
|
+
|
110
|
+
if keyfile.nil?
|
111
|
+
credentials = Google::Cloud::Bigquery::Credentials.default scope: scope
|
112
|
+
else
|
113
|
+
credentials = Google::Cloud::Bigquery::Credentials.new(
|
114
|
+
keyfile, scope: scope)
|
115
|
+
end
|
116
|
+
|
117
|
+
Google::Cloud::Bigquery::Project.new(
|
118
|
+
Google::Cloud::Bigquery::Service.new(
|
119
|
+
project, credentials, retries: retries, timeout: timeout))
|
120
|
+
end
|
121
|
+
end
|
122
|
+
end
|
@@ -0,0 +1,353 @@
|
|
1
|
+
# Copyright 2015 Google Inc. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
|
16
|
+
require "google-cloud-bigquery"
|
17
|
+
require "google/cloud/bigquery/project"
|
18
|
+
|
19
|
+
module Google
|
20
|
+
module Cloud
|
21
|
+
##
|
22
|
+
# # Google Cloud BigQuery
|
23
|
+
#
|
24
|
+
# Google Cloud BigQuery enables super-fast, SQL-like queries against massive
|
25
|
+
# datasets, using the processing power of Google's infrastructure. To learn
|
26
|
+
# more, read [What is
|
27
|
+
# BigQuery?](https://cloud.google.com/bigquery/what-is-bigquery).
|
28
|
+
#
|
29
|
+
# The goal of google-cloud is to provide an API that is comfortable to
|
30
|
+
# Rubyists. Authentication is handled by {Google::Cloud#bigquery}. You can
|
31
|
+
# provide the project and credential information to connect to the BigQuery
|
32
|
+
# service, or if you are running on Google Compute Engine this configuration
|
33
|
+
# is taken care of for you. You can read more about the options for
|
34
|
+
# connecting in the [Authentication
|
35
|
+
# Guide](https://googlecloudplatform.github.io/google-cloud-ruby/#/docs/guides/authentication).
|
36
|
+
#
|
37
|
+
# To help you get started quickly, the first few examples below use a public
|
38
|
+
# dataset provided by Google. As soon as you have [signed
|
39
|
+
# up](https://cloud.google.com/bigquery/sign-up) to use BigQuery, and
|
40
|
+
# provided that you stay in the free tier for queries, you should be able to
|
41
|
+
# run these first examples without the need to set up billing or to load
|
42
|
+
# data (although we'll show you how to do that too.)
|
43
|
+
#
|
44
|
+
# ## Listing Datasets and Tables
|
45
|
+
#
|
46
|
+
# A BigQuery project holds datasets, which in turn hold tables. Assuming
|
47
|
+
# that you have not yet created datasets or tables in your own project,
|
48
|
+
# let's connect to Google's `publicdata` project, and see what you find.
|
49
|
+
#
|
50
|
+
# ```ruby
|
51
|
+
# require "google/cloud"
|
52
|
+
#
|
53
|
+
# gcloud = Google::Cloud.new "publicdata"
|
54
|
+
# bigquery = gcloud.bigquery
|
55
|
+
#
|
56
|
+
# bigquery.datasets.count #=> 1
|
57
|
+
# bigquery.datasets.first.dataset_id #=> "samples"
|
58
|
+
#
|
59
|
+
# dataset = bigquery.datasets.first
|
60
|
+
# tables = dataset.tables
|
61
|
+
#
|
62
|
+
# tables.count #=> 7
|
63
|
+
# tables.map &:table_id #=> [..., "shakespeare", "trigrams", "wikipedia"]
|
64
|
+
# ```
|
65
|
+
#
|
66
|
+
# In addition listing all datasets and tables in the project, you can also
|
67
|
+
# retrieve individual datasets and tables by ID. Let's look at the structure
|
68
|
+
# of the `shakespeare` table, which contains an entry for every word in
|
69
|
+
# every play written by Shakespeare.
|
70
|
+
#
|
71
|
+
# ```ruby
|
72
|
+
# require "google/cloud"
|
73
|
+
#
|
74
|
+
# gcloud = Google::Cloud.new "publicdata"
|
75
|
+
# bigquery = gcloud.bigquery
|
76
|
+
#
|
77
|
+
# dataset = bigquery.dataset "samples"
|
78
|
+
# table = dataset.table "shakespeare"
|
79
|
+
#
|
80
|
+
# table.headers #=> ["word", "word_count", "corpus", "corpus_date"]
|
81
|
+
# table.rows_count #=> 164656
|
82
|
+
# ```
|
83
|
+
#
|
84
|
+
# Now that you know the column names for the Shakespeare table, you can
|
85
|
+
# write and run a query.
|
86
|
+
#
|
87
|
+
# ## Running queries
|
88
|
+
#
|
89
|
+
# BigQuery offers both synchronous and asynchronous methods, as explained in
|
90
|
+
# [Querying Data](https://cloud.google.com/bigquery/querying-data).
|
91
|
+
#
|
92
|
+
# ### Synchronous queries
|
93
|
+
#
|
94
|
+
# Let's start with the simpler synchronous approach. Notice that this time
|
95
|
+
# you are connecting using your own default project. This is necessary for
|
96
|
+
# running a query, since queries need to be able to create tables to hold
|
97
|
+
# results.
|
98
|
+
#
|
99
|
+
# ```ruby
|
100
|
+
# require "google/cloud"
|
101
|
+
#
|
102
|
+
# gcloud = Google::Cloud.new
|
103
|
+
# bigquery = gcloud.bigquery
|
104
|
+
#
|
105
|
+
# sql = "SELECT TOP(word, 50) as word, COUNT(*) as count " +
|
106
|
+
# "FROM publicdata:samples.shakespeare"
|
107
|
+
# data = bigquery.query sql
|
108
|
+
#
|
109
|
+
# data.count #=> 50
|
110
|
+
# data.next? #=> false
|
111
|
+
# data.first #=> {"word"=>"you", "count"=>42}
|
112
|
+
# ```
|
113
|
+
#
|
114
|
+
# The `TOP` function shown above is just one of a variety of functions
|
115
|
+
# offered by BigQuery. See the [Query
|
116
|
+
# Reference](https://cloud.google.com/bigquery/query-reference) for a full
|
117
|
+
# listing.
|
118
|
+
#
|
119
|
+
# ### Asynchronous queries
|
120
|
+
#
|
121
|
+
# Because you probably should not block for most BigQuery operations,
|
122
|
+
# including querying as well as importing, exporting, and copying data, the
|
123
|
+
# BigQuery API enables you to manage longer-running jobs. In the
|
124
|
+
# asynchronous approach to running a query, an instance of
|
125
|
+
# {Google::Cloud::Bigquery::QueryJob} is returned, rather than an instance
|
126
|
+
# of {Google::Cloud::Bigquery::QueryData}.
|
127
|
+
#
|
128
|
+
# ```ruby
|
129
|
+
# require "google/cloud"
|
130
|
+
#
|
131
|
+
# gcloud = Google::Cloud.new
|
132
|
+
# bigquery = gcloud.bigquery
|
133
|
+
#
|
134
|
+
# sql = "SELECT TOP(word, 50) as word, COUNT(*) as count " +
|
135
|
+
# "FROM publicdata:samples.shakespeare"
|
136
|
+
# job = bigquery.query_job sql
|
137
|
+
#
|
138
|
+
# job.wait_until_done!
|
139
|
+
# if !job.failed?
|
140
|
+
# job.query_results.each do |row|
|
141
|
+
# puts row["word"]
|
142
|
+
# end
|
143
|
+
# end
|
144
|
+
# ```
|
145
|
+
#
|
146
|
+
# Once you have determined that the job is done and has not failed, you can
|
147
|
+
# obtain an instance of {Google::Cloud::Bigquery::QueryData} by calling
|
148
|
+
# {Google::Cloud::Bigquery::QueryJob#query_results}. The query results for
|
149
|
+
# both of the above examples are stored in temporary tables with a lifetime
|
150
|
+
# of about 24 hours. See the final example below for a demonstration of how
|
151
|
+
# to store query results in a permanent table.
|
152
|
+
#
|
153
|
+
# ## Creating Datasets and Tables
|
154
|
+
#
|
155
|
+
# The first thing you need to do in a new BigQuery project is to create a
|
156
|
+
# {Google::Cloud::Bigquery::Dataset}. Datasets hold tables and control
|
157
|
+
# access to them.
|
158
|
+
#
|
159
|
+
# ```ruby
|
160
|
+
# require "google/cloud/bigquery"
|
161
|
+
#
|
162
|
+
# gcloud = Google::Cloud.new
|
163
|
+
# bigquery = gcloud.bigquery
|
164
|
+
# dataset = bigquery.create_dataset "my_dataset"
|
165
|
+
# ```
|
166
|
+
#
|
167
|
+
# Now that you have a dataset, you can use it to create a table. Every table
|
168
|
+
# is defined by a schema that may contain nested and repeated fields. The
|
169
|
+
# example below shows a schema with a repeated record field named
|
170
|
+
# `cities_lived`. (For more information about nested and repeated fields,
|
171
|
+
# see [Preparing Data for
|
172
|
+
# BigQuery](https://cloud.google.com/bigquery/preparing-data-for-bigquery).)
|
173
|
+
#
|
174
|
+
# ```ruby
|
175
|
+
# require "google/cloud"
|
176
|
+
#
|
177
|
+
# gcloud = Google::Cloud.new
|
178
|
+
# bigquery = gcloud.bigquery
|
179
|
+
# dataset = bigquery.dataset "my_dataset"
|
180
|
+
#
|
181
|
+
# table = dataset.create_table "people" do |schema|
|
182
|
+
# schema.string "first_name", mode: :required
|
183
|
+
# schema.record "cities_lived", mode: :repeated do |nested_schema|
|
184
|
+
# nested_schema.string "place", mode: :required
|
185
|
+
# nested_schema.integer "number_of_years", mode: :required
|
186
|
+
# end
|
187
|
+
# end
|
188
|
+
# ```
|
189
|
+
#
|
190
|
+
# Because of the repeated field in this schema, we cannot use the CSV format
|
191
|
+
# to load data into the table.
|
192
|
+
#
|
193
|
+
# ## Loading records
|
194
|
+
#
|
195
|
+
# In addition to CSV, data can be imported from files that are formatted as
|
196
|
+
# [Newline-delimited JSON](http://jsonlines.org/) or
|
197
|
+
# [Avro](http://avro.apache.org/), or from a Google Cloud Datastore backup.
|
198
|
+
# It can also be "streamed" into BigQuery.
|
199
|
+
#
|
200
|
+
# To follow along with these examples, you will need to set up billing on
|
201
|
+
# the [Google Developers Console](https://console.developers.google.com).
|
202
|
+
#
|
203
|
+
# ### Streaming records
|
204
|
+
#
|
205
|
+
# For situations in which you want new data to be available for querying as
|
206
|
+
# soon as possible, inserting individual records directly from your Ruby
|
207
|
+
# application is a great approach.
|
208
|
+
#
|
209
|
+
# ```ruby
|
210
|
+
# require "google/cloud"
|
211
|
+
#
|
212
|
+
# gcloud = Google::Cloud.new
|
213
|
+
# bigquery = gcloud.bigquery
|
214
|
+
# dataset = bigquery.dataset "my_dataset"
|
215
|
+
# table = dataset.table "people"
|
216
|
+
#
|
217
|
+
# rows = [
|
218
|
+
# {
|
219
|
+
# "first_name" => "Anna",
|
220
|
+
# "cities_lived" => [
|
221
|
+
# {
|
222
|
+
# "place" => "Stockholm",
|
223
|
+
# "number_of_years" => 2
|
224
|
+
# }
|
225
|
+
# ]
|
226
|
+
# },
|
227
|
+
# {
|
228
|
+
# "first_name" => "Bob",
|
229
|
+
# "cities_lived" => [
|
230
|
+
# {
|
231
|
+
# "place" => "Seattle",
|
232
|
+
# "number_of_years" => 5
|
233
|
+
# },
|
234
|
+
# {
|
235
|
+
# "place" => "Austin",
|
236
|
+
# "number_of_years" => 6
|
237
|
+
# }
|
238
|
+
# ]
|
239
|
+
# }
|
240
|
+
# ]
|
241
|
+
# table.insert rows
|
242
|
+
# ```
|
243
|
+
#
|
244
|
+
# There are some trade-offs involved with streaming, so be sure to read the
|
245
|
+
# discussion of data consistency in [Streaming Data Into
|
246
|
+
# BigQuery](https://cloud.google.com/bigquery/streaming-data-into-bigquery).
|
247
|
+
#
|
248
|
+
# ### Uploading a file
|
249
|
+
#
|
250
|
+
# To follow along with this example, please download the
|
251
|
+
# [names.zip](http://www.ssa.gov/OACT/babynames/names.zip) archive from the
|
252
|
+
# U.S. Social Security Administration. Inside the archive you will find over
|
253
|
+
# 100 files containing baby name records since the year 1880. A PDF file
|
254
|
+
# also contained in the archive specifies the schema used below.
|
255
|
+
#
|
256
|
+
# ```ruby
|
257
|
+
# require "google/cloud"
|
258
|
+
#
|
259
|
+
# gcloud = Google::Cloud.new
|
260
|
+
# bigquery = gcloud.bigquery
|
261
|
+
# dataset = bigquery.dataset "my_dataset"
|
262
|
+
# table = dataset.create_table "baby_names" do |schema|
|
263
|
+
# schema.string "name", mode: :required
|
264
|
+
# schema.string "sex", mode: :required
|
265
|
+
# schema.integer "number", mode: :required
|
266
|
+
# end
|
267
|
+
#
|
268
|
+
# file = File.open "names/yob2014.txt"
|
269
|
+
# load_job = table.load file, format: "csv"
|
270
|
+
# ```
|
271
|
+
#
|
272
|
+
# Because the names data, although formatted as CSV, is distributed in files
|
273
|
+
# with a `.txt` extension, this example explicitly passes the `format`
|
274
|
+
# option in order to demonstrate how to handle such situations. Because CSV
|
275
|
+
# is the default format for load operations, the option is not actually
|
276
|
+
# necessary. For JSON saved with a `.txt` extension, however, it would be.
|
277
|
+
#
|
278
|
+
# ## Exporting query results to Google Cloud Storage
|
279
|
+
#
|
280
|
+
# The example below shows how to pass the `table` option with a query in
|
281
|
+
# order to store results in a permanent table. It also shows how to export
|
282
|
+
# the result data to a Google Cloud Storage file. In order to follow along,
|
283
|
+
# you will need to enable the Google Cloud Storage API in addition to
|
284
|
+
# setting up billing.
|
285
|
+
#
|
286
|
+
# ```ruby
|
287
|
+
# require "google/cloud"
|
288
|
+
#
|
289
|
+
# gcloud = Google::Cloud.new
|
290
|
+
# bigquery = gcloud.bigquery
|
291
|
+
# dataset = bigquery.dataset "my_dataset"
|
292
|
+
# source_table = dataset.table "baby_names"
|
293
|
+
# result_table = dataset.create_table "baby_names_results"
|
294
|
+
#
|
295
|
+
# sql = "SELECT name, number as count " +
|
296
|
+
# "FROM baby_names " +
|
297
|
+
# "WHERE name CONTAINS 'Sam' " +
|
298
|
+
# "ORDER BY count DESC"
|
299
|
+
# query_job = dataset.query_job sql, table: result_table
|
300
|
+
#
|
301
|
+
# query_job.wait_until_done!
|
302
|
+
#
|
303
|
+
# if !query_job.failed?
|
304
|
+
#
|
305
|
+
# storage = gcloud.storage
|
306
|
+
# bucket_id = "bigquery-exports-#{SecureRandom.uuid}"
|
307
|
+
# bucket = storage.create_bucket bucket_id
|
308
|
+
# extract_url = "gs://#{bucket.id}/baby-names-sam.csv"
|
309
|
+
#
|
310
|
+
# extract_job = result_table.extract extract_url
|
311
|
+
#
|
312
|
+
# extract_job.wait_until_done!
|
313
|
+
#
|
314
|
+
# # Download to local filesystem
|
315
|
+
# bucket.files.first.download "baby-names-sam.csv"
|
316
|
+
#
|
317
|
+
# end
|
318
|
+
# ```
|
319
|
+
#
|
320
|
+
# If a table you wish to export contains a large amount of data, you can
|
321
|
+
# pass a wildcard URI to export to multiple files (for sharding), or an
|
322
|
+
# array of URIs (for partitioning), or both. See [Exporting Data From
|
323
|
+
# BigQuery](https://cloud.google.com/bigquery/exporting-data-from-bigquery)
|
324
|
+
# for details.
|
325
|
+
#
|
326
|
+
# ## Configuring retries and timeout
|
327
|
+
#
|
328
|
+
# You can configure how many times API requests may be automatically
|
329
|
+
# retried. When an API request fails, the response will be inspected to see
|
330
|
+
# if the request meets criteria indicating that it may succeed on retry,
|
331
|
+
# such as `500` and `503` status codes or a specific internal error code
|
332
|
+
# such as `rateLimitExceeded`. If it meets the criteria, the request will be
|
333
|
+
# retried after a delay. If another error occurs, the delay will be
|
334
|
+
# increased before a subsequent attempt, until the `retries` limit is
|
335
|
+
# reached.
|
336
|
+
#
|
337
|
+
# You can also set the request `timeout` value in seconds.
|
338
|
+
#
|
339
|
+
# ```ruby
|
340
|
+
# require "google/cloud"
|
341
|
+
#
|
342
|
+
# gcloud = Google::Cloud.new
|
343
|
+
# bigquery = gcloud.bigquery retries: 10, timeout: 120
|
344
|
+
# ```
|
345
|
+
#
|
346
|
+
# See the [BigQuery error
|
347
|
+
# table](https://cloud.google.com/bigquery/troubleshooting-errors#errortable)
|
348
|
+
# for a list of error conditions.
|
349
|
+
#
|
350
|
+
module Bigquery
|
351
|
+
end
|
352
|
+
end
|
353
|
+
end
|