goldmine 1.1.4 → 1.2.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/Gemfile.lock +1 -1
- data/README.md +58 -16
- data/lib/goldmine.rb +6 -4
- data/lib/goldmine/array_miner.rb +4 -3
- data/lib/goldmine/hash_miner.rb +66 -28
- data/lib/goldmine/version.rb +1 -1
- data/test/test_goldmine.rb +137 -43
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA1:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: eac055065f84b7550241a15c980bf74e0fc892a6
|
4
|
+
data.tar.gz: 02d1831f66469c098299f819d0e3698959bb725f
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: c4a8519848f4776ac73febc4850919c5449f302471a482673c8e7e47427237759e52444759544596ceb778642ebf0ce2bd866364868cee04fe7a38dbfae443cb
|
7
|
+
data.tar.gz: e1243ab291afcafa019b6b287f98a20b5054f080fc31764322cffe07b604c59d0b23893da822c27401c8727c3b9f64fabe65d9e1acb167f57a5ed82b814abfec
|
data/Gemfile.lock
CHANGED
data/README.md
CHANGED
@@ -21,6 +21,7 @@ Think of __Goldmine__ as `Enumerable#group_by` on steroids.
|
|
21
21
|
---
|
22
22
|
|
23
23
|
The [demo project](http://hopsoft.github.io/goldmine/) demonstrates some of Goldmine's uses.
|
24
|
+
`TODO: update the demo project`
|
24
25
|
|
25
26
|
---
|
26
27
|
|
@@ -109,7 +110,7 @@ list.pivot { |record| record[:favorite_colors] }
|
|
109
110
|
}
|
110
111
|
```
|
111
112
|
|
112
|
-
|
113
|
+
## Stacked pivots
|
113
114
|
|
114
115
|
```ruby
|
115
116
|
list = [
|
@@ -142,31 +143,72 @@ end
|
|
142
143
|
}
|
143
144
|
```
|
144
145
|
|
145
|
-
|
146
|
+
## Rollups
|
146
147
|
|
147
|
-
|
148
|
+
Sometimes it's useful to roll pivots into a summary.
|
148
149
|
|
149
150
|
```ruby
|
150
|
-
|
151
|
-
|
151
|
+
list = [1,2,3,4,5,6,7,8,9]
|
152
|
+
list = Goldmine::ArrayMiner.new(list)
|
153
|
+
pivoted = list.pivot(:less_than_5) { |i| i < 5 }.pivot(:even) { |i| i % 2 == 0 }
|
154
|
+
pivoted.rollup { |values| values.size }
|
155
|
+
# result:
|
156
|
+
{
|
157
|
+
{ :less_than_5 => true, :even => false} => 2,
|
158
|
+
{ :less_than_5 => true, :even => true} => 2,
|
159
|
+
{ :less_than_5 => false, :even => false} => 3,
|
160
|
+
{ :less_than_5 => false, :even => true} => 2
|
161
|
+
}
|
162
|
+
```
|
163
|
+
|
164
|
+
## Tabular data
|
165
|
+
|
166
|
+
Tabular data provides a more streamlined summary view of a pivot.
|
167
|
+
|
168
|
+
```ruby
|
169
|
+
list = [1,2,3,4,5,6,7,8,9]
|
170
|
+
list = Goldmine::ArrayMiner.new(list)
|
171
|
+
pivoted = list.pivot(:less_than_5) { |i| i < 5 }.pivot(:even) { |i| i % 2 == 0 }
|
172
|
+
pivoted.to_tabular
|
152
173
|
# result:
|
153
174
|
[
|
154
|
-
["
|
155
|
-
[
|
156
|
-
[true, true, 0.
|
157
|
-
[
|
175
|
+
["less_than_5", "even", "percent", "count"],
|
176
|
+
[true, false, 0.22, 2],
|
177
|
+
[true, true, 0.22, 2],
|
178
|
+
[false, false, 0.33, 3],
|
179
|
+
[false, true, 0.22, 2]
|
158
180
|
]
|
159
181
|
```
|
160
182
|
|
161
|
-
|
162
|
-
Subsequent entries are data rows.
|
163
|
-
The last value in each data row indicates the number of matches.
|
183
|
+
## CSV table
|
164
184
|
|
165
|
-
|
185
|
+
CSV tables are a formalized version of tabular data.
|
186
|
+
They simplify the complexity of working with tabular data.
|
166
187
|
|
167
188
|
```ruby
|
168
|
-
|
169
|
-
|
170
|
-
|
189
|
+
list = [1,2,3,4,5,6,7,8,9]
|
190
|
+
list = Goldmine::ArrayMiner.new(list)
|
191
|
+
pivoted = list.pivot(:less_than_5) { |i| i < 5 }.pivot(:even) { |i| i % 2 == 0 }
|
192
|
+
csv = pivoted.to_csv
|
193
|
+
|
194
|
+
csv.headers # => ["less_than_5", "even", "percent", "count"]
|
195
|
+
|
196
|
+
csv.each do |row|
|
197
|
+
puts row["less_than_5"]
|
198
|
+
puts row["even"]
|
171
199
|
end
|
200
|
+
|
201
|
+
csv.to_csv
|
202
|
+
# result:
|
203
|
+
"less_than_5,even,percent,count\ntrue,false,0.22,2\ntrue,true,0.22,2\nfalse,false,0.33,3\nfalse,true,0.22,2\n"
|
172
204
|
```
|
205
|
+
|
206
|
+
## Summary
|
207
|
+
|
208
|
+
Goldmine allows you to combine the power of pivots, rollups, tabular data,
|
209
|
+
& csv to construct deep insights into your data with minimal effort.
|
210
|
+
|
211
|
+
One of our common use cases is to query a database using ActiveRecord,
|
212
|
+
pivot the results, convert to csv, sort, pivot again,
|
213
|
+
then rollup the results to create data visualizations in the form of charts & graphs.
|
214
|
+
|
data/lib/goldmine.rb
CHANGED
@@ -3,9 +3,11 @@ require "array_miner"
|
|
3
3
|
require "hash_miner"
|
4
4
|
|
5
5
|
module Goldmine
|
6
|
-
|
7
|
-
|
8
|
-
|
9
|
-
|
6
|
+
class << self
|
7
|
+
def miner(object)
|
8
|
+
return ArrayMiner.new(object) if object.is_a?(Array)
|
9
|
+
return HashMiner.new(object) if object.is_a?(Hash)
|
10
|
+
nil
|
11
|
+
end
|
10
12
|
end
|
11
13
|
end
|
data/lib/goldmine/array_miner.rb
CHANGED
@@ -4,8 +4,9 @@ module Goldmine
|
|
4
4
|
class ArrayMiner < SimpleDelegator
|
5
5
|
attr_reader :source_data
|
6
6
|
|
7
|
-
def initialize(array=[])
|
8
|
-
|
7
|
+
def initialize(array=[], source_data: [])
|
8
|
+
@source_data = source_data
|
9
|
+
super array
|
9
10
|
end
|
10
11
|
|
11
12
|
# Pivots the Array into a Hash of mined data.
|
@@ -47,7 +48,7 @@ module Goldmine
|
|
47
48
|
# @yield [Object] Yields once for each item in the Array
|
48
49
|
# @return [Hash] The pivoted Hash of data.
|
49
50
|
def pivot(name=nil, &block)
|
50
|
-
reduce(HashMiner.new(source_data:
|
51
|
+
reduce(HashMiner.new(source_data: self)) do |memo, item|
|
51
52
|
value = yield(item)
|
52
53
|
|
53
54
|
if value.is_a?(Array)
|
data/lib/goldmine/hash_miner.rb
CHANGED
@@ -1,11 +1,12 @@
|
|
1
1
|
require "delegate"
|
2
|
+
require "csv"
|
2
3
|
|
3
4
|
module Goldmine
|
4
5
|
class HashMiner < SimpleDelegator
|
5
6
|
attr_reader :source_data
|
6
7
|
|
7
|
-
def initialize(hash={}, source_data:
|
8
|
-
@source_data = source_data
|
8
|
+
def initialize(hash={}, source_data: [])
|
9
|
+
@source_data = source_data
|
9
10
|
super hash
|
10
11
|
end
|
11
12
|
|
@@ -28,8 +29,8 @@ module Goldmine
|
|
28
29
|
#
|
29
30
|
# @note This method should not be called directly. Call Array#pivot instead.
|
30
31
|
#
|
31
|
-
# @param [String]
|
32
|
-
# @yield [Object] Yields once for each item in the Array
|
32
|
+
# @param name [String] The named of the pivot.
|
33
|
+
# @yield [Object] Yields once for each item in the Array.
|
33
34
|
# @return [Hash] The pivoted Hash of data.
|
34
35
|
def pivot(name=nil, &block)
|
35
36
|
return self unless goldmine
|
@@ -51,10 +52,51 @@ module Goldmine
|
|
51
52
|
end
|
52
53
|
end
|
53
54
|
|
55
|
+
# Returns a new "rolled up" Hash based on the return value of the yield.
|
56
|
+
#
|
57
|
+
# @yield [Object] Yields once for each pivoted group.
|
58
|
+
# @return [Hash] The rollup Hash of data.
|
59
|
+
def rollup
|
60
|
+
each_with_object({}) do |pair, memo|
|
61
|
+
memo[pair.first] = yield(pair.last)
|
62
|
+
end
|
63
|
+
end
|
64
|
+
|
65
|
+
# Returns a tabular representation of the pivot.
|
66
|
+
# Useful for building CSVs & data visualizations.
|
67
|
+
#
|
68
|
+
# @param percent_column_name [String] The name of the percent column (percent of total)
|
69
|
+
# @param count_column_name [String] The name of the count column (number of objects)
|
70
|
+
# @return [Array] The tabular representation of the data.
|
71
|
+
def to_tabular(percent_column_name: "percent", count_column_name: "count")
|
72
|
+
[].tap do |rows|
|
73
|
+
rows << tabular_header_from_key(first.first) + [percent_column_name, count_column_name]
|
74
|
+
rolled = rollup { |row| row.size }
|
75
|
+
rolled.each do |key, value|
|
76
|
+
tabular_row_from_key(key).tap do |row|
|
77
|
+
rows << row + [calculate_percentage(value, source_data.size), value]
|
78
|
+
end
|
79
|
+
end
|
80
|
+
end
|
81
|
+
end
|
82
|
+
|
83
|
+
# Returns an in memory CSV table representation of the pivot.
|
84
|
+
# Useful for working with data & building data visualizations.
|
85
|
+
#
|
86
|
+
# @param percent_column_name [String] The name of the percent column (percent of total)
|
87
|
+
# @param count_column_name [String] The name of the count column (number of objects)
|
88
|
+
# @return [CSV::Table] The CSV representation of the data.
|
89
|
+
def to_csv(percent_column_name: "percent", count_column_name: "count")
|
90
|
+
tabular = to_tabular(percent_column_name: percent_column_name, count_column_name: count_column_name)
|
91
|
+
header = tabular.shift
|
92
|
+
rows = tabular.map { |row| CSV::Row.new(header, row) }
|
93
|
+
CSV::Table.new rows
|
94
|
+
end
|
95
|
+
|
54
96
|
# Assigns a key/value pair to the Hash.
|
55
|
-
# @param [String]
|
56
|
-
# @param [Object]
|
57
|
-
# @param [Object]
|
97
|
+
# @param name [String] The name of a pivot (can be null).
|
98
|
+
# @param key [Object] The key to use.
|
99
|
+
# @param value [Object] The value to assign
|
58
100
|
# @return [Object] The result of the assignment.
|
59
101
|
def assign_mined(name, key, value)
|
60
102
|
goldmine_key = goldmine_key(name, key)
|
@@ -63,35 +105,31 @@ module Goldmine
|
|
63
105
|
end
|
64
106
|
|
65
107
|
# Creates a key for a pivot-name/key combo.
|
66
|
-
# @param [String]
|
67
|
-
# @param [Object]
|
108
|
+
# @param name [String] The name of a pivot (can be null).
|
109
|
+
# @param key [Object] The key to use.
|
68
110
|
# @return [Object] The constructed key.
|
69
111
|
def goldmine_key(name, key)
|
70
112
|
goldmine_key = { name => key } if name
|
71
113
|
goldmine_key ||= key
|
72
114
|
end
|
73
115
|
|
74
|
-
|
75
|
-
|
76
|
-
def
|
77
|
-
|
116
|
+
private
|
117
|
+
|
118
|
+
def calculate_percentage(count, total)
|
119
|
+
return 0.0 unless total > 0
|
120
|
+
sprintf("%.2f", count / total.to_f).to_f
|
78
121
|
end
|
79
122
|
|
80
|
-
|
81
|
-
|
82
|
-
|
83
|
-
|
84
|
-
|
85
|
-
|
86
|
-
|
87
|
-
|
88
|
-
|
89
|
-
|
90
|
-
end
|
91
|
-
rows = rows.sort_by(&block) if block_given?
|
92
|
-
header = [pivoted_keys.map(&:to_s), "Percent of Total", "Count"].flatten
|
93
|
-
rows.insert 0, header
|
94
|
-
rows
|
123
|
+
def tabular_header_from_key(key)
|
124
|
+
return key.keys.map(&:to_s) if key.is_a?(Hash)
|
125
|
+
key = [key] unless key.is_a?(Array)
|
126
|
+
(0..key.size-1).map { |i| "column#{i}" }
|
127
|
+
end
|
128
|
+
|
129
|
+
def tabular_row_from_key(key)
|
130
|
+
return key.dup if key.is_a?(Array)
|
131
|
+
return [key] unless key.is_a?(Hash)
|
132
|
+
key.values.dup
|
95
133
|
end
|
96
134
|
|
97
135
|
end
|
data/lib/goldmine/version.rb
CHANGED
data/test/test_goldmine.rb
CHANGED
@@ -30,6 +30,44 @@ class TestGoldmine < PryTest::Test
|
|
30
30
|
assert data == expected
|
31
31
|
end
|
32
32
|
|
33
|
+
test "simple pivot rollup" do
|
34
|
+
list = [1,2,3,4,5,6,7,8,9]
|
35
|
+
list = Goldmine::ArrayMiner.new(list)
|
36
|
+
data = list.pivot { |i| i < 5 }
|
37
|
+
rolled = data.rollup { |row| row.size }
|
38
|
+
|
39
|
+
expected = {
|
40
|
+
true => 4,
|
41
|
+
false => 5
|
42
|
+
}
|
43
|
+
|
44
|
+
assert rolled == expected
|
45
|
+
end
|
46
|
+
|
47
|
+
test "simple pivot to_tabular" do
|
48
|
+
list = [1,2,3,4,5,6,7,8,9]
|
49
|
+
list = Goldmine::ArrayMiner.new(list)
|
50
|
+
data = list.pivot { |i| i < 5 }
|
51
|
+
|
52
|
+
expected = [
|
53
|
+
["column0", "percent", "count"],
|
54
|
+
[true, 0.44, 4],
|
55
|
+
[false, 0.56, 5]
|
56
|
+
]
|
57
|
+
|
58
|
+
assert data.to_tabular == expected
|
59
|
+
end
|
60
|
+
|
61
|
+
test "simple pivot to_csv" do
|
62
|
+
list = [1,2,3,4,5,6,7,8,9]
|
63
|
+
list = Goldmine::ArrayMiner.new(list)
|
64
|
+
data = list.pivot { |i| i < 5 }
|
65
|
+
csv = data.to_csv
|
66
|
+
|
67
|
+
assert csv.headers == ["column0", "percent", "count"]
|
68
|
+
assert csv.to_a == [["column0", "percent", "count"], [true, 0.44, 4], [false, 0.56, 5]]
|
69
|
+
end
|
70
|
+
|
33
71
|
test "named pivot" do
|
34
72
|
list = [1,2,3,4,5,6,7,8,9]
|
35
73
|
list = Goldmine::ArrayMiner.new(list)
|
@@ -43,56 +81,32 @@ class TestGoldmine < PryTest::Test
|
|
43
81
|
assert data == expected
|
44
82
|
end
|
45
83
|
|
46
|
-
test "
|
84
|
+
test "named pivot rollup" do
|
47
85
|
list = [1,2,3,4,5,6,7,8,9]
|
48
86
|
list = Goldmine::ArrayMiner.new(list)
|
49
87
|
data = list.pivot("less than 5") { |i| i < 5 }
|
50
|
-
|
51
|
-
assert data.pivoted_keys == expected
|
52
|
-
end
|
53
|
-
|
54
|
-
test "to_a tabular data" do
|
55
|
-
list = [
|
56
|
-
{ :name => "Sally", :age => 21 },
|
57
|
-
{ :name => "John", :age => 28 },
|
58
|
-
{ :name => "Stephen", :age => 37 },
|
59
|
-
{ :name => "Emily", :age => 32 },
|
60
|
-
{ :name => "Joe", :age => 18 }
|
61
|
-
]
|
62
|
-
list = Goldmine::ArrayMiner.new(list)
|
63
|
-
mined = list.pivot("Name has an 'e'") do |record|
|
64
|
-
!!record[:name].match(/e/i)
|
65
|
-
end
|
66
|
-
mined = mined.pivot(">= 21 years old") do |record|
|
67
|
-
record[:age] >= 21
|
68
|
-
end
|
88
|
+
rolled = data.rollup { |row| row.size }
|
69
89
|
|
70
|
-
expected =
|
71
|
-
|
72
|
-
|
73
|
-
|
74
|
-
[row[2], row[0] ? 1 : 0, row[1] ? 1 : 0]
|
75
|
-
end
|
90
|
+
expected = {
|
91
|
+
{ "less than 5" => true } => 4,
|
92
|
+
{ "less than 5" => false } => 5
|
93
|
+
}
|
76
94
|
|
77
|
-
assert
|
95
|
+
assert rolled == expected
|
78
96
|
end
|
79
97
|
|
80
|
-
test "
|
81
|
-
list = [
|
82
|
-
{ :name => "Sally", :age => 21 },
|
83
|
-
{ :name => "John", :age => 28 },
|
84
|
-
{ :name => "Stephen", :age => 37 },
|
85
|
-
{ :name => "Emily", :age => 32 },
|
86
|
-
{ :name => "Joe", :age => 18 }
|
87
|
-
]
|
98
|
+
test "named pivot to_tabular" do
|
99
|
+
list = [1,2,3,4,5,6,7,8,9]
|
88
100
|
list = Goldmine::ArrayMiner.new(list)
|
89
|
-
|
90
|
-
|
91
|
-
|
92
|
-
|
93
|
-
|
94
|
-
|
95
|
-
|
101
|
+
data = list.pivot("less than 5") { |i| i < 5 }
|
102
|
+
|
103
|
+
expected = [
|
104
|
+
["less than 5", "percent", "count"],
|
105
|
+
[true, 0.44, 4],
|
106
|
+
[false, 0.56, 5]
|
107
|
+
]
|
108
|
+
|
109
|
+
assert data.to_tabular == expected
|
96
110
|
end
|
97
111
|
|
98
112
|
test "pivot of list values" do
|
@@ -164,6 +178,38 @@ class TestGoldmine < PryTest::Test
|
|
164
178
|
assert data == expected
|
165
179
|
end
|
166
180
|
|
181
|
+
test "chained pivots rollup" do
|
182
|
+
list = [1,2,3,4,5,6,7,8,9]
|
183
|
+
list = Goldmine::ArrayMiner.new(list)
|
184
|
+
data = list.pivot { |i| i < 5 }.pivot { |i| i % 2 == 0 }
|
185
|
+
rolled = data.rollup { |row| row.size }
|
186
|
+
|
187
|
+
expected = {
|
188
|
+
[true, false] => 2,
|
189
|
+
[true, true] => 2,
|
190
|
+
[false, false] => 3,
|
191
|
+
[false, true] => 2
|
192
|
+
}
|
193
|
+
|
194
|
+
assert rolled == expected
|
195
|
+
end
|
196
|
+
|
197
|
+
test "chained pivots to_tabular" do
|
198
|
+
list = [1,2,3,4,5,6,7,8,9]
|
199
|
+
list = Goldmine::ArrayMiner.new(list)
|
200
|
+
data = list.pivot { |i| i < 5 }.pivot { |i| i % 2 == 0 }
|
201
|
+
|
202
|
+
expected = [
|
203
|
+
["column0", "column1", "percent", "count"],
|
204
|
+
[true, false, 0.22, 2],
|
205
|
+
[true, true, 0.22, 2],
|
206
|
+
[false, false, 0.33, 3],
|
207
|
+
[false, true, 0.22, 2]
|
208
|
+
]
|
209
|
+
|
210
|
+
assert data.to_tabular == expected
|
211
|
+
end
|
212
|
+
|
167
213
|
test "deep chained pivots" do
|
168
214
|
list = [1,2,3,4,5,6,7,8,9]
|
169
215
|
list = Goldmine::ArrayMiner.new(list)
|
@@ -207,7 +253,6 @@ class TestGoldmine < PryTest::Test
|
|
207
253
|
}
|
208
254
|
|
209
255
|
assert data == expected
|
210
|
-
assert data.source_data == list
|
211
256
|
end
|
212
257
|
|
213
258
|
test "named chained pivots" do
|
@@ -225,4 +270,53 @@ class TestGoldmine < PryTest::Test
|
|
225
270
|
assert data == expected
|
226
271
|
end
|
227
272
|
|
273
|
+
test "named chained pivots rollup" do
|
274
|
+
list = [1,2,3,4,5,6,7,8,9]
|
275
|
+
list = Goldmine::ArrayMiner.new(list)
|
276
|
+
data = list.pivot("less than 5") { |i| i < 5 }.pivot("divisible by 2") { |i| i % 2 == 0 }
|
277
|
+
rolled = data.rollup { |row| row.size }
|
278
|
+
|
279
|
+
expected = {
|
280
|
+
{ "less than 5" => true, "divisible by 2" => false } => 2,
|
281
|
+
{ "less than 5" => true, "divisible by 2" => true } => 2,
|
282
|
+
{ "less than 5" => false, "divisible by 2" => false } => 3,
|
283
|
+
{ "less than 5" => false, "divisible by 2" => true } => 2
|
284
|
+
}
|
285
|
+
|
286
|
+
assert rolled == expected
|
287
|
+
end
|
288
|
+
|
289
|
+
test "named chained pivots to tabular" do
|
290
|
+
list = [1,2,3,4,5,6,7,8,9]
|
291
|
+
list = Goldmine::ArrayMiner.new(list)
|
292
|
+
data = list.pivot("less than 5") { |i| i < 5 }.pivot("divisible by 2") { |i| i % 2 == 0 }
|
293
|
+
|
294
|
+
expected = [
|
295
|
+
["less than 5", "divisible by 2", "percent", "count"],
|
296
|
+
[true, false, 0.22, 2],
|
297
|
+
[true, true, 0.22, 2],
|
298
|
+
[false, false, 0.33, 3],
|
299
|
+
[false, true, 0.22, 2]
|
300
|
+
]
|
301
|
+
|
302
|
+
assert data.to_tabular == expected
|
303
|
+
end
|
304
|
+
|
305
|
+
test "named chained pivots to csv" do
|
306
|
+
list = [1,2,3,4,5,6,7,8,9]
|
307
|
+
list = Goldmine::ArrayMiner.new(list)
|
308
|
+
data = list.pivot("less than 5") { |i| i < 5 }.pivot("divisible by 2") { |i| i % 2 == 0 }
|
309
|
+
csv = data.to_csv
|
310
|
+
|
311
|
+
assert csv.to_a == data.to_tabular
|
312
|
+
|
313
|
+
expected = ["less than 5", "divisible by 2", "percent", "count"]
|
314
|
+
assert csv.headers == expected
|
315
|
+
|
316
|
+
row = csv.first
|
317
|
+
assert row["less than 5"] == true
|
318
|
+
assert row["divisible by 2"] == false
|
319
|
+
assert row["percent"] == 0.22
|
320
|
+
assert row ["count"] == 2
|
321
|
+
end
|
228
322
|
end
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: goldmine
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 1.
|
4
|
+
version: 1.2.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Nathan Hopkins
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2015-
|
11
|
+
date: 2015-06-01 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: rake
|