gl-matrix 0.1.0

Sign up to get free protection for your applications and to get access to all the features.
@@ -0,0 +1,18 @@
1
+ *.gem
2
+ *.rbc
3
+ .bundle
4
+ .config
5
+ .yardoc
6
+ Gemfile.lock
7
+ InstalledFiles
8
+ _yardoc
9
+ coverage
10
+ doc/
11
+ lib/bundler/man
12
+ pkg
13
+ rdoc
14
+ spec/reports
15
+ test/tmp
16
+ test/version_tmp
17
+ tmp
18
+ log
data/Gemfile ADDED
@@ -0,0 +1,4 @@
1
+ source 'https://rubygems.org'
2
+
3
+ # Specify your gem's dependencies in gl-matrix.gemspec
4
+ gemspec
@@ -0,0 +1,22 @@
1
+ Copyright (c) 2013 Colin MacKenzie IV
2
+
3
+ MIT License
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining
6
+ a copy of this software and associated documentation files (the
7
+ "Software"), to deal in the Software without restriction, including
8
+ without limitation the rights to use, copy, modify, merge, publish,
9
+ distribute, sublicense, and/or sell copies of the Software, and to
10
+ permit persons to whom the Software is furnished to do so, subject to
11
+ the following conditions:
12
+
13
+ The above copyright notice and this permission notice shall be
14
+ included in all copies or substantial portions of the Software.
15
+
16
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
17
+ EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
18
+ MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
19
+ NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
20
+ LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
21
+ OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
22
+ WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
@@ -0,0 +1,28 @@
1
+ # gl-matrix-rails
2
+
3
+ A gem to automate using [gl-matrix](http://glmatrix.net/) with Rails 3.
4
+
5
+ ## Installation
6
+
7
+ Add this line to your application's Gemfile:
8
+
9
+ gem 'gl-matrix-rails'
10
+
11
+ And then execute:
12
+
13
+ $ bundle
14
+
15
+ ## Usage
16
+
17
+ Just add the following to your Rails asset manifest in
18
+ `app/assets/javascripts/application.js`:
19
+
20
+ //= require gl-matrix
21
+
22
+ ## Contributing
23
+
24
+ 1. Fork it
25
+ 2. Create your feature branch (`git checkout -b my-new-feature`)
26
+ 3. Commit your changes (`git commit -am 'Add some feature'`)
27
+ 4. Push to the branch (`git push origin my-new-feature`)
28
+ 5. Create new Pull Request
@@ -0,0 +1,18 @@
1
+ require "bundler/gem_tasks"
2
+ require 'rspec/core/rake_task'
3
+
4
+ desc "update gl-matrix"
5
+ task :update do
6
+ cwd = File.dirname(__FILE__)
7
+ raise "failed to fetch latest" unless system *%w(npm install gl-matrix)
8
+ mv File.expand_path("node_modules/gl-matrix/dist/gl-matrix.js", cwd),
9
+ File.expand_path("vendor/assets/javascripts/gl-matrix.js", cwd)
10
+ rm_rf File.expand_path("node_modules", cwd)
11
+ puts
12
+ puts "Done."
13
+ puts
14
+ end
15
+
16
+ RSpec::Core::RakeTask.new
17
+
18
+ task :default => :spec
@@ -0,0 +1,24 @@
1
+ # -*- encoding: utf-8 -*-
2
+ lib = File.expand_path('../lib', __FILE__)
3
+ $LOAD_PATH.unshift(lib) unless $LOAD_PATH.include?(lib)
4
+ require 'gl-matrix/version'
5
+
6
+ Gem::Specification.new do |gem|
7
+ gem.name = "gl-matrix"
8
+ gem.version = GLMatrix::VERSION
9
+ gem.authors = ["Colin MacKenzie IV"]
10
+ gem.email = ["sinisterchipmunk@gmail.com"]
11
+ gem.description = %q{A gem to automate using gl-matrix with Rails 3}
12
+ gem.summary = %q{A gem to automate using gl-matrix with Rails 3}
13
+ gem.homepage = "http://glmatrix.net/"
14
+
15
+ gem.files = `git ls-files`.split($/)
16
+ gem.executables = gem.files.grep(%r{^bin/}).map{ |f| File.basename(f) }
17
+ gem.test_files = gem.files.grep(%r{^(test|spec|features)/})
18
+ gem.require_paths = ["lib"]
19
+
20
+ gem.add_dependency "railties", ">= 3.2.0"
21
+
22
+ gem.add_development_dependency 'rspec'
23
+ gem.add_development_dependency 'tzinfo'
24
+ end
@@ -0,0 +1 @@
1
+ require 'gl-matrix'
@@ -0,0 +1,6 @@
1
+ module GLMatrix
2
+ autoload :Version, "gl-matrix/version"
3
+ autoload :VERSION, "gl-matrix/version"
4
+
5
+ require 'gl-matrix/engine'
6
+ end
@@ -0,0 +1,6 @@
1
+ require 'rails/engine'
2
+
3
+ module GLMatrix
4
+ class Engine < ::Rails::Engine
5
+ end
6
+ end
@@ -0,0 +1,8 @@
1
+ module GLMatrix
2
+ module Version
3
+ MAJOR, MINOR, TINY = 0, 1, 0
4
+ STRING = [MAJOR, MINOR, TINY].join '.'
5
+ end
6
+
7
+ VERSION = Version::STRING
8
+ end
@@ -0,0 +1,5 @@
1
+ require 'spec_helper'
2
+
3
+ describe "request gl-matrix asset" do
4
+ specify { Rails.application.assets['gl-matrix.js'].should_not be_nil }
5
+ end
@@ -0,0 +1,10 @@
1
+ require 'bundler/setup'
2
+ require 'gl-matrix-rails'
3
+ require 'rails/all'
4
+
5
+ class App < ::Rails::Application
6
+ config.active_support.deprecation = :log
7
+ config.assets.enabled = true
8
+ end
9
+
10
+ App.initialize!
@@ -0,0 +1,3071 @@
1
+ /**
2
+ * @fileoverview gl-matrix - High performance matrix and vector operations
3
+ * @author Brandon Jones
4
+ * @author Colin MacKenzie IV
5
+ * @version 2.0.0
6
+ */
7
+
8
+ /* Copyright (c) 2012, Brandon Jones, Colin MacKenzie IV. All rights reserved.
9
+
10
+ Redistribution and use in source and binary forms, with or without modification,
11
+ are permitted provided that the following conditions are met:
12
+
13
+ * Redistributions of source code must retain the above copyright notice, this
14
+ list of conditions and the following disclaimer.
15
+ * Redistributions in binary form must reproduce the above copyright notice,
16
+ this list of conditions and the following disclaimer in the documentation
17
+ and/or other materials provided with the distribution.
18
+
19
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
20
+ ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21
+ WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22
+ DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
23
+ ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24
+ (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25
+ LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
26
+ ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
28
+ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
29
+
30
+
31
+ (function() {
32
+ "use strict";
33
+
34
+ var shim = {};
35
+ if (typeof(exports) === 'undefined') {
36
+ if(typeof define == 'function' && typeof define.amd == 'object' && define.amd) {
37
+ shim.exports = {};
38
+ define(function() {
39
+ return shim.exports;
40
+ });
41
+ } else {
42
+ // gl-matrix lives in a browser, define its namespaces in global
43
+ shim.exports = window;
44
+ }
45
+ }
46
+ else {
47
+ // gl-matrix lives in commonjs, define its namespaces in exports
48
+ shim.exports = exports;
49
+ }
50
+
51
+ (function(exports) {
52
+ /* Copyright (c) 2012, Brandon Jones, Colin MacKenzie IV. All rights reserved.
53
+
54
+ Redistribution and use in source and binary forms, with or without modification,
55
+ are permitted provided that the following conditions are met:
56
+
57
+ * Redistributions of source code must retain the above copyright notice, this
58
+ list of conditions and the following disclaimer.
59
+ * Redistributions in binary form must reproduce the above copyright notice,
60
+ this list of conditions and the following disclaimer in the documentation
61
+ and/or other materials provided with the distribution.
62
+
63
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
64
+ ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
65
+ WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
66
+ DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
67
+ ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
68
+ (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
69
+ LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
70
+ ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
71
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
72
+ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
73
+
74
+ /**
75
+ * @class 2 Dimensional Vector
76
+ * @name vec2
77
+ */
78
+
79
+ var vec2 = {};
80
+
81
+ if(!GLMAT_EPSILON) {
82
+ var GLMAT_EPSILON = 0.000001;
83
+ }
84
+
85
+ /**
86
+ * Creates a new, empty vec2
87
+ *
88
+ * @returns {vec2} a new 2D vector
89
+ */
90
+ vec2.create = function() {
91
+ return new Float32Array(2);
92
+ };
93
+
94
+ /**
95
+ * Creates a new vec2 initialized with values from an existing vector
96
+ *
97
+ * @param {vec2} a vector to clone
98
+ * @returns {vec2} a new 2D vector
99
+ */
100
+ vec2.clone = function(a) {
101
+ var out = new Float32Array(2);
102
+ out[0] = a[0];
103
+ out[1] = a[1];
104
+ return out;
105
+ };
106
+
107
+ /**
108
+ * Creates a new vec2 initialized with the given values
109
+ *
110
+ * @param {Number} x X component
111
+ * @param {Number} y Y component
112
+ * @returns {vec2} a new 2D vector
113
+ */
114
+ vec2.fromValues = function(x, y) {
115
+ var out = new Float32Array(2);
116
+ out[0] = x;
117
+ out[1] = y;
118
+ return out;
119
+ };
120
+
121
+ /**
122
+ * Copy the values from one vec2 to another
123
+ *
124
+ * @param {vec2} out the receiving vector
125
+ * @param {vec2} a the source vector
126
+ * @returns {vec2} out
127
+ */
128
+ vec2.copy = function(out, a) {
129
+ out[0] = a[0];
130
+ out[1] = a[1];
131
+ return out;
132
+ };
133
+
134
+ /**
135
+ * Set the components of a vec2 to the given values
136
+ *
137
+ * @param {vec2} out the receiving vector
138
+ * @param {Number} x X component
139
+ * @param {Number} y Y component
140
+ * @returns {vec2} out
141
+ */
142
+ vec2.set = function(out, x, y) {
143
+ out[0] = x;
144
+ out[1] = y;
145
+ return out;
146
+ };
147
+
148
+ /**
149
+ * Adds two vec2's
150
+ *
151
+ * @param {vec2} out the receiving vector
152
+ * @param {vec2} a the first operand
153
+ * @param {vec2} b the second operand
154
+ * @returns {vec2} out
155
+ */
156
+ vec2.add = function(out, a, b) {
157
+ out[0] = a[0] + b[0];
158
+ out[1] = a[1] + b[1];
159
+ return out;
160
+ };
161
+
162
+ /**
163
+ * Subtracts two vec2's
164
+ *
165
+ * @param {vec2} out the receiving vector
166
+ * @param {vec2} a the first operand
167
+ * @param {vec2} b the second operand
168
+ * @returns {vec2} out
169
+ */
170
+ vec2.sub = vec2.subtract = function(out, a, b) {
171
+ out[0] = a[0] - b[0];
172
+ out[1] = a[1] - b[1];
173
+ return out;
174
+ };
175
+
176
+ /**
177
+ * Multiplies two vec2's
178
+ *
179
+ * @param {vec2} out the receiving vector
180
+ * @param {vec2} a the first operand
181
+ * @param {vec2} b the second operand
182
+ * @returns {vec2} out
183
+ */
184
+ vec2.mul = vec2.multiply = function(out, a, b) {
185
+ out[0] = a[0] * b[0];
186
+ out[1] = a[1] * b[1];
187
+ return out;
188
+ };
189
+
190
+ /**
191
+ * Divides two vec2's
192
+ *
193
+ * @param {vec2} out the receiving vector
194
+ * @param {vec2} a the first operand
195
+ * @param {vec2} b the second operand
196
+ * @returns {vec2} out
197
+ */
198
+ vec2.div = vec2.divide = function(out, a, b) {
199
+ out[0] = a[0] / b[0];
200
+ out[1] = a[1] / b[1];
201
+ return out;
202
+ };
203
+
204
+ /**
205
+ * Returns the minimum of two vec2's
206
+ *
207
+ * @param {vec2} out the receiving vector
208
+ * @param {vec2} a the first operand
209
+ * @param {vec2} b the second operand
210
+ * @returns {vec2} out
211
+ */
212
+ vec2.min = function(out, a, b) {
213
+ out[0] = Math.min(a[0], b[0]);
214
+ out[1] = Math.min(a[1], b[1]);
215
+ return out;
216
+ };
217
+
218
+ /**
219
+ * Returns the maximum of two vec2's
220
+ *
221
+ * @param {vec2} out the receiving vector
222
+ * @param {vec2} a the first operand
223
+ * @param {vec2} b the second operand
224
+ * @returns {vec2} out
225
+ */
226
+ vec2.max = function(out, a, b) {
227
+ out[0] = Math.max(a[0], b[0]);
228
+ out[1] = Math.max(a[1], b[1]);
229
+ return out;
230
+ };
231
+
232
+ /**
233
+ * Scales a vec2 by a scalar number
234
+ *
235
+ * @param {vec2} out the receiving vector
236
+ * @param {vec2} a the vector to scale
237
+ * @param {vec2} b amount to scale the vector by
238
+ * @returns {vec2} out
239
+ */
240
+ vec2.scale = function(out, a, b) {
241
+ out[0] = a[0] * b;
242
+ out[1] = a[1] * b;
243
+ return out;
244
+ };
245
+
246
+ /**
247
+ * Calculates the euclidian distance between two vec2's
248
+ *
249
+ * @param {vec2} a the first operand
250
+ * @param {vec2} b the second operand
251
+ * @returns {Number} distance between a and b
252
+ */
253
+ vec2.dist = vec2.distance = function(a, b) {
254
+ var x = b[0] - a[0],
255
+ y = b[1] - a[1];
256
+ return Math.sqrt(x*x + y*y);
257
+ };
258
+
259
+ /**
260
+ * Calculates the squared euclidian distance between two vec2's
261
+ *
262
+ * @param {vec2} a the first operand
263
+ * @param {vec2} b the second operand
264
+ * @returns {Number} squared distance between a and b
265
+ */
266
+ vec2.sqrDist = vec2.squaredDistance = function(a, b) {
267
+ var x = b[0] - a[0],
268
+ y = b[1] - a[1];
269
+ return x*x + y*y;
270
+ };
271
+
272
+ /**
273
+ * Caclulates the length of a vec2
274
+ *
275
+ * @param {vec2} a vector to calculate length of
276
+ * @returns {Number} length of a
277
+ */
278
+ vec2.len = vec2.length = function (a) {
279
+ var x = a[0],
280
+ y = a[1];
281
+ return Math.sqrt(x*x + y*y);
282
+ };
283
+
284
+ /**
285
+ * Caclulates the squared length of a vec2
286
+ *
287
+ * @param {vec2} a vector to calculate squared length of
288
+ * @returns {Number} squared length of a
289
+ */
290
+ vec2.sqrLen = vec2.squaredLength = function (a) {
291
+ var x = a[0],
292
+ y = a[1];
293
+ return x*x + y*y;
294
+ };
295
+
296
+ /**
297
+ * Negates the components of a vec2
298
+ *
299
+ * @param {vec2} out the receiving vector
300
+ * @param {vec2} a vector to negate
301
+ * @returns {vec2} out
302
+ */
303
+ vec2.negate = function(out, a) {
304
+ out[0] = -a[0];
305
+ out[1] = -a[1];
306
+ return out;
307
+ };
308
+
309
+ /**
310
+ * Normalize a vec2
311
+ *
312
+ * @param {vec2} out the receiving vector
313
+ * @param {vec2} a vector to normalize
314
+ * @returns {vec2} out
315
+ */
316
+ vec2.normalize = function(out, a) {
317
+ var x = a[0],
318
+ y = a[1];
319
+ var len = x*x + y*y;
320
+ if (len > 0) {
321
+ //TODO: evaluate use of glm_invsqrt here?
322
+ len = 1 / Math.sqrt(len);
323
+ out[0] = a[0] * len;
324
+ out[1] = a[1] * len;
325
+ }
326
+ return out;
327
+ };
328
+
329
+ /**
330
+ * Caclulates the dot product of two vec2's
331
+ *
332
+ * @param {vec2} a the first operand
333
+ * @param {vec2} b the second operand
334
+ * @returns {Number} dot product of a and b
335
+ */
336
+ vec2.dot = function (a, b) {
337
+ return a[0] * b[0] + a[1] * b[1];
338
+ };
339
+
340
+ /**
341
+ * Computes the cross product of two vec2's
342
+ * Note that the cross product must by definition produce a 3D vector
343
+ *
344
+ * @param {vec3} out the receiving vector
345
+ * @param {vec2} a the first operand
346
+ * @param {vec2} b the second operand
347
+ * @returns {vec3} out
348
+ */
349
+ vec2.cross = function(out, a, b) {
350
+ var z = a[0] * b[1] - a[1] * b[0];
351
+ out[0] = out[1] = 0;
352
+ out[2] = z;
353
+ return out;
354
+ };
355
+
356
+ /**
357
+ * Performs a linear interpolation between two vec2's
358
+ *
359
+ * @param {vec3} out the receiving vector
360
+ * @param {vec2} a the first operand
361
+ * @param {vec2} b the second operand
362
+ * @param {Number} t interpolation amount between the two inputs
363
+ * @returns {vec2} out
364
+ */
365
+ vec2.lerp = function (out, a, b, t) {
366
+ var ax = a[0],
367
+ ay = a[1];
368
+ out[0] = ax + t * (b[0] - ax);
369
+ out[1] = ay + t * (b[1] - ay);
370
+ return out;
371
+ };
372
+
373
+ /**
374
+ * Transforms the vec2 with a mat2
375
+ *
376
+ * @param {vec2} out the receiving vector
377
+ * @param {vec2} a the vector to transform
378
+ * @param {mat2} m matrix to transform with
379
+ * @returns {vec2} out
380
+ */
381
+ vec2.transformMat2 = function(out, a, m) {
382
+ var x = a[0],
383
+ y = a[1];
384
+ out[0] = x * m[0] + y * m[1];
385
+ out[1] = x * m[2] + y * m[3];
386
+ return out;
387
+ };
388
+
389
+ /**
390
+ * Perform some operation over an array of vec2s.
391
+ *
392
+ * @param {Array} a the array of vectors to iterate over
393
+ * @param {Number} stride Number of elements between the start of each vec2. If 0 assumes tightly packed
394
+ * @param {Number} offset Number of elements to skip at the beginning of the array
395
+ * @param {Number} count Number of vec2s to iterate over. If 0 iterates over entire array
396
+ * @param {Function} fn Function to call for each vector in the array
397
+ * @param {Object} [arg] additional argument to pass to fn
398
+ * @returns {Array} a
399
+ */
400
+ vec2.forEach = (function() {
401
+ var vec = new Float32Array(2);
402
+
403
+ return function(a, stride, offset, count, fn, arg) {
404
+ var i, l;
405
+ if(!stride) {
406
+ stride = 2;
407
+ }
408
+
409
+ if(!offset) {
410
+ offset = 0;
411
+ }
412
+
413
+ if(count) {
414
+ l = Math.min((count * stride) + offset, a.length);
415
+ } else {
416
+ l = a.length;
417
+ }
418
+
419
+ for(i = offset; i < l; i += stride) {
420
+ vec[0] = a[i]; vec[1] = a[i+1];
421
+ fn(vec, vec, arg);
422
+ a[i] = vec[0]; a[i+1] = vec[1];
423
+ }
424
+
425
+ return a;
426
+ };
427
+ })();
428
+
429
+ /**
430
+ * Returns a string representation of a vector
431
+ *
432
+ * @param {vec2} vec vector to represent as a string
433
+ * @returns {String} string representation of the vector
434
+ */
435
+ vec2.str = function (a) {
436
+ return 'vec2(' + a[0] + ', ' + a[1] + ')';
437
+ };
438
+
439
+ if(typeof(exports) !== 'undefined') {
440
+ exports.vec2 = vec2;
441
+ }
442
+ ;
443
+ /* Copyright (c) 2012, Brandon Jones, Colin MacKenzie IV. All rights reserved.
444
+
445
+ Redistribution and use in source and binary forms, with or without modification,
446
+ are permitted provided that the following conditions are met:
447
+
448
+ * Redistributions of source code must retain the above copyright notice, this
449
+ list of conditions and the following disclaimer.
450
+ * Redistributions in binary form must reproduce the above copyright notice,
451
+ this list of conditions and the following disclaimer in the documentation
452
+ and/or other materials provided with the distribution.
453
+
454
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
455
+ ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
456
+ WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
457
+ DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
458
+ ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
459
+ (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
460
+ LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
461
+ ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
462
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
463
+ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
464
+
465
+ /**
466
+ * @class 3 Dimensional Vector
467
+ * @name vec3
468
+ */
469
+
470
+ var vec3 = {};
471
+
472
+ if(!GLMAT_EPSILON) {
473
+ var GLMAT_EPSILON = 0.000001;
474
+ }
475
+
476
+ /**
477
+ * Creates a new, empty vec3
478
+ *
479
+ * @returns {vec3} a new 3D vector
480
+ */
481
+ vec3.create = function() {
482
+ return new Float32Array(3);
483
+ };
484
+
485
+ /**
486
+ * Creates a new vec3 initialized with values from an existing vector
487
+ *
488
+ * @param {vec3} a vector to clone
489
+ * @returns {vec3} a new 3D vector
490
+ */
491
+ vec3.clone = function(a) {
492
+ var out = new Float32Array(3);
493
+ out[0] = a[0];
494
+ out[1] = a[1];
495
+ out[2] = a[2];
496
+ return out;
497
+ };
498
+
499
+ /**
500
+ * Creates a new vec3 initialized with the given values
501
+ *
502
+ * @param {Number} x X component
503
+ * @param {Number} y Y component
504
+ * @param {Number} z Z component
505
+ * @returns {vec3} a new 3D vector
506
+ */
507
+ vec3.fromValues = function(x, y, z) {
508
+ var out = new Float32Array(3);
509
+ out[0] = x;
510
+ out[1] = y;
511
+ out[2] = z;
512
+ return out;
513
+ };
514
+
515
+ /**
516
+ * Copy the values from one vec3 to another
517
+ *
518
+ * @param {vec3} out the receiving vector
519
+ * @param {vec3} a the source vector
520
+ * @returns {vec3} out
521
+ */
522
+ vec3.copy = function(out, a) {
523
+ out[0] = a[0];
524
+ out[1] = a[1];
525
+ out[2] = a[2];
526
+ return out;
527
+ };
528
+
529
+ /**
530
+ * Set the components of a vec3 to the given values
531
+ *
532
+ * @param {vec3} out the receiving vector
533
+ * @param {Number} x X component
534
+ * @param {Number} y Y component
535
+ * @param {Number} z Z component
536
+ * @returns {vec3} out
537
+ */
538
+ vec3.set = function(out, x, y, z) {
539
+ out[0] = x;
540
+ out[1] = y;
541
+ out[2] = z;
542
+ return out;
543
+ };
544
+
545
+ /**
546
+ * Adds two vec3's
547
+ *
548
+ * @param {vec3} out the receiving vector
549
+ * @param {vec3} a the first operand
550
+ * @param {vec3} b the second operand
551
+ * @returns {vec3} out
552
+ */
553
+ vec3.add = function(out, a, b) {
554
+ out[0] = a[0] + b[0];
555
+ out[1] = a[1] + b[1];
556
+ out[2] = a[2] + b[2];
557
+ return out;
558
+ };
559
+
560
+ /**
561
+ * Subtracts two vec3's
562
+ *
563
+ * @param {vec3} out the receiving vector
564
+ * @param {vec3} a the first operand
565
+ * @param {vec3} b the second operand
566
+ * @returns {vec3} out
567
+ */
568
+ vec3.sub = vec3.subtract = function(out, a, b) {
569
+ out[0] = a[0] - b[0];
570
+ out[1] = a[1] - b[1];
571
+ out[2] = a[2] - b[2];
572
+ return out;
573
+ };
574
+
575
+ /**
576
+ * Multiplies two vec3's
577
+ *
578
+ * @param {vec3} out the receiving vector
579
+ * @param {vec3} a the first operand
580
+ * @param {vec3} b the second operand
581
+ * @returns {vec3} out
582
+ */
583
+ vec3.mul = vec3.multiply = function(out, a, b) {
584
+ out[0] = a[0] * b[0];
585
+ out[1] = a[1] * b[1];
586
+ out[2] = a[2] * b[2];
587
+ return out;
588
+ };
589
+
590
+ /**
591
+ * Divides two vec3's
592
+ *
593
+ * @param {vec3} out the receiving vector
594
+ * @param {vec3} a the first operand
595
+ * @param {vec3} b the second operand
596
+ * @returns {vec3} out
597
+ */
598
+ vec3.div = vec3.divide = function(out, a, b) {
599
+ out[0] = a[0] / b[0];
600
+ out[1] = a[1] / b[1];
601
+ out[2] = a[2] / b[2];
602
+ return out;
603
+ };
604
+
605
+ /**
606
+ * Returns the minimum of two vec3's
607
+ *
608
+ * @param {vec3} out the receiving vector
609
+ * @param {vec3} a the first operand
610
+ * @param {vec3} b the second operand
611
+ * @returns {vec3} out
612
+ */
613
+ vec3.min = function(out, a, b) {
614
+ out[0] = Math.min(a[0], b[0]);
615
+ out[1] = Math.min(a[1], b[1]);
616
+ out[2] = Math.min(a[2], b[2]);
617
+ return out;
618
+ };
619
+
620
+ /**
621
+ * Returns the maximum of two vec3's
622
+ *
623
+ * @param {vec3} out the receiving vector
624
+ * @param {vec3} a the first operand
625
+ * @param {vec3} b the second operand
626
+ * @returns {vec3} out
627
+ */
628
+ vec3.max = function(out, a, b) {
629
+ out[0] = Math.max(a[0], b[0]);
630
+ out[1] = Math.max(a[1], b[1]);
631
+ out[2] = Math.max(a[2], b[2]);
632
+ return out;
633
+ };
634
+
635
+ /**
636
+ * Scales a vec3 by a scalar number
637
+ *
638
+ * @param {vec3} out the receiving vector
639
+ * @param {vec3} a the vector to scale
640
+ * @param {vec3} b amount to scale the vector by
641
+ * @returns {vec3} out
642
+ */
643
+ vec3.scale = function(out, a, b) {
644
+ out[0] = a[0] * b;
645
+ out[1] = a[1] * b;
646
+ out[2] = a[2] * b;
647
+ return out;
648
+ };
649
+
650
+ /**
651
+ * Calculates the euclidian distance between two vec3's
652
+ *
653
+ * @param {vec3} a the first operand
654
+ * @param {vec3} b the second operand
655
+ * @returns {Number} distance between a and b
656
+ */
657
+ vec3.dist = vec3.distance = function(a, b) {
658
+ var x = b[0] - a[0],
659
+ y = b[1] - a[1],
660
+ z = b[2] - a[2];
661
+ return Math.sqrt(x*x + y*y + z*z);
662
+ };
663
+
664
+ /**
665
+ * Calculates the squared euclidian distance between two vec3's
666
+ *
667
+ * @param {vec3} a the first operand
668
+ * @param {vec3} b the second operand
669
+ * @returns {Number} squared distance between a and b
670
+ */
671
+ vec3.sqrDist = vec3.squaredDistance = function(a, b) {
672
+ var x = b[0] - a[0],
673
+ y = b[1] - a[1],
674
+ z = b[2] - a[2];
675
+ return x*x + y*y + z*z;
676
+ };
677
+
678
+ /**
679
+ * Caclulates the length of a vec3
680
+ *
681
+ * @param {vec3} a vector to calculate length of
682
+ * @returns {Number} length of a
683
+ */
684
+ vec3.len = vec3.length = function (a) {
685
+ var x = a[0],
686
+ y = a[1],
687
+ z = a[2];
688
+ return Math.sqrt(x*x + y*y + z*z);
689
+ };
690
+
691
+ /**
692
+ * Caclulates the squared length of a vec3
693
+ *
694
+ * @param {vec3} a vector to calculate squared length of
695
+ * @returns {Number} squared length of a
696
+ */
697
+ vec3.sqrLen = vec3.squaredLength = function (a) {
698
+ var x = a[0],
699
+ y = a[1],
700
+ z = a[2];
701
+ return x*x + y*y + z*z;
702
+ };
703
+
704
+ /**
705
+ * Negates the components of a vec3
706
+ *
707
+ * @param {vec3} out the receiving vector
708
+ * @param {vec3} a vector to negate
709
+ * @returns {vec3} out
710
+ */
711
+ vec3.negate = function(out, a) {
712
+ out[0] = -a[0];
713
+ out[1] = -a[1];
714
+ out[2] = -a[2];
715
+ return out;
716
+ };
717
+
718
+ /**
719
+ * Normalize a vec3
720
+ *
721
+ * @param {vec3} out the receiving vector
722
+ * @param {vec3} a vector to normalize
723
+ * @returns {vec3} out
724
+ */
725
+ vec3.normalize = function(out, a) {
726
+ var x = a[0],
727
+ y = a[1],
728
+ z = a[2];
729
+ var len = x*x + y*y + z*z;
730
+ if (len > 0) {
731
+ //TODO: evaluate use of glm_invsqrt here?
732
+ len = 1 / Math.sqrt(len);
733
+ out[0] = a[0] * len;
734
+ out[1] = a[1] * len;
735
+ out[2] = a[2] * len;
736
+ }
737
+ return out;
738
+ };
739
+
740
+ /**
741
+ * Caclulates the dot product of two vec3's
742
+ *
743
+ * @param {vec3} a the first operand
744
+ * @param {vec3} b the second operand
745
+ * @returns {Number} dot product of a and b
746
+ */
747
+ vec3.dot = function (a, b) {
748
+ return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
749
+ };
750
+
751
+ /**
752
+ * Computes the cross product of two vec3's
753
+ *
754
+ * @param {vec3} out the receiving vector
755
+ * @param {vec3} a the first operand
756
+ * @param {vec3} b the second operand
757
+ * @returns {vec3} out
758
+ */
759
+ vec3.cross = function(out, a, b) {
760
+ var ax = a[0], ay = a[1], az = a[2],
761
+ bx = b[0], by = b[1], bz = b[2];
762
+
763
+ out[0] = ay * bz - az * by;
764
+ out[1] = az * bx - ax * bz;
765
+ out[2] = ax * by - ay * bx;
766
+ return out;
767
+ };
768
+
769
+ /**
770
+ * Performs a linear interpolation between two vec3's
771
+ *
772
+ * @param {vec3} out the receiving vector
773
+ * @param {vec3} a the first operand
774
+ * @param {vec3} b the second operand
775
+ * @param {Number} t interpolation amount between the two inputs
776
+ * @returns {vec3} out
777
+ */
778
+ vec3.lerp = function (out, a, b, t) {
779
+ var ax = a[0],
780
+ ay = a[1],
781
+ az = a[2];
782
+ out[0] = ax + t * (b[0] - ax);
783
+ out[1] = ay + t * (b[1] - ay);
784
+ out[2] = az + t * (b[2] - az);
785
+ return out;
786
+ };
787
+
788
+ /**
789
+ * Transforms the vec3 with a mat4.
790
+ * 4th vector component is implicitly '1'
791
+ *
792
+ * @param {vec3} out the receiving vector
793
+ * @param {vec3} a the vector to transform
794
+ * @param {mat4} m matrix to transform with
795
+ * @returns {vec3} out
796
+ */
797
+ vec3.transformMat4 = function(out, a, m) {
798
+ var x = a[0], y = a[1], z = a[2];
799
+ out[0] = m[0] * x + m[4] * y + m[8] * z + m[12];
800
+ out[1] = m[1] * x + m[5] * y + m[9] * z + m[13];
801
+ out[2] = m[2] * x + m[6] * y + m[10] * z + m[14];
802
+ return out;
803
+ };
804
+
805
+ /**
806
+ * Transforms the vec3 with a quat
807
+ *
808
+ * @param {vec3} out the receiving vector
809
+ * @param {vec3} a the vector to transform
810
+ * @param {quat} q quaternion to transform with
811
+ * @returns {vec3} out
812
+ */
813
+ vec3.transformQuat = function(out, a, q) {
814
+ var x = a[0], y = a[1], z = a[2],
815
+ qx = q[0], qy = q[1], qz = q[2], qw = q[3],
816
+
817
+ // calculate quat * vec
818
+ ix = qw * x + qy * z - qz * y,
819
+ iy = qw * y + qz * x - qx * z,
820
+ iz = qw * z + qx * y - qy * x,
821
+ iw = -qx * x - qy * y - qz * z;
822
+
823
+ // calculate result * inverse quat
824
+ out[0] = ix * qw + iw * -qx + iy * -qz - iz * -qy;
825
+ out[1] = iy * qw + iw * -qy + iz * -qx - ix * -qz;
826
+ out[2] = iz * qw + iw * -qz + ix * -qy - iy * -qx;
827
+ return out;
828
+ };
829
+
830
+ /**
831
+ * Perform some operation over an array of vec3s.
832
+ *
833
+ * @param {Array} a the array of vectors to iterate over
834
+ * @param {Number} stride Number of elements between the start of each vec3. If 0 assumes tightly packed
835
+ * @param {Number} offset Number of elements to skip at the beginning of the array
836
+ * @param {Number} count Number of vec3s to iterate over. If 0 iterates over entire array
837
+ * @param {Function} fn Function to call for each vector in the array
838
+ * @param {Object} [arg] additional argument to pass to fn
839
+ * @returns {Array} a
840
+ */
841
+ vec3.forEach = (function() {
842
+ var vec = new Float32Array(3);
843
+
844
+ return function(a, stride, offset, count, fn, arg) {
845
+ var i, l;
846
+ if(!stride) {
847
+ stride = 3;
848
+ }
849
+
850
+ if(!offset) {
851
+ offset = 0;
852
+ }
853
+
854
+ if(count) {
855
+ l = Math.min((count * stride) + offset, a.length);
856
+ } else {
857
+ l = a.length;
858
+ }
859
+
860
+ for(i = offset; i < l; i += stride) {
861
+ vec[0] = a[i]; vec[1] = a[i+1]; vec[2] = a[i+2];
862
+ fn(vec, vec, arg);
863
+ a[i] = vec[0]; a[i+1] = vec[1]; a[i+2] = vec[2];
864
+ }
865
+
866
+ return a;
867
+ };
868
+ })();
869
+
870
+ /**
871
+ * Returns a string representation of a vector
872
+ *
873
+ * @param {vec3} vec vector to represent as a string
874
+ * @returns {String} string representation of the vector
875
+ */
876
+ vec3.str = function (a) {
877
+ return 'vec3(' + a[0] + ', ' + a[1] + ', ' + a[2] + ')';
878
+ };
879
+
880
+ if(typeof(exports) !== 'undefined') {
881
+ exports.vec3 = vec3;
882
+ }
883
+ ;
884
+ /* Copyright (c) 2012, Brandon Jones, Colin MacKenzie IV. All rights reserved.
885
+
886
+ Redistribution and use in source and binary forms, with or without modification,
887
+ are permitted provided that the following conditions are met:
888
+
889
+ * Redistributions of source code must retain the above copyright notice, this
890
+ list of conditions and the following disclaimer.
891
+ * Redistributions in binary form must reproduce the above copyright notice,
892
+ this list of conditions and the following disclaimer in the documentation
893
+ and/or other materials provided with the distribution.
894
+
895
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
896
+ ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
897
+ WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
898
+ DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
899
+ ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
900
+ (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
901
+ LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
902
+ ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
903
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
904
+ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
905
+
906
+ /**
907
+ * @class 4 Dimensional Vector
908
+ * @name vec4
909
+ */
910
+
911
+ var vec4 = {};
912
+
913
+ if(!GLMAT_EPSILON) {
914
+ var GLMAT_EPSILON = 0.000001;
915
+ }
916
+
917
+ /**
918
+ * Creates a new, empty vec4
919
+ *
920
+ * @returns {vec4} a new 4D vector
921
+ */
922
+ vec4.create = function() {
923
+ return new Float32Array(4);
924
+ };
925
+
926
+ /**
927
+ * Creates a new vec4 initialized with values from an existing vector
928
+ *
929
+ * @param {vec4} a vector to clone
930
+ * @returns {vec4} a new 4D vector
931
+ */
932
+ vec4.clone = function(a) {
933
+ var out = new Float32Array(4);
934
+ out[0] = a[0];
935
+ out[1] = a[1];
936
+ out[2] = a[2];
937
+ out[3] = a[3];
938
+ return out;
939
+ };
940
+
941
+ /**
942
+ * Creates a new vec4 initialized with the given values
943
+ *
944
+ * @param {Number} x X component
945
+ * @param {Number} y Y component
946
+ * @param {Number} z Z component
947
+ * @param {Number} w W component
948
+ * @returns {vec4} a new 4D vector
949
+ */
950
+ vec4.fromValues = function(x, y, z, w) {
951
+ var out = new Float32Array(4);
952
+ out[0] = x;
953
+ out[1] = y;
954
+ out[2] = z;
955
+ out[3] = w;
956
+ return out;
957
+ };
958
+
959
+ /**
960
+ * Copy the values from one vec4 to another
961
+ *
962
+ * @param {vec4} out the receiving vector
963
+ * @param {vec4} a the source vector
964
+ * @returns {vec4} out
965
+ */
966
+ vec4.copy = function(out, a) {
967
+ out[0] = a[0];
968
+ out[1] = a[1];
969
+ out[2] = a[2];
970
+ out[3] = a[3];
971
+ return out;
972
+ };
973
+
974
+ /**
975
+ * Set the components of a vec4 to the given values
976
+ *
977
+ * @param {vec4} out the receiving vector
978
+ * @param {Number} x X component
979
+ * @param {Number} y Y component
980
+ * @param {Number} z Z component
981
+ * @param {Number} w W component
982
+ * @returns {vec4} out
983
+ */
984
+ vec4.set = function(out, x, y, z, w) {
985
+ out[0] = x;
986
+ out[1] = y;
987
+ out[2] = z;
988
+ out[3] = w;
989
+ return out;
990
+ };
991
+
992
+ /**
993
+ * Adds two vec4's
994
+ *
995
+ * @param {vec4} out the receiving vector
996
+ * @param {vec4} a the first operand
997
+ * @param {vec4} b the second operand
998
+ * @returns {vec4} out
999
+ */
1000
+ vec4.add = function(out, a, b) {
1001
+ out[0] = a[0] + b[0];
1002
+ out[1] = a[1] + b[1];
1003
+ out[2] = a[2] + b[2];
1004
+ out[3] = a[3] + b[3];
1005
+ return out;
1006
+ };
1007
+
1008
+ /**
1009
+ * Subtracts two vec4's
1010
+ *
1011
+ * @param {vec4} out the receiving vector
1012
+ * @param {vec4} a the first operand
1013
+ * @param {vec4} b the second operand
1014
+ * @returns {vec4} out
1015
+ */
1016
+ vec4.sub = vec4.subtract = function(out, a, b) {
1017
+ out[0] = a[0] - b[0];
1018
+ out[1] = a[1] - b[1];
1019
+ out[2] = a[2] - b[2];
1020
+ out[3] = a[3] - b[3];
1021
+ return out;
1022
+ };
1023
+
1024
+ /**
1025
+ * Multiplies two vec4's
1026
+ *
1027
+ * @param {vec4} out the receiving vector
1028
+ * @param {vec4} a the first operand
1029
+ * @param {vec4} b the second operand
1030
+ * @returns {vec4} out
1031
+ */
1032
+ vec4.mul = vec4.multiply = function(out, a, b) {
1033
+ out[0] = a[0] * b[0];
1034
+ out[1] = a[1] * b[1];
1035
+ out[2] = a[2] * b[2];
1036
+ out[3] = a[3] * b[3];
1037
+ return out;
1038
+ };
1039
+
1040
+ /**
1041
+ * Divides two vec4's
1042
+ *
1043
+ * @param {vec4} out the receiving vector
1044
+ * @param {vec4} a the first operand
1045
+ * @param {vec4} b the second operand
1046
+ * @returns {vec4} out
1047
+ */
1048
+ vec4.div = vec4.divide = function(out, a, b) {
1049
+ out[0] = a[0] / b[0];
1050
+ out[1] = a[1] / b[1];
1051
+ out[2] = a[2] / b[2];
1052
+ out[3] = a[3] / b[3];
1053
+ return out;
1054
+ };
1055
+
1056
+ /**
1057
+ * Returns the minimum of two vec4's
1058
+ *
1059
+ * @param {vec4} out the receiving vector
1060
+ * @param {vec4} a the first operand
1061
+ * @param {vec4} b the second operand
1062
+ * @returns {vec4} out
1063
+ */
1064
+ vec4.min = function(out, a, b) {
1065
+ out[0] = Math.min(a[0], b[0]);
1066
+ out[1] = Math.min(a[1], b[1]);
1067
+ out[2] = Math.min(a[2], b[2]);
1068
+ out[3] = Math.min(a[3], b[3]);
1069
+ return out;
1070
+ };
1071
+
1072
+ /**
1073
+ * Returns the maximum of two vec4's
1074
+ *
1075
+ * @param {vec4} out the receiving vector
1076
+ * @param {vec4} a the first operand
1077
+ * @param {vec4} b the second operand
1078
+ * @returns {vec4} out
1079
+ */
1080
+ vec4.max = function(out, a, b) {
1081
+ out[0] = Math.max(a[0], b[0]);
1082
+ out[1] = Math.max(a[1], b[1]);
1083
+ out[2] = Math.max(a[2], b[2]);
1084
+ out[3] = Math.max(a[3], b[3]);
1085
+ return out;
1086
+ };
1087
+
1088
+ /**
1089
+ * Scales a vec4 by a scalar number
1090
+ *
1091
+ * @param {vec4} out the receiving vector
1092
+ * @param {vec4} a the vector to scale
1093
+ * @param {vec4} b amount to scale the vector by
1094
+ * @returns {vec4} out
1095
+ */
1096
+ vec4.scale = function(out, a, b) {
1097
+ out[0] = a[0] * b;
1098
+ out[1] = a[1] * b;
1099
+ out[2] = a[2] * b;
1100
+ out[3] = a[3] * b;
1101
+ return out;
1102
+ };
1103
+
1104
+ /**
1105
+ * Calculates the euclidian distance between two vec4's
1106
+ *
1107
+ * @param {vec4} a the first operand
1108
+ * @param {vec4} b the second operand
1109
+ * @returns {Number} distance between a and b
1110
+ */
1111
+ vec4.dist = vec4.distance = function(a, b) {
1112
+ var x = b[0] - a[0],
1113
+ y = b[1] - a[1],
1114
+ z = b[2] - a[2],
1115
+ w = b[3] - a[3];
1116
+ return Math.sqrt(x*x + y*y + z*z + w*w);
1117
+ };
1118
+
1119
+ /**
1120
+ * Calculates the squared euclidian distance between two vec4's
1121
+ *
1122
+ * @param {vec4} a the first operand
1123
+ * @param {vec4} b the second operand
1124
+ * @returns {Number} squared distance between a and b
1125
+ */
1126
+ vec4.sqrDist = vec4.squaredDistance = function(a, b) {
1127
+ var x = b[0] - a[0],
1128
+ y = b[1] - a[1],
1129
+ z = b[2] - a[2],
1130
+ w = b[3] - a[3];
1131
+ return x*x + y*y + z*z + w*w;
1132
+ };
1133
+
1134
+ /**
1135
+ * Caclulates the length of a vec4
1136
+ *
1137
+ * @param {vec4} a vector to calculate length of
1138
+ * @returns {Number} length of a
1139
+ */
1140
+ vec4.len = vec4.length = function (a) {
1141
+ var x = a[0],
1142
+ y = a[1],
1143
+ z = a[2],
1144
+ w = a[3];
1145
+ return Math.sqrt(x*x + y*y + z*z + w*w);
1146
+ };
1147
+
1148
+ /**
1149
+ * Caclulates the squared length of a vec4
1150
+ *
1151
+ * @param {vec4} a vector to calculate squared length of
1152
+ * @returns {Number} squared length of a
1153
+ */
1154
+ vec4.sqrLen = vec4.squaredLength = function (a) {
1155
+ var x = a[0],
1156
+ y = a[1],
1157
+ z = a[2],
1158
+ w = a[3];
1159
+ return x*x + y*y + z*z + w*w;
1160
+ };
1161
+
1162
+ /**
1163
+ * Negates the components of a vec4
1164
+ *
1165
+ * @param {vec4} out the receiving vector
1166
+ * @param {vec4} a vector to negate
1167
+ * @returns {vec4} out
1168
+ */
1169
+ vec4.negate = function(out, a) {
1170
+ out[0] = -a[0];
1171
+ out[1] = -a[1];
1172
+ out[2] = -a[2];
1173
+ out[3] = -a[3];
1174
+ return out;
1175
+ };
1176
+
1177
+ /**
1178
+ * Normalize a vec4
1179
+ *
1180
+ * @param {vec4} out the receiving vector
1181
+ * @param {vec4} a vector to normalize
1182
+ * @returns {vec4} out
1183
+ */
1184
+ vec4.normalize = function(out, a) {
1185
+ var x = a[0],
1186
+ y = a[1],
1187
+ z = a[2],
1188
+ w = a[3];
1189
+ var len = x*x + y*y + z*z + w*w;
1190
+ if (len > 0) {
1191
+ len = 1 / Math.sqrt(len);
1192
+ out[0] = a[0] * len;
1193
+ out[1] = a[1] * len;
1194
+ out[2] = a[2] * len;
1195
+ out[3] = a[3] * len;
1196
+ }
1197
+ return out;
1198
+ };
1199
+
1200
+ /**
1201
+ * Caclulates the dot product of two vec4's
1202
+ *
1203
+ * @param {vec4} a the first operand
1204
+ * @param {vec4} b the second operand
1205
+ * @returns {Number} dot product of a and b
1206
+ */
1207
+ vec4.dot = function (a, b) {
1208
+ return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3];
1209
+ };
1210
+
1211
+ /**
1212
+ * Performs a linear interpolation between two vec4's
1213
+ *
1214
+ * @param {vec4} out the receiving vector
1215
+ * @param {vec4} a the first operand
1216
+ * @param {vec4} b the second operand
1217
+ * @param {Number} t interpolation amount between the two inputs
1218
+ * @returns {vec4} out
1219
+ */
1220
+ vec4.lerp = function (out, a, b, t) {
1221
+ var ax = a[0],
1222
+ ay = a[1],
1223
+ az = a[2],
1224
+ aw = a[3];
1225
+ out[0] = ax + t * (b[0] - ax);
1226
+ out[1] = ay + t * (b[1] - ay);
1227
+ out[2] = az + t * (b[2] - az);
1228
+ out[3] = aw + t * (b[3] - aw);
1229
+ return out;
1230
+ };
1231
+
1232
+ /**
1233
+ * Transforms the vec4 with a mat4.
1234
+ *
1235
+ * @param {vec4} out the receiving vector
1236
+ * @param {vec4} a the vector to transform
1237
+ * @param {mat4} m matrix to transform with
1238
+ * @returns {vec4} out
1239
+ */
1240
+ vec4.transformMat4 = function(out, a, m) {
1241
+ var x = a[0], y = a[1], z = a[2], w = a[3];
1242
+ out[0] = m[0] * x + m[4] * y + m[8] * z + m[12] * w;
1243
+ out[1] = m[1] * x + m[5] * y + m[9] * z + m[13] * w;
1244
+ out[2] = m[2] * x + m[6] * y + m[10] * z + m[14] * w;
1245
+ out[3] = m[3] * x + m[7] * y + m[11] * z + m[15] * w;
1246
+ return out;
1247
+ };
1248
+
1249
+ /**
1250
+ * Transforms the vec4 with a quat
1251
+ *
1252
+ * @param {vec4} out the receiving vector
1253
+ * @param {vec4} a the vector to transform
1254
+ * @param {quat} q quaternion to transform with
1255
+ * @returns {vec4} out
1256
+ */
1257
+ vec4.transformQuat = function(out, a, q) {
1258
+ var x = a[0], y = a[1], z = a[2],
1259
+ qx = q[0], qy = q[1], qz = q[2], qw = q[3],
1260
+
1261
+ // calculate quat * vec
1262
+ ix = qw * x + qy * z - qz * y,
1263
+ iy = qw * y + qz * x - qx * z,
1264
+ iz = qw * z + qx * y - qy * x,
1265
+ iw = -qx * x - qy * y - qz * z;
1266
+
1267
+ // calculate result * inverse quat
1268
+ out[0] = ix * qw + iw * -qx + iy * -qz - iz * -qy;
1269
+ out[1] = iy * qw + iw * -qy + iz * -qx - ix * -qz;
1270
+ out[2] = iz * qw + iw * -qz + ix * -qy - iy * -qx;
1271
+ return out;
1272
+ };
1273
+
1274
+ /**
1275
+ * Perform some operation over an array of vec4s.
1276
+ *
1277
+ * @param {Array} a the array of vectors to iterate over
1278
+ * @param {Number} stride Number of elements between the start of each vec4. If 0 assumes tightly packed
1279
+ * @param {Number} offset Number of elements to skip at the beginning of the array
1280
+ * @param {Number} count Number of vec2s to iterate over. If 0 iterates over entire array
1281
+ * @param {Function} fn Function to call for each vector in the array
1282
+ * @param {Object} [arg] additional argument to pass to fn
1283
+ * @returns {Array} a
1284
+ */
1285
+ vec4.forEach = (function() {
1286
+ var vec = new Float32Array(4);
1287
+
1288
+ return function(a, stride, offset, count, fn, arg) {
1289
+ var i, l;
1290
+ if(!stride) {
1291
+ stride = 4;
1292
+ }
1293
+
1294
+ if(!offset) {
1295
+ offset = 0;
1296
+ }
1297
+
1298
+ if(count) {
1299
+ l = Math.min((count * stride) + offset, a.length);
1300
+ } else {
1301
+ l = a.length;
1302
+ }
1303
+
1304
+ for(i = offset; i < l; i += stride) {
1305
+ vec[0] = a[i]; vec[1] = a[i+1]; vec[2] = a[i+2]; vec[3] = a[i+3];
1306
+ fn(vec, vec, arg);
1307
+ a[i] = vec[0]; a[i+1] = vec[1]; a[i+2] = vec[2]; a[i+3] = vec[3];
1308
+ }
1309
+
1310
+ return a;
1311
+ };
1312
+ })();
1313
+
1314
+ /**
1315
+ * Returns a string representation of a vector
1316
+ *
1317
+ * @param {vec4} vec vector to represent as a string
1318
+ * @returns {String} string representation of the vector
1319
+ */
1320
+ vec4.str = function (a) {
1321
+ return 'vec4(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ')';
1322
+ };
1323
+
1324
+ if(typeof(exports) !== 'undefined') {
1325
+ exports.vec4 = vec4;
1326
+ }
1327
+ ;
1328
+ /* Copyright (c) 2012, Brandon Jones, Colin MacKenzie IV. All rights reserved.
1329
+
1330
+ Redistribution and use in source and binary forms, with or without modification,
1331
+ are permitted provided that the following conditions are met:
1332
+
1333
+ * Redistributions of source code must retain the above copyright notice, this
1334
+ list of conditions and the following disclaimer.
1335
+ * Redistributions in binary form must reproduce the above copyright notice,
1336
+ this list of conditions and the following disclaimer in the documentation
1337
+ and/or other materials provided with the distribution.
1338
+
1339
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
1340
+ ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
1341
+ WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
1342
+ DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
1343
+ ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
1344
+ (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
1345
+ LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
1346
+ ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
1347
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
1348
+ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
1349
+
1350
+ /**
1351
+ * @class 2x2 Matrix
1352
+ * @name mat2
1353
+ */
1354
+
1355
+ var mat2 = {};
1356
+
1357
+ var mat2Identity = new Float32Array([
1358
+ 1, 0,
1359
+ 0, 1
1360
+ ]);
1361
+
1362
+ if(!GLMAT_EPSILON) {
1363
+ var GLMAT_EPSILON = 0.000001;
1364
+ }
1365
+
1366
+ /**
1367
+ * Creates a new identity mat2
1368
+ *
1369
+ * @returns {mat2} a new 2x2 matrix
1370
+ */
1371
+ mat2.create = function() {
1372
+ return new Float32Array(mat2Identity);
1373
+ };
1374
+
1375
+ /**
1376
+ * Creates a new mat2 initialized with values from an existing matrix
1377
+ *
1378
+ * @param {mat2} a matrix to clone
1379
+ * @returns {mat2} a new 2x2 matrix
1380
+ */
1381
+ mat2.clone = function(a) {
1382
+ var out = new Float32Array(4);
1383
+ out[0] = a[0];
1384
+ out[1] = a[1];
1385
+ out[2] = a[2];
1386
+ out[3] = a[3];
1387
+ return out;
1388
+ };
1389
+
1390
+ /**
1391
+ * Copy the values from one mat2 to another
1392
+ *
1393
+ * @param {mat2} out the receiving matrix
1394
+ * @param {mat2} a the source matrix
1395
+ * @returns {mat2} out
1396
+ */
1397
+ mat2.copy = function(out, a) {
1398
+ out[0] = a[0];
1399
+ out[1] = a[1];
1400
+ out[2] = a[2];
1401
+ out[3] = a[3];
1402
+ return out;
1403
+ };
1404
+
1405
+ /**
1406
+ * Set a mat2 to the identity matrix
1407
+ *
1408
+ * @param {mat2} out the receiving matrix
1409
+ * @returns {mat2} out
1410
+ */
1411
+ mat2.identity = function(out) {
1412
+ out[0] = 1;
1413
+ out[1] = 0;
1414
+ out[2] = 0;
1415
+ out[3] = 1;
1416
+ return out;
1417
+ };
1418
+
1419
+ /**
1420
+ * Transpose the values of a mat2
1421
+ *
1422
+ * @param {mat2} out the receiving matrix
1423
+ * @param {mat2} a the source matrix
1424
+ * @returns {mat2} out
1425
+ */
1426
+ mat2.transpose = function(out, a) {
1427
+ // If we are transposing ourselves we can skip a few steps but have to cache some values
1428
+ if (out === a) {
1429
+ var a1 = a[1];
1430
+ out[1] = a[2];
1431
+ out[2] = a1;
1432
+ } else {
1433
+ out[0] = a[0];
1434
+ out[1] = a[2];
1435
+ out[2] = a[1];
1436
+ out[3] = a[3];
1437
+ }
1438
+
1439
+ return out;
1440
+ };
1441
+
1442
+ /**
1443
+ * Inverts a mat2
1444
+ *
1445
+ * @param {mat2} out the receiving matrix
1446
+ * @param {mat2} a the source matrix
1447
+ * @returns {mat2} out
1448
+ */
1449
+ mat2.invert = function(out, a) {
1450
+ var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3],
1451
+
1452
+ // Calculate the determinant
1453
+ det = a0 * a3 - a2 * a1;
1454
+
1455
+ if (!det) {
1456
+ return null;
1457
+ }
1458
+ det = 1.0 / det;
1459
+
1460
+ out[0] = a3 * det;
1461
+ out[1] = -a1 * det;
1462
+ out[2] = -a2 * det;
1463
+ out[3] = a0 * det;
1464
+
1465
+ return out;
1466
+ };
1467
+
1468
+ /**
1469
+ * Caclulates the adjugate of a mat2
1470
+ *
1471
+ * @param {mat2} out the receiving matrix
1472
+ * @param {mat2} a the source matrix
1473
+ * @returns {mat2} out
1474
+ */
1475
+ mat2.adjoint = function(out, a) {
1476
+ // Caching this value is nessecary if out == a
1477
+ var a0 = a[0];
1478
+ out[0] = a[3];
1479
+ out[1] = -a[1];
1480
+ out[2] = -a[2];
1481
+ out[3] = a0;
1482
+
1483
+ return out;
1484
+ };
1485
+
1486
+ /**
1487
+ * Calculates the determinant of a mat2
1488
+ *
1489
+ * @param {mat2} a the source matrix
1490
+ * @returns {Number} determinant of a
1491
+ */
1492
+ mat2.determinant = function (a) {
1493
+ return a[0] * a[3] - a[2] * a[1];
1494
+ };
1495
+
1496
+ /**
1497
+ * Multiplies two mat2's
1498
+ *
1499
+ * @param {mat2} out the receiving matrix
1500
+ * @param {mat2} a the first operand
1501
+ * @param {mat2} b the second operand
1502
+ * @returns {mat2} out
1503
+ */
1504
+ mat2.mul = mat2.multiply = function (out, a, b) {
1505
+ var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3];
1506
+ var b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3];
1507
+ out[0] = a0 * b0 + a1 * b2;
1508
+ out[1] = a0 * b1 + a1 * b3;
1509
+ out[2] = a2 * b0 + a3 * b2;
1510
+ out[3] = a2 * b1 + a3 * b3;
1511
+ return out;
1512
+ };
1513
+
1514
+ /**
1515
+ * Rotates a mat2 by the given angle
1516
+ *
1517
+ * @param {mat2} out the receiving matrix
1518
+ * @param {mat2} a the matrix to rotate
1519
+ * @param {mat2} rad the angle to rotate the matrix by
1520
+ * @returns {mat2} out
1521
+ */
1522
+ mat2.rotate = function (out, a, rad) {
1523
+ var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3],
1524
+ s = Math.sin(rad),
1525
+ c = Math.cos(rad);
1526
+ out[0] = a0 * c + a1 * s;
1527
+ out[1] = a0 * -s + a1 * c;
1528
+ out[2] = a2 * c + a3 * s;
1529
+ out[3] = a2 * -s + a3 * c;
1530
+ return out;
1531
+ };
1532
+
1533
+ /**
1534
+ * Scales the mat2 by the dimensions in the given vec2
1535
+ *
1536
+ * @param {mat2} out the receiving matrix
1537
+ * @param {mat2} a the matrix to rotate
1538
+ * @param {mat2} v the vec2 to scale the matrix by
1539
+ * @returns {mat2} out
1540
+ **/
1541
+ mat2.scale = function(out, a, v) {
1542
+ var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3],
1543
+ v0 = v[0], v1 = v[1];
1544
+ out[0] = a0 * v0;
1545
+ out[1] = a1 * v1;
1546
+ out[2] = a2 * v0;
1547
+ out[3] = a3 * v1;
1548
+ return out;
1549
+ };
1550
+
1551
+ /**
1552
+ * Returns a string representation of a mat2
1553
+ *
1554
+ * @param {mat2} mat matrix to represent as a string
1555
+ * @returns {String} string representation of the matrix
1556
+ */
1557
+ mat2.str = function (a) {
1558
+ return 'mat2(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ')';
1559
+ };
1560
+
1561
+ if(typeof(exports) !== 'undefined') {
1562
+ exports.mat2 = mat2;
1563
+ }
1564
+ ;
1565
+ /* Copyright (c) 2012, Brandon Jones, Colin MacKenzie IV. All rights reserved.
1566
+
1567
+ Redistribution and use in source and binary forms, with or without modification,
1568
+ are permitted provided that the following conditions are met:
1569
+
1570
+ * Redistributions of source code must retain the above copyright notice, this
1571
+ list of conditions and the following disclaimer.
1572
+ * Redistributions in binary form must reproduce the above copyright notice,
1573
+ this list of conditions and the following disclaimer in the documentation
1574
+ and/or other materials provided with the distribution.
1575
+
1576
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
1577
+ ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
1578
+ WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
1579
+ DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
1580
+ ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
1581
+ (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
1582
+ LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
1583
+ ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
1584
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
1585
+ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
1586
+
1587
+ /**
1588
+ * @class 3x3 Matrix
1589
+ * @name mat3
1590
+ */
1591
+
1592
+ var mat3 = {};
1593
+
1594
+ var mat3Identity = new Float32Array([
1595
+ 1, 0, 0,
1596
+ 0, 1, 0,
1597
+ 0, 0, 1
1598
+ ]);
1599
+
1600
+ if(!GLMAT_EPSILON) {
1601
+ var GLMAT_EPSILON = 0.000001;
1602
+ }
1603
+
1604
+ /**
1605
+ * Creates a new identity mat3
1606
+ *
1607
+ * @returns {mat3} a new 3x3 matrix
1608
+ */
1609
+ mat3.create = function() {
1610
+ return new Float32Array(mat3Identity);
1611
+ };
1612
+
1613
+ /**
1614
+ * Creates a new mat3 initialized with values from an existing matrix
1615
+ *
1616
+ * @param {mat3} a matrix to clone
1617
+ * @returns {mat3} a new 3x3 matrix
1618
+ */
1619
+ mat3.clone = function(a) {
1620
+ var out = new Float32Array(9);
1621
+ out[0] = a[0];
1622
+ out[1] = a[1];
1623
+ out[2] = a[2];
1624
+ out[3] = a[3];
1625
+ out[4] = a[4];
1626
+ out[5] = a[5];
1627
+ out[6] = a[6];
1628
+ out[7] = a[7];
1629
+ out[8] = a[8];
1630
+ return out;
1631
+ };
1632
+
1633
+ /**
1634
+ * Copy the values from one mat3 to another
1635
+ *
1636
+ * @param {mat3} out the receiving matrix
1637
+ * @param {mat3} a the source matrix
1638
+ * @returns {mat3} out
1639
+ */
1640
+ mat3.copy = function(out, a) {
1641
+ out[0] = a[0];
1642
+ out[1] = a[1];
1643
+ out[2] = a[2];
1644
+ out[3] = a[3];
1645
+ out[4] = a[4];
1646
+ out[5] = a[5];
1647
+ out[6] = a[6];
1648
+ out[7] = a[7];
1649
+ out[8] = a[8];
1650
+ return out;
1651
+ };
1652
+
1653
+ /**
1654
+ * Set a mat3 to the identity matrix
1655
+ *
1656
+ * @param {mat3} out the receiving matrix
1657
+ * @returns {mat3} out
1658
+ */
1659
+ mat3.identity = function(out) {
1660
+ out[0] = 1;
1661
+ out[1] = 0;
1662
+ out[2] = 0;
1663
+ out[3] = 0;
1664
+ out[4] = 1;
1665
+ out[5] = 0;
1666
+ out[6] = 0;
1667
+ out[7] = 0;
1668
+ out[8] = 1;
1669
+ return out;
1670
+ };
1671
+
1672
+ /**
1673
+ * Transpose the values of a mat3
1674
+ *
1675
+ * @param {mat3} out the receiving matrix
1676
+ * @param {mat3} a the source matrix
1677
+ * @returns {mat3} out
1678
+ */
1679
+ mat3.transpose = function(out, a) {
1680
+ // If we are transposing ourselves we can skip a few steps but have to cache some values
1681
+ if (out === a) {
1682
+ var a01 = a[1], a02 = a[2], a12 = a[5];
1683
+ out[1] = a[3];
1684
+ out[2] = a[6];
1685
+ out[3] = a01;
1686
+ out[5] = a[7];
1687
+ out[6] = a02;
1688
+ out[7] = a12;
1689
+ } else {
1690
+ out[0] = a[0];
1691
+ out[1] = a[3];
1692
+ out[2] = a[6];
1693
+ out[3] = a[1];
1694
+ out[4] = a[4];
1695
+ out[5] = a[7];
1696
+ out[6] = a[2];
1697
+ out[7] = a[5];
1698
+ out[8] = a[8];
1699
+ }
1700
+
1701
+ return out;
1702
+ };
1703
+
1704
+ /**
1705
+ * Inverts a mat3
1706
+ *
1707
+ * @param {mat3} out the receiving matrix
1708
+ * @param {mat3} a the source matrix
1709
+ * @returns {mat3} out
1710
+ */
1711
+ mat3.invert = function(out, a) {
1712
+ var a00 = a[0], a01 = a[1], a02 = a[2],
1713
+ a10 = a[3], a11 = a[4], a12 = a[5],
1714
+ a20 = a[6], a21 = a[7], a22 = a[8],
1715
+
1716
+ b01 = a22 * a11 - a12 * a21,
1717
+ b11 = -a22 * a10 + a12 * a20,
1718
+ b21 = a21 * a10 - a11 * a20,
1719
+
1720
+ // Calculate the determinant
1721
+ det = a00 * b01 + a01 * b11 + a02 * b21;
1722
+
1723
+ if (!det) {
1724
+ return null;
1725
+ }
1726
+ det = 1.0 / det;
1727
+
1728
+ out[0] = b01 * det;
1729
+ out[1] = (-a22 * a01 + a02 * a21) * det;
1730
+ out[2] = (a12 * a01 - a02 * a11) * det;
1731
+ out[3] = b11 * det;
1732
+ out[4] = (a22 * a00 - a02 * a20) * det;
1733
+ out[5] = (-a12 * a00 + a02 * a10) * det;
1734
+ out[6] = b21 * det;
1735
+ out[7] = (-a21 * a00 + a01 * a20) * det;
1736
+ out[8] = (a11 * a00 - a01 * a10) * det;
1737
+ return out;
1738
+ };
1739
+
1740
+ /**
1741
+ * Caclulates the adjugate of a mat3
1742
+ *
1743
+ * @param {mat3} out the receiving matrix
1744
+ * @param {mat3} a the source matrix
1745
+ * @returns {mat3} out
1746
+ */
1747
+ mat3.adjoint = function(out, a) {
1748
+ var a00 = a[0], a01 = a[1], a02 = a[2],
1749
+ a10 = a[3], a11 = a[4], a12 = a[5],
1750
+ a20 = a[6], a21 = a[7], a22 = a[8];
1751
+
1752
+ out[0] = (a11 * a22 - a12 * a21);
1753
+ out[1] = (a02 * a21 - a01 * a22);
1754
+ out[2] = (a01 * a12 - a02 * a11);
1755
+ out[3] = (a12 * a20 - a10 * a22);
1756
+ out[4] = (a00 * a22 - a02 * a20);
1757
+ out[5] = (a02 * a10 - a00 * a12);
1758
+ out[6] = (a10 * a21 - a11 * a20);
1759
+ out[7] = (a01 * a20 - a00 * a21);
1760
+ out[8] = (a00 * a11 - a01 * a10);
1761
+ return out;
1762
+ };
1763
+
1764
+ /**
1765
+ * Calculates the determinant of a mat3
1766
+ *
1767
+ * @param {mat3} a the source matrix
1768
+ * @returns {Number} determinant of a
1769
+ */
1770
+ mat3.determinant = function (a) {
1771
+ var a00 = a[0], a01 = a[1], a02 = a[2],
1772
+ a10 = a[3], a11 = a[4], a12 = a[5],
1773
+ a20 = a[6], a21 = a[7], a22 = a[8];
1774
+
1775
+ return a00 * (a22 * a11 - a12 * a21) + a01 * (-a22 * a10 + a12 * a20) + a02 * (a21 * a10 - a11 * a20);
1776
+ };
1777
+
1778
+ /**
1779
+ * Multiplies two mat3's
1780
+ *
1781
+ * @param {mat3} out the receiving matrix
1782
+ * @param {mat3} a the first operand
1783
+ * @param {mat3} b the second operand
1784
+ * @returns {mat3} out
1785
+ */
1786
+ mat3.mul = mat3.multiply = function (out, a, b) {
1787
+ var a00 = a[0], a01 = a[1], a02 = a[2],
1788
+ a10 = a[3], a11 = a[4], a12 = a[5],
1789
+ a20 = a[6], a21 = a[7], a22 = a[8],
1790
+
1791
+ b00 = b[0], b01 = b[1], b02 = b[2],
1792
+ b10 = b[3], b11 = b[4], b12 = b[5],
1793
+ b20 = b[6], b21 = b[7], b22 = b[8];
1794
+
1795
+ out[0] = b00 * a00 + b01 * a10 + b02 * a20;
1796
+ out[1] = b00 * a01 + b01 * a11 + b02 * a21;
1797
+ out[2] = b00 * a02 + b01 * a12 + b02 * a22;
1798
+
1799
+ out[3] = b10 * a00 + b11 * a10 + b12 * a20;
1800
+ out[4] = b10 * a01 + b11 * a11 + b12 * a21;
1801
+ out[5] = b10 * a02 + b11 * a12 + b12 * a22;
1802
+
1803
+ out[6] = b20 * a00 + b21 * a10 + b22 * a20;
1804
+ out[7] = b20 * a01 + b21 * a11 + b22 * a21;
1805
+ out[8] = b20 * a02 + b21 * a12 + b22 * a22;
1806
+ return out;
1807
+ };
1808
+
1809
+ /**
1810
+ * Returns a string representation of a mat3
1811
+ *
1812
+ * @param {mat3} mat matrix to represent as a string
1813
+ * @returns {String} string representation of the matrix
1814
+ */
1815
+ mat3.str = function (a) {
1816
+ return 'mat3(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' +
1817
+ a[3] + ', ' + a[4] + ', ' + a[5] + ', ' +
1818
+ a[6] + ', ' + a[7] + ', ' + a[8] + ')';
1819
+ };
1820
+
1821
+ if(typeof(exports) !== 'undefined') {
1822
+ exports.mat3 = mat3;
1823
+ }
1824
+ ;
1825
+ /* Copyright (c) 2012, Brandon Jones, Colin MacKenzie IV. All rights reserved.
1826
+
1827
+ Redistribution and use in source and binary forms, with or without modification,
1828
+ are permitted provided that the following conditions are met:
1829
+
1830
+ * Redistributions of source code must retain the above copyright notice, this
1831
+ list of conditions and the following disclaimer.
1832
+ * Redistributions in binary form must reproduce the above copyright notice,
1833
+ this list of conditions and the following disclaimer in the documentation
1834
+ and/or other materials provided with the distribution.
1835
+
1836
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
1837
+ ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
1838
+ WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
1839
+ DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
1840
+ ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
1841
+ (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
1842
+ LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
1843
+ ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
1844
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
1845
+ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
1846
+
1847
+ /**
1848
+ * @class 4x4 Matrix
1849
+ * @name mat4
1850
+ */
1851
+
1852
+ var mat4 = {};
1853
+
1854
+ var mat4Identity = new Float32Array([
1855
+ 1, 0, 0, 0,
1856
+ 0, 1, 0, 0,
1857
+ 0, 0, 1, 0,
1858
+ 0, 0, 0, 1
1859
+ ]);
1860
+
1861
+ if(!GLMAT_EPSILON) {
1862
+ var GLMAT_EPSILON = 0.000001;
1863
+ }
1864
+
1865
+ /**
1866
+ * Creates a new identity mat4
1867
+ *
1868
+ * @returns {mat4} a new 4x4 matrix
1869
+ */
1870
+ mat4.create = function() {
1871
+ return new Float32Array(mat4Identity);
1872
+ };
1873
+
1874
+ /**
1875
+ * Creates a new mat4 initialized with values from an existing matrix
1876
+ *
1877
+ * @param {mat4} a matrix to clone
1878
+ * @returns {mat4} a new 4x4 matrix
1879
+ */
1880
+ mat4.clone = function(a) {
1881
+ var out = new Float32Array(16);
1882
+ out[0] = a[0];
1883
+ out[1] = a[1];
1884
+ out[2] = a[2];
1885
+ out[3] = a[3];
1886
+ out[4] = a[4];
1887
+ out[5] = a[5];
1888
+ out[6] = a[6];
1889
+ out[7] = a[7];
1890
+ out[8] = a[8];
1891
+ out[9] = a[9];
1892
+ out[10] = a[10];
1893
+ out[11] = a[11];
1894
+ out[12] = a[12];
1895
+ out[13] = a[13];
1896
+ out[14] = a[14];
1897
+ out[15] = a[15];
1898
+ return out;
1899
+ };
1900
+
1901
+ /**
1902
+ * Copy the values from one mat4 to another
1903
+ *
1904
+ * @param {mat4} out the receiving matrix
1905
+ * @param {mat4} a the source matrix
1906
+ * @returns {mat4} out
1907
+ */
1908
+ mat4.copy = function(out, a) {
1909
+ out[0] = a[0];
1910
+ out[1] = a[1];
1911
+ out[2] = a[2];
1912
+ out[3] = a[3];
1913
+ out[4] = a[4];
1914
+ out[5] = a[5];
1915
+ out[6] = a[6];
1916
+ out[7] = a[7];
1917
+ out[8] = a[8];
1918
+ out[9] = a[9];
1919
+ out[10] = a[10];
1920
+ out[11] = a[11];
1921
+ out[12] = a[12];
1922
+ out[13] = a[13];
1923
+ out[14] = a[14];
1924
+ out[15] = a[15];
1925
+ return out;
1926
+ };
1927
+
1928
+ /**
1929
+ * Set a mat4 to the identity matrix
1930
+ *
1931
+ * @param {mat4} out the receiving matrix
1932
+ * @returns {mat4} out
1933
+ */
1934
+ mat4.identity = function(out) {
1935
+ out[0] = 1;
1936
+ out[1] = 0;
1937
+ out[2] = 0;
1938
+ out[3] = 0;
1939
+ out[4] = 0;
1940
+ out[5] = 1;
1941
+ out[6] = 0;
1942
+ out[7] = 0;
1943
+ out[8] = 0;
1944
+ out[9] = 0;
1945
+ out[10] = 1;
1946
+ out[11] = 0;
1947
+ out[12] = 0;
1948
+ out[13] = 0;
1949
+ out[14] = 0;
1950
+ out[15] = 1;
1951
+ return out;
1952
+ };
1953
+
1954
+ /**
1955
+ * Transpose the values of a mat4
1956
+ *
1957
+ * @param {mat4} out the receiving matrix
1958
+ * @param {mat4} a the source matrix
1959
+ * @returns {mat4} out
1960
+ */
1961
+ mat4.transpose = function(out, a) {
1962
+ // If we are transposing ourselves we can skip a few steps but have to cache some values
1963
+ if (out === a) {
1964
+ var a01 = a[1], a02 = a[2], a03 = a[3],
1965
+ a12 = a[6], a13 = a[7],
1966
+ a23 = a[11];
1967
+
1968
+ out[1] = a[4];
1969
+ out[2] = a[8];
1970
+ out[3] = a[12];
1971
+ out[4] = a01;
1972
+ out[6] = a[9];
1973
+ out[7] = a[13];
1974
+ out[8] = a02;
1975
+ out[9] = a12;
1976
+ out[11] = a[14];
1977
+ out[12] = a03;
1978
+ out[13] = a13;
1979
+ out[14] = a23;
1980
+ } else {
1981
+ out[0] = a[0];
1982
+ out[1] = a[4];
1983
+ out[2] = a[8];
1984
+ out[3] = a[12];
1985
+ out[4] = a[1];
1986
+ out[5] = a[5];
1987
+ out[6] = a[9];
1988
+ out[7] = a[13];
1989
+ out[8] = a[2];
1990
+ out[9] = a[6];
1991
+ out[10] = a[10];
1992
+ out[11] = a[14];
1993
+ out[12] = a[3];
1994
+ out[13] = a[7];
1995
+ out[14] = a[11];
1996
+ out[15] = a[15];
1997
+ }
1998
+
1999
+ return out;
2000
+ };
2001
+
2002
+ /**
2003
+ * Inverts a mat4
2004
+ *
2005
+ * @param {mat4} out the receiving matrix
2006
+ * @param {mat4} a the source matrix
2007
+ * @returns {mat4} out
2008
+ */
2009
+ mat4.invert = function(out, a) {
2010
+ var a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3],
2011
+ a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7],
2012
+ a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11],
2013
+ a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15],
2014
+
2015
+ b00 = a00 * a11 - a01 * a10,
2016
+ b01 = a00 * a12 - a02 * a10,
2017
+ b02 = a00 * a13 - a03 * a10,
2018
+ b03 = a01 * a12 - a02 * a11,
2019
+ b04 = a01 * a13 - a03 * a11,
2020
+ b05 = a02 * a13 - a03 * a12,
2021
+ b06 = a20 * a31 - a21 * a30,
2022
+ b07 = a20 * a32 - a22 * a30,
2023
+ b08 = a20 * a33 - a23 * a30,
2024
+ b09 = a21 * a32 - a22 * a31,
2025
+ b10 = a21 * a33 - a23 * a31,
2026
+ b11 = a22 * a33 - a23 * a32,
2027
+
2028
+ // Calculate the determinant
2029
+ det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;
2030
+
2031
+ if (!det) {
2032
+ return null;
2033
+ }
2034
+ det = 1.0 / det;
2035
+
2036
+ out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det;
2037
+ out[1] = (a02 * b10 - a01 * b11 - a03 * b09) * det;
2038
+ out[2] = (a31 * b05 - a32 * b04 + a33 * b03) * det;
2039
+ out[3] = (a22 * b04 - a21 * b05 - a23 * b03) * det;
2040
+ out[4] = (a12 * b08 - a10 * b11 - a13 * b07) * det;
2041
+ out[5] = (a00 * b11 - a02 * b08 + a03 * b07) * det;
2042
+ out[6] = (a32 * b02 - a30 * b05 - a33 * b01) * det;
2043
+ out[7] = (a20 * b05 - a22 * b02 + a23 * b01) * det;
2044
+ out[8] = (a10 * b10 - a11 * b08 + a13 * b06) * det;
2045
+ out[9] = (a01 * b08 - a00 * b10 - a03 * b06) * det;
2046
+ out[10] = (a30 * b04 - a31 * b02 + a33 * b00) * det;
2047
+ out[11] = (a21 * b02 - a20 * b04 - a23 * b00) * det;
2048
+ out[12] = (a11 * b07 - a10 * b09 - a12 * b06) * det;
2049
+ out[13] = (a00 * b09 - a01 * b07 + a02 * b06) * det;
2050
+ out[14] = (a31 * b01 - a30 * b03 - a32 * b00) * det;
2051
+ out[15] = (a20 * b03 - a21 * b01 + a22 * b00) * det;
2052
+
2053
+ return out;
2054
+ };
2055
+
2056
+ /**
2057
+ * Caclulates the adjugate of a mat4
2058
+ *
2059
+ * @param {mat4} out the receiving matrix
2060
+ * @param {mat4} a the source matrix
2061
+ * @returns {mat4} out
2062
+ */
2063
+ mat4.adjoint = function(out, a) {
2064
+ var a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3],
2065
+ a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7],
2066
+ a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11],
2067
+ a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15];
2068
+
2069
+ out[0] = (a11 * (a22 * a33 - a23 * a32) - a21 * (a12 * a33 - a13 * a32) + a31 * (a12 * a23 - a13 * a22));
2070
+ out[1] = -(a01 * (a22 * a33 - a23 * a32) - a21 * (a02 * a33 - a03 * a32) + a31 * (a02 * a23 - a03 * a22));
2071
+ out[2] = (a01 * (a12 * a33 - a13 * a32) - a11 * (a02 * a33 - a03 * a32) + a31 * (a02 * a13 - a03 * a12));
2072
+ out[3] = -(a01 * (a12 * a23 - a13 * a22) - a11 * (a02 * a23 - a03 * a22) + a21 * (a02 * a13 - a03 * a12));
2073
+ out[4] = -(a10 * (a22 * a33 - a23 * a32) - a20 * (a12 * a33 - a13 * a32) + a30 * (a12 * a23 - a13 * a22));
2074
+ out[5] = (a00 * (a22 * a33 - a23 * a32) - a20 * (a02 * a33 - a03 * a32) + a30 * (a02 * a23 - a03 * a22));
2075
+ out[6] = -(a00 * (a12 * a33 - a13 * a32) - a10 * (a02 * a33 - a03 * a32) + a30 * (a02 * a13 - a03 * a12));
2076
+ out[7] = (a00 * (a12 * a23 - a13 * a22) - a10 * (a02 * a23 - a03 * a22) + a20 * (a02 * a13 - a03 * a12));
2077
+ out[8] = (a10 * (a21 * a33 - a23 * a31) - a20 * (a11 * a33 - a13 * a31) + a30 * (a11 * a23 - a13 * a21));
2078
+ out[9] = -(a00 * (a21 * a33 - a23 * a31) - a20 * (a01 * a33 - a03 * a31) + a30 * (a01 * a23 - a03 * a21));
2079
+ out[10] = (a00 * (a11 * a33 - a13 * a31) - a10 * (a01 * a33 - a03 * a31) + a30 * (a01 * a13 - a03 * a11));
2080
+ out[11] = -(a00 * (a11 * a23 - a13 * a21) - a10 * (a01 * a23 - a03 * a21) + a20 * (a01 * a13 - a03 * a11));
2081
+ out[12] = -(a10 * (a21 * a32 - a22 * a31) - a20 * (a11 * a32 - a12 * a31) + a30 * (a11 * a22 - a12 * a21));
2082
+ out[13] = (a00 * (a21 * a32 - a22 * a31) - a20 * (a01 * a32 - a02 * a31) + a30 * (a01 * a22 - a02 * a21));
2083
+ out[14] = -(a00 * (a11 * a32 - a12 * a31) - a10 * (a01 * a32 - a02 * a31) + a30 * (a01 * a12 - a02 * a11));
2084
+ out[15] = (a00 * (a11 * a22 - a12 * a21) - a10 * (a01 * a22 - a02 * a21) + a20 * (a01 * a12 - a02 * a11));
2085
+ return out;
2086
+ };
2087
+
2088
+ /**
2089
+ * Calculates the determinant of a mat4
2090
+ *
2091
+ * @param {mat4} a the source matrix
2092
+ * @returns {Number} determinant of a
2093
+ */
2094
+ mat4.determinant = function (a) {
2095
+ var a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3],
2096
+ a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7],
2097
+ a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11],
2098
+ a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15],
2099
+
2100
+ b00 = a00 * a11 - a01 * a10,
2101
+ b01 = a00 * a12 - a02 * a10,
2102
+ b02 = a00 * a13 - a03 * a10,
2103
+ b03 = a01 * a12 - a02 * a11,
2104
+ b04 = a01 * a13 - a03 * a11,
2105
+ b05 = a02 * a13 - a03 * a12,
2106
+ b06 = a20 * a31 - a21 * a30,
2107
+ b07 = a20 * a32 - a22 * a30,
2108
+ b08 = a20 * a33 - a23 * a30,
2109
+ b09 = a21 * a32 - a22 * a31,
2110
+ b10 = a21 * a33 - a23 * a31,
2111
+ b11 = a22 * a33 - a23 * a32;
2112
+
2113
+ // Calculate the determinant
2114
+ return b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;
2115
+ };
2116
+
2117
+ /**
2118
+ * Multiplies two mat4's
2119
+ *
2120
+ * @param {mat4} out the receiving matrix
2121
+ * @param {mat4} a the first operand
2122
+ * @param {mat4} b the second operand
2123
+ * @returns {mat4} out
2124
+ */
2125
+ mat4.mul = mat4.multiply = function (out, a, b) {
2126
+ var a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3],
2127
+ a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7],
2128
+ a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11],
2129
+ a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15];
2130
+
2131
+ // Cache only the current line of the second matrix
2132
+ var b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3];
2133
+ out[0] = b0*a00 + b1*a10 + b2*a20 + b3*a30;
2134
+ out[1] = b0*a01 + b1*a11 + b2*a21 + b3*a31;
2135
+ out[2] = b0*a02 + b1*a12 + b2*a22 + b3*a32;
2136
+ out[3] = b0*a03 + b1*a13 + b2*a23 + b3*a33;
2137
+
2138
+ b0 = b[4]; b1 = b[5]; b2 = b[6]; b3 = b[7];
2139
+ out[4] = b0*a00 + b1*a10 + b2*a20 + b3*a30;
2140
+ out[5] = b0*a01 + b1*a11 + b2*a21 + b3*a31;
2141
+ out[6] = b0*a02 + b1*a12 + b2*a22 + b3*a32;
2142
+ out[7] = b0*a03 + b1*a13 + b2*a23 + b3*a33;
2143
+
2144
+ b0 = b[8]; b1 = b[9]; b2 = b[10]; b3 = b[11];
2145
+ out[8] = b0*a00 + b1*a10 + b2*a20 + b3*a30;
2146
+ out[9] = b0*a01 + b1*a11 + b2*a21 + b3*a31;
2147
+ out[10] = b0*a02 + b1*a12 + b2*a22 + b3*a32;
2148
+ out[11] = b0*a03 + b1*a13 + b2*a23 + b3*a33;
2149
+
2150
+ b0 = b[12]; b1 = b[13]; b2 = b[14]; b3 = b[15];
2151
+ out[12] = b0*a00 + b1*a10 + b2*a20 + b3*a30;
2152
+ out[13] = b0*a01 + b1*a11 + b2*a21 + b3*a31;
2153
+ out[14] = b0*a02 + b1*a12 + b2*a22 + b3*a32;
2154
+ out[15] = b0*a03 + b1*a13 + b2*a23 + b3*a33;
2155
+ return out;
2156
+ };
2157
+
2158
+ /**
2159
+ * Translate a mat4 by the given vector
2160
+ *
2161
+ * @param {mat4} out the receiving matrix
2162
+ * @param {mat4} a the matrix to translate
2163
+ * @param {vec3} v vector to translate by
2164
+ * @returns {mat4} out
2165
+ */
2166
+ mat4.translate = function (out, a, v) {
2167
+ var x = v[0], y = v[1], z = v[2],
2168
+ a00, a01, a02, a03,
2169
+ a10, a11, a12, a13,
2170
+ a20, a21, a22, a23;
2171
+
2172
+ if (a === out) {
2173
+ out[12] = a[0] * x + a[4] * y + a[8] * z + a[12];
2174
+ out[13] = a[1] * x + a[5] * y + a[9] * z + a[13];
2175
+ out[14] = a[2] * x + a[6] * y + a[10] * z + a[14];
2176
+ out[15] = a[3] * x + a[7] * y + a[11] * z + a[15];
2177
+ } else {
2178
+ a00 = a[0]; a01 = a[1]; a02 = a[2]; a03 = a[3];
2179
+ a10 = a[4]; a11 = a[5]; a12 = a[6]; a13 = a[7];
2180
+ a20 = a[8]; a21 = a[9]; a22 = a[10]; a23 = a[11];
2181
+
2182
+ out[0] = a00; out[1] = a01; out[2] = a02; out[3] = a03;
2183
+ out[4] = a10; out[5] = a11; out[6] = a12; out[7] = a13;
2184
+ out[8] = a20; out[9] = a21; out[10] = a22; out[11] = a23;
2185
+
2186
+ out[12] = a00 * x + a10 * y + a20 * z + a[12];
2187
+ out[13] = a01 * x + a11 * y + a21 * z + a[13];
2188
+ out[14] = a02 * x + a12 * y + a22 * z + a[14];
2189
+ out[15] = a03 * x + a13 * y + a23 * z + a[15];
2190
+ }
2191
+
2192
+ return out;
2193
+ };
2194
+
2195
+ /**
2196
+ * Scales the mat4 by the dimensions in the given vec3
2197
+ *
2198
+ * @param {mat4} out the receiving matrix
2199
+ * @param {mat4} a the matrix to scale
2200
+ * @param {vec3} v the vec3 to scale the matrix by
2201
+ * @returns {mat4} out
2202
+ **/
2203
+ mat4.scale = function(out, a, v) {
2204
+ var x = v[0], y = v[1], z = v[2];
2205
+
2206
+ out[0] = a[0] * x;
2207
+ out[1] = a[1] * x;
2208
+ out[2] = a[2] * x;
2209
+ out[3] = a[3] * x;
2210
+ out[4] = a[4] * y;
2211
+ out[5] = a[5] * y;
2212
+ out[6] = a[6] * y;
2213
+ out[7] = a[7] * y;
2214
+ out[8] = a[8] * z;
2215
+ out[9] = a[9] * z;
2216
+ out[10] = a[10] * z;
2217
+ out[11] = a[11] * z;
2218
+ out[12] = a[12];
2219
+ out[13] = a[13];
2220
+ out[14] = a[14];
2221
+ out[15] = a[15];
2222
+ return out;
2223
+ };
2224
+
2225
+ /**
2226
+ * Rotates a mat4 by the given angle
2227
+ *
2228
+ * @param {mat4} out the receiving matrix
2229
+ * @param {mat4} a the matrix to rotate
2230
+ * @param {Number} rad the angle to rotate the matrix by
2231
+ * @param {vec3} axis the axis to rotate around
2232
+ * @returns {mat4} out
2233
+ */
2234
+ mat4.rotate = function (out, a, rad, axis) {
2235
+ var x = axis[0], y = axis[1], z = axis[2],
2236
+ len = Math.sqrt(x * x + y * y + z * z),
2237
+ s, c, t,
2238
+ a00, a01, a02, a03,
2239
+ a10, a11, a12, a13,
2240
+ a20, a21, a22, a23,
2241
+ b00, b01, b02,
2242
+ b10, b11, b12,
2243
+ b20, b21, b22;
2244
+
2245
+ if (Math.abs(len) < GLMAT_EPSILON) { return null; }
2246
+
2247
+ len = 1 / len;
2248
+ x *= len;
2249
+ y *= len;
2250
+ z *= len;
2251
+
2252
+ s = Math.sin(rad);
2253
+ c = Math.cos(rad);
2254
+ t = 1 - c;
2255
+
2256
+ a00 = a[0]; a01 = a[1]; a02 = a[2]; a03 = a[3];
2257
+ a10 = a[4]; a11 = a[5]; a12 = a[6]; a13 = a[7];
2258
+ a20 = a[8]; a21 = a[9]; a22 = a[10]; a23 = a[11];
2259
+
2260
+ // Construct the elements of the rotation matrix
2261
+ b00 = x * x * t + c; b01 = y * x * t + z * s; b02 = z * x * t - y * s;
2262
+ b10 = x * y * t - z * s; b11 = y * y * t + c; b12 = z * y * t + x * s;
2263
+ b20 = x * z * t + y * s; b21 = y * z * t - x * s; b22 = z * z * t + c;
2264
+
2265
+ // Perform rotation-specific matrix multiplication
2266
+ out[0] = a00 * b00 + a10 * b01 + a20 * b02;
2267
+ out[1] = a01 * b00 + a11 * b01 + a21 * b02;
2268
+ out[2] = a02 * b00 + a12 * b01 + a22 * b02;
2269
+ out[3] = a03 * b00 + a13 * b01 + a23 * b02;
2270
+ out[4] = a00 * b10 + a10 * b11 + a20 * b12;
2271
+ out[5] = a01 * b10 + a11 * b11 + a21 * b12;
2272
+ out[6] = a02 * b10 + a12 * b11 + a22 * b12;
2273
+ out[7] = a03 * b10 + a13 * b11 + a23 * b12;
2274
+ out[8] = a00 * b20 + a10 * b21 + a20 * b22;
2275
+ out[9] = a01 * b20 + a11 * b21 + a21 * b22;
2276
+ out[10] = a02 * b20 + a12 * b21 + a22 * b22;
2277
+ out[11] = a03 * b20 + a13 * b21 + a23 * b22;
2278
+
2279
+ if (a !== out) { // If the source and destination differ, copy the unchanged last row
2280
+ out[12] = a[12];
2281
+ out[13] = a[13];
2282
+ out[14] = a[14];
2283
+ out[15] = a[15];
2284
+ }
2285
+ return out;
2286
+ };
2287
+
2288
+ /**
2289
+ * Rotates a matrix by the given angle around the X axis
2290
+ *
2291
+ * @param {mat4} out the receiving matrix
2292
+ * @param {mat4} a the matrix to rotate
2293
+ * @param {Number} rad the angle to rotate the matrix by
2294
+ * @returns {mat4} out
2295
+ */
2296
+ mat4.rotateX = function (out, a, rad) {
2297
+ var s = Math.sin(rad),
2298
+ c = Math.cos(rad),
2299
+ a10 = a[4],
2300
+ a11 = a[5],
2301
+ a12 = a[6],
2302
+ a13 = a[7],
2303
+ a20 = a[8],
2304
+ a21 = a[9],
2305
+ a22 = a[10],
2306
+ a23 = a[11];
2307
+
2308
+ if (a !== out) { // If the source and destination differ, copy the unchanged rows
2309
+ out[0] = a[0];
2310
+ out[1] = a[1];
2311
+ out[2] = a[2];
2312
+ out[3] = a[3];
2313
+ out[12] = a[12];
2314
+ out[13] = a[13];
2315
+ out[14] = a[14];
2316
+ out[15] = a[15];
2317
+ }
2318
+
2319
+ // Perform axis-specific matrix multiplication
2320
+ out[4] = a10 * c + a20 * s;
2321
+ out[5] = a11 * c + a21 * s;
2322
+ out[6] = a12 * c + a22 * s;
2323
+ out[7] = a13 * c + a23 * s;
2324
+ out[8] = a20 * c - a10 * s;
2325
+ out[9] = a21 * c - a11 * s;
2326
+ out[10] = a22 * c - a12 * s;
2327
+ out[11] = a23 * c - a13 * s;
2328
+ return out;
2329
+ };
2330
+
2331
+ /**
2332
+ * Rotates a matrix by the given angle around the Y axis
2333
+ *
2334
+ * @param {mat4} out the receiving matrix
2335
+ * @param {mat4} a the matrix to rotate
2336
+ * @param {Number} rad the angle to rotate the matrix by
2337
+ * @returns {mat4} out
2338
+ */
2339
+ mat4.rotateY = function (out, a, rad) {
2340
+ var s = Math.sin(rad),
2341
+ c = Math.cos(rad),
2342
+ a00 = a[0],
2343
+ a01 = a[1],
2344
+ a02 = a[2],
2345
+ a03 = a[3],
2346
+ a20 = a[8],
2347
+ a21 = a[9],
2348
+ a22 = a[10],
2349
+ a23 = a[11];
2350
+
2351
+ if (a !== out) { // If the source and destination differ, copy the unchanged rows
2352
+ out[4] = a[4];
2353
+ out[5] = a[5];
2354
+ out[6] = a[6];
2355
+ out[7] = a[7];
2356
+ out[12] = a[12];
2357
+ out[13] = a[13];
2358
+ out[14] = a[14];
2359
+ out[15] = a[15];
2360
+ }
2361
+
2362
+ // Perform axis-specific matrix multiplication
2363
+ out[0] = a00 * c - a20 * s;
2364
+ out[1] = a01 * c - a21 * s;
2365
+ out[2] = a02 * c - a22 * s;
2366
+ out[3] = a03 * c - a23 * s;
2367
+ out[8] = a00 * s + a20 * c;
2368
+ out[9] = a01 * s + a21 * c;
2369
+ out[10] = a02 * s + a22 * c;
2370
+ out[11] = a03 * s + a23 * c;
2371
+ return out;
2372
+ };
2373
+
2374
+ /**
2375
+ * Rotates a matrix by the given angle around the Z axis
2376
+ *
2377
+ * @param {mat4} out the receiving matrix
2378
+ * @param {mat4} a the matrix to rotate
2379
+ * @param {Number} rad the angle to rotate the matrix by
2380
+ * @returns {mat4} out
2381
+ */
2382
+ mat4.rotateZ = function (out, a, rad) {
2383
+ var s = Math.sin(rad),
2384
+ c = Math.cos(rad),
2385
+ a00 = a[0],
2386
+ a01 = a[1],
2387
+ a02 = a[2],
2388
+ a03 = a[3],
2389
+ a10 = a[4],
2390
+ a11 = a[5],
2391
+ a12 = a[6],
2392
+ a13 = a[7];
2393
+
2394
+ if (a !== out) { // If the source and destination differ, copy the unchanged last row
2395
+ out[8] = a[8];
2396
+ out[9] = a[9];
2397
+ out[10] = a[10];
2398
+ out[11] = a[11];
2399
+ out[12] = a[12];
2400
+ out[13] = a[13];
2401
+ out[14] = a[14];
2402
+ out[15] = a[15];
2403
+ }
2404
+
2405
+ // Perform axis-specific matrix multiplication
2406
+ out[0] = a00 * c + a10 * s;
2407
+ out[1] = a01 * c + a11 * s;
2408
+ out[2] = a02 * c + a12 * s;
2409
+ out[3] = a03 * c + a13 * s;
2410
+ out[4] = a10 * c - a00 * s;
2411
+ out[5] = a11 * c - a01 * s;
2412
+ out[6] = a12 * c - a02 * s;
2413
+ out[7] = a13 * c - a03 * s;
2414
+ return out;
2415
+ };
2416
+
2417
+ /**
2418
+ * Creates a matrix from a quaternion rotation and vector translation
2419
+ * This is equivalent to (but much faster than):
2420
+ *
2421
+ * mat4.identity(dest);
2422
+ * mat4.translate(dest, vec);
2423
+ * var quatMat = mat4.create();
2424
+ * quat4.toMat4(quat, quatMat);
2425
+ * mat4.multiply(dest, quatMat);
2426
+ *
2427
+ * @param {mat4} out mat4 receiving operation result
2428
+ * @param {quat4} q Rotation quaternion
2429
+ * @param {vec3} v Translation vector
2430
+ * @returns {mat4} out
2431
+ */
2432
+ mat4.fromRotationTranslation = function (out, q, v) {
2433
+ // Quaternion math
2434
+ var x = q[0], y = q[1], z = q[2], w = q[3],
2435
+ x2 = x + x,
2436
+ y2 = y + y,
2437
+ z2 = z + z,
2438
+
2439
+ xx = x * x2,
2440
+ xy = x * y2,
2441
+ xz = x * z2,
2442
+ yy = y * y2,
2443
+ yz = y * z2,
2444
+ zz = z * z2,
2445
+ wx = w * x2,
2446
+ wy = w * y2,
2447
+ wz = w * z2;
2448
+
2449
+ out[0] = 1 - (yy + zz);
2450
+ out[1] = xy + wz;
2451
+ out[2] = xz - wy;
2452
+ out[3] = 0;
2453
+ out[4] = xy - wz;
2454
+ out[5] = 1 - (xx + zz);
2455
+ out[6] = yz + wx;
2456
+ out[7] = 0;
2457
+ out[8] = xz + wy;
2458
+ out[9] = yz - wx;
2459
+ out[10] = 1 - (xx + yy);
2460
+ out[11] = 0;
2461
+ out[12] = v[0];
2462
+ out[13] = v[1];
2463
+ out[14] = v[2];
2464
+ out[15] = 1;
2465
+
2466
+ return out;
2467
+ };
2468
+
2469
+ /**
2470
+ * Generates a frustum matrix with the given bounds
2471
+ *
2472
+ * @param {mat4} out mat4 frustum matrix will be written into
2473
+ * @param {Number} left Left bound of the frustum
2474
+ * @param {Number} right Right bound of the frustum
2475
+ * @param {Number} bottom Bottom bound of the frustum
2476
+ * @param {Number} top Top bound of the frustum
2477
+ * @param {Number} near Near bound of the frustum
2478
+ * @param {Number} far Far bound of the frustum
2479
+ * @returns {mat4} out
2480
+ */
2481
+ mat4.frustum = function (out, left, right, bottom, top, near, far) {
2482
+ var rl = 1 / (right - left),
2483
+ tb = 1 / (top - bottom),
2484
+ nf = 1 / (near - far);
2485
+ out[0] = (near * 2) * rl;
2486
+ out[1] = 0;
2487
+ out[2] = 0;
2488
+ out[3] = 0;
2489
+ out[4] = 0;
2490
+ out[5] = (near * 2) * tb;
2491
+ out[6] = 0;
2492
+ out[7] = 0;
2493
+ out[8] = (right + left) * rl;
2494
+ out[9] = (top + bottom) * tb;
2495
+ out[10] = (far + near) * nf;
2496
+ out[11] = -1;
2497
+ out[12] = 0;
2498
+ out[13] = 0;
2499
+ out[14] = (far * near * 2) * nf;
2500
+ out[15] = 0;
2501
+ return out;
2502
+ };
2503
+
2504
+ /**
2505
+ * Generates a perspective projection matrix with the given bounds
2506
+ *
2507
+ * @param {mat4} out mat4 frustum matrix will be written into
2508
+ * @param {number} fovy Vertical field of view in radians
2509
+ * @param {number} aspect Aspect ratio. typically viewport width/height
2510
+ * @param {number} near Near bound of the frustum
2511
+ * @param {number} far Far bound of the frustum
2512
+ * @returns {mat4} out
2513
+ */
2514
+ mat4.perspective = function (out, fovy, aspect, near, far) {
2515
+ var f = 1.0 / Math.tan(fovy / 2),
2516
+ nf = 1 / (near - far);
2517
+ out[0] = f / aspect;
2518
+ out[1] = 0;
2519
+ out[2] = 0;
2520
+ out[3] = 0;
2521
+ out[4] = 0;
2522
+ out[5] = f;
2523
+ out[6] = 0;
2524
+ out[7] = 0;
2525
+ out[8] = 0;
2526
+ out[9] = 0;
2527
+ out[10] = (far + near) * nf;
2528
+ out[11] = -1;
2529
+ out[12] = 0;
2530
+ out[13] = 0;
2531
+ out[14] = (2 * far * near) * nf;
2532
+ out[15] = 0;
2533
+ return out;
2534
+ };
2535
+
2536
+ /**
2537
+ * Generates a orthogonal projection matrix with the given bounds
2538
+ *
2539
+ * @param {mat4} out mat4 frustum matrix will be written into
2540
+ * @param {number} left Left bound of the frustum
2541
+ * @param {number} right Right bound of the frustum
2542
+ * @param {number} bottom Bottom bound of the frustum
2543
+ * @param {number} top Top bound of the frustum
2544
+ * @param {number} near Near bound of the frustum
2545
+ * @param {number} far Far bound of the frustum
2546
+ * @returns {mat4} out
2547
+ */
2548
+ mat4.ortho = function (out, left, right, bottom, top, near, far) {
2549
+ var lr = 1 / (left - right),
2550
+ bt = 1 / (bottom - top),
2551
+ nf = 1 / (near - far);
2552
+ out[0] = -2 * lr;
2553
+ out[1] = 0;
2554
+ out[2] = 0;
2555
+ out[3] = 0;
2556
+ out[4] = 0;
2557
+ out[5] = -2 * bt;
2558
+ out[6] = 0;
2559
+ out[7] = 0;
2560
+ out[8] = 0;
2561
+ out[9] = 0;
2562
+ out[10] = 2 * nf;
2563
+ out[11] = 0;
2564
+ out[12] = (left + right) * lr;
2565
+ out[13] = (top + bottom) * bt;
2566
+ out[14] = (far + near) * nf;
2567
+ out[15] = 1;
2568
+ return out;
2569
+ };
2570
+
2571
+ /**
2572
+ * Generates a look-at matrix with the given eye position, focal point, and up axis
2573
+ *
2574
+ * @param {mat4} out mat4 frustum matrix will be written into
2575
+ * @param {vec3} eye Position of the viewer
2576
+ * @param {vec3} center Point the viewer is looking at
2577
+ * @param {vec3} up vec3 pointing up
2578
+ * @returns {mat4} out
2579
+ */
2580
+ mat4.lookAt = function (out, eye, center, up) {
2581
+ var x0, x1, x2, y0, y1, y2, z0, z1, z2, len,
2582
+ eyex = eye[0],
2583
+ eyey = eye[1],
2584
+ eyez = eye[2],
2585
+ upx = up[0],
2586
+ upy = up[1],
2587
+ upz = up[2],
2588
+ centerx = center[0],
2589
+ centery = center[1],
2590
+ centerz = center[2];
2591
+
2592
+ if (Math.abs(eyex - centerx) < GLMAT_EPSILON &&
2593
+ Math.abs(eyey - centery) < GLMAT_EPSILON &&
2594
+ Math.abs(eyez - centerz) < GLMAT_EPSILON) {
2595
+ return mat4.identity(out);
2596
+ }
2597
+
2598
+ z0 = eyex - centerx;
2599
+ z1 = eyey - centery;
2600
+ z2 = eyez - centerz;
2601
+
2602
+ len = 1 / Math.sqrt(z0 * z0 + z1 * z1 + z2 * z2);
2603
+ z0 *= len;
2604
+ z1 *= len;
2605
+ z2 *= len;
2606
+
2607
+ x0 = upy * z2 - upz * z1;
2608
+ x1 = upz * z0 - upx * z2;
2609
+ x2 = upx * z1 - upy * z0;
2610
+ len = Math.sqrt(x0 * x0 + x1 * x1 + x2 * x2);
2611
+ if (!len) {
2612
+ x0 = 0;
2613
+ x1 = 0;
2614
+ x2 = 0;
2615
+ } else {
2616
+ len = 1 / len;
2617
+ x0 *= len;
2618
+ x1 *= len;
2619
+ x2 *= len;
2620
+ }
2621
+
2622
+ y0 = z1 * x2 - z2 * x1;
2623
+ y1 = z2 * x0 - z0 * x2;
2624
+ y2 = z0 * x1 - z1 * x0;
2625
+
2626
+ len = Math.sqrt(y0 * y0 + y1 * y1 + y2 * y2);
2627
+ if (!len) {
2628
+ y0 = 0;
2629
+ y1 = 0;
2630
+ y2 = 0;
2631
+ } else {
2632
+ len = 1 / len;
2633
+ y0 *= len;
2634
+ y1 *= len;
2635
+ y2 *= len;
2636
+ }
2637
+
2638
+ out[0] = x0;
2639
+ out[1] = y0;
2640
+ out[2] = z0;
2641
+ out[3] = 0;
2642
+ out[4] = x1;
2643
+ out[5] = y1;
2644
+ out[6] = z1;
2645
+ out[7] = 0;
2646
+ out[8] = x2;
2647
+ out[9] = y2;
2648
+ out[10] = z2;
2649
+ out[11] = 0;
2650
+ out[12] = -(x0 * eyex + x1 * eyey + x2 * eyez);
2651
+ out[13] = -(y0 * eyex + y1 * eyey + y2 * eyez);
2652
+ out[14] = -(z0 * eyex + z1 * eyey + z2 * eyez);
2653
+ out[15] = 1;
2654
+
2655
+ return out;
2656
+ };
2657
+
2658
+ /**
2659
+ * Returns a string representation of a mat4
2660
+ *
2661
+ * @param {mat4} mat matrix to represent as a string
2662
+ * @returns {String} string representation of the matrix
2663
+ */
2664
+ mat4.str = function (a) {
2665
+ return 'mat4(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ', ' +
2666
+ a[4] + ', ' + a[5] + ', ' + a[6] + ', ' + a[7] + ', ' +
2667
+ a[8] + ', ' + a[9] + ', ' + a[10] + ', ' + a[11] + ', ' +
2668
+ a[12] + ', ' + a[13] + ', ' + a[14] + ', ' + a[15] + ')';
2669
+ };
2670
+
2671
+ if(typeof(exports) !== 'undefined') {
2672
+ exports.mat4 = mat4;
2673
+ }
2674
+ ;
2675
+ /* Copyright (c) 2012, Brandon Jones, Colin MacKenzie IV. All rights reserved.
2676
+
2677
+ Redistribution and use in source and binary forms, with or without modification,
2678
+ are permitted provided that the following conditions are met:
2679
+
2680
+ * Redistributions of source code must retain the above copyright notice, this
2681
+ list of conditions and the following disclaimer.
2682
+ * Redistributions in binary form must reproduce the above copyright notice,
2683
+ this list of conditions and the following disclaimer in the documentation
2684
+ and/or other materials provided with the distribution.
2685
+
2686
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
2687
+ ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
2688
+ WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
2689
+ DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
2690
+ ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
2691
+ (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
2692
+ LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
2693
+ ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
2694
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
2695
+ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
2696
+
2697
+ /**
2698
+ * @class Quaternion
2699
+ * @name quat
2700
+ */
2701
+
2702
+ var quat = {};
2703
+
2704
+ var quatIdentity = new Float32Array([0, 0, 0, 1]);
2705
+
2706
+ if(!GLMAT_EPSILON) {
2707
+ var GLMAT_EPSILON = 0.000001;
2708
+ }
2709
+
2710
+ /**
2711
+ * Creates a new identity quat
2712
+ *
2713
+ * @returns {quat} a new quaternion
2714
+ */
2715
+ quat.create = function() {
2716
+ return new Float32Array(quatIdentity);
2717
+ };
2718
+
2719
+ /**
2720
+ * Creates a new quat initialized with values from an existing quaternion
2721
+ *
2722
+ * @param {quat} a quaternion to clone
2723
+ * @returns {quat} a new quaternion
2724
+ */
2725
+ quat.clone = vec4.clone;
2726
+
2727
+ /**
2728
+ * Creates a new quat initialized with the given values
2729
+ *
2730
+ * @param {Number} x X component
2731
+ * @param {Number} y Y component
2732
+ * @param {Number} z Z component
2733
+ * @param {Number} w W component
2734
+ * @returns {quat} a new quaternion
2735
+ */
2736
+ quat.fromValues = vec4.fromValues;
2737
+
2738
+ /**
2739
+ * Copy the values from one quat to another
2740
+ *
2741
+ * @param {quat} out the receiving quaternion
2742
+ * @param {quat} a the source quaternion
2743
+ * @returns {quat} out
2744
+ */
2745
+ quat.copy = vec4.copy;
2746
+
2747
+ /**
2748
+ * Set the components of a quat to the given values
2749
+ *
2750
+ * @param {quat} out the receiving quaternion
2751
+ * @param {Number} x X component
2752
+ * @param {Number} y Y component
2753
+ * @param {Number} z Z component
2754
+ * @param {Number} w W component
2755
+ * @returns {quat} out
2756
+ */
2757
+ quat.set = vec4.set;
2758
+
2759
+ /**
2760
+ * Set a quat to the identity quaternion
2761
+ *
2762
+ * @param {quat} out the receiving quaternion
2763
+ * @returns {quat} out
2764
+ */
2765
+ quat.identity = function(out) {
2766
+ out[0] = 0;
2767
+ out[1] = 0;
2768
+ out[2] = 0;
2769
+ out[3] = 1;
2770
+ return out;
2771
+ };
2772
+
2773
+ /**
2774
+ * Sets a quat from the given angle and rotation axis,
2775
+ * then returns it.
2776
+ *
2777
+ * @param {quat} out the receiving quaternion
2778
+ * @param {vec3} axis the axis around which to rotate
2779
+ * @param {Number} rad the angle in radians
2780
+ * @returns {quat} out
2781
+ **/
2782
+ quat.setAxisAngle = function(out, axis, rad) {
2783
+ rad = rad * 0.5;
2784
+ var s = Math.sin(rad);
2785
+ out[0] = s * axis[0];
2786
+ out[1] = s * axis[1];
2787
+ out[2] = s * axis[2];
2788
+ out[3] = Math.cos(rad);
2789
+ return out;
2790
+ };
2791
+
2792
+ /**
2793
+ * Adds two quat's
2794
+ *
2795
+ * @param {quat} out the receiving quaternion
2796
+ * @param {quat} a the first operand
2797
+ * @param {quat} b the second operand
2798
+ * @returns {quat} out
2799
+ */
2800
+ quat.add = vec4.add;
2801
+
2802
+ /**
2803
+ * Multiplies two quat's
2804
+ *
2805
+ * @param {quat} out the receiving quaternion
2806
+ * @param {quat} a the first operand
2807
+ * @param {quat} b the second operand
2808
+ * @returns {quat} out
2809
+ */
2810
+ quat.mul = quat.multiply = function(out, a, b) {
2811
+ var ax = a[0], ay = a[1], az = a[2], aw = a[3],
2812
+ bx = b[0], by = b[1], bz = b[2], bw = b[3];
2813
+
2814
+ out[0] = ax * bw + aw * bx + ay * bz - az * by;
2815
+ out[1] = ay * bw + aw * by + az * bx - ax * bz;
2816
+ out[2] = az * bw + aw * bz + ax * by - ay * bx;
2817
+ out[3] = aw * bw - ax * bx - ay * by - az * bz;
2818
+ return out;
2819
+ };
2820
+
2821
+ /**
2822
+ * Scales a quat by a scalar number
2823
+ *
2824
+ * @param {quat} out the receiving vector
2825
+ * @param {quat} a the vector to scale
2826
+ * @param {quat} b amount to scale the vector by
2827
+ * @returns {quat} out
2828
+ */
2829
+ quat.scale = vec4.scale;
2830
+
2831
+ /**
2832
+ * Rotates a quaternion by the given angle around the X axis
2833
+ *
2834
+ * @param {quat} out quat receiving operation result
2835
+ * @param {quat} a quat to rotate
2836
+ * @param {number} rad angle (in radians) to rotate
2837
+ * @returns {quat} out
2838
+ */
2839
+ quat.rotateX = function (out, a, rad) {
2840
+ rad *= 0.5;
2841
+
2842
+ var ax = a[0], ay = a[1], az = a[2], aw = a[3],
2843
+ bx = Math.sin(rad), bw = Math.cos(rad);
2844
+
2845
+ out[0] = ax * bw + aw * bx;
2846
+ out[1] = ay * bw + az * bx;
2847
+ out[2] = az * bw - ay * bx;
2848
+ out[3] = aw * bw - ax * bx;
2849
+ return out;
2850
+ };
2851
+
2852
+ /**
2853
+ * Rotates a quaternion by the given angle around the X axis
2854
+ *
2855
+ * @param {quat} out quat receiving operation result
2856
+ * @param {quat} a quat to rotate
2857
+ * @param {number} rad angle (in radians) to rotate
2858
+ * @returns {quat} out
2859
+ */
2860
+ quat.rotateY = function (out, a, rad) {
2861
+ rad *= 0.5;
2862
+
2863
+ var ax = a[0], ay = a[1], az = a[2], aw = a[3],
2864
+ by = Math.sin(rad), bw = Math.cos(rad);
2865
+
2866
+ out[0] = ax * bw - az * by;
2867
+ out[1] = ay * bw + aw * by;
2868
+ out[2] = az * bw + ax * by;
2869
+ out[3] = aw * bw - ay * by;
2870
+ return out;
2871
+ };
2872
+
2873
+ /**
2874
+ * Rotates a quaternion by the given angle around the X axis
2875
+ *
2876
+ * @param {quat} out quat receiving operation result
2877
+ * @param {quat} a quat to rotate
2878
+ * @param {number} rad angle (in radians) to rotate
2879
+ * @returns {quat} out
2880
+ */
2881
+ quat.rotateZ = function (out, a, rad) {
2882
+ rad *= 0.5;
2883
+
2884
+ var ax = a[0], ay = a[1], az = a[2], aw = a[3],
2885
+ bz = Math.sin(rad), bw = Math.cos(rad);
2886
+
2887
+ out[0] = ax * bw + ay * bz;
2888
+ out[1] = ay * bw - ax * bz;
2889
+ out[2] = az * bw + aw * bz;
2890
+ out[3] = aw * bw - az * bz;
2891
+ return out;
2892
+ };
2893
+
2894
+ /**
2895
+ * Calculates the W component of a quat from the X, Y, and Z components.
2896
+ * Assumes that quaternion is 1 unit in length.
2897
+ * Any existing W component will be ignored.
2898
+ *
2899
+ * @param {quat} out the receiving quaternion
2900
+ * @param {quat} a quat to calculate W component of
2901
+ * @returns {quat} out
2902
+ */
2903
+ quat.calculateW = function (out, a) {
2904
+ var x = a[0], y = a[1], z = a[2];
2905
+
2906
+ out[0] = x;
2907
+ out[1] = y;
2908
+ out[2] = z;
2909
+ out[3] = -Math.sqrt(Math.abs(1.0 - x * x - y * y - z * z));
2910
+ return out;
2911
+ };
2912
+
2913
+ /**
2914
+ * Caclulates the dot product of two quat's
2915
+ *
2916
+ * @param {quat} a the first operand
2917
+ * @param {quat} b the second operand
2918
+ * @returns {Number} dot product of a and b
2919
+ */
2920
+ quat.dot = vec4.dot;
2921
+
2922
+ /**
2923
+ * Performs a linear interpolation between two quat's
2924
+ *
2925
+ * @param {quat} out the receiving quaternion
2926
+ * @param {quat} a the first operand
2927
+ * @param {quat} b the second operand
2928
+ * @param {Number} t interpolation amount between the two inputs
2929
+ * @returns {quat} out
2930
+ */
2931
+ quat.lerp = vec4.lerp;
2932
+
2933
+ /**
2934
+ * Performs a spherical linear interpolation between two quat
2935
+ *
2936
+ * @param {quat} out the receiving quaternion
2937
+ * @param {quat} a the first operand
2938
+ * @param {quat} b the second operand
2939
+ * @param {Number} t interpolation amount between the two inputs
2940
+ * @returns {quat} out
2941
+ */
2942
+ quat.slerp = function (out, a, b, t) {
2943
+ var ax = a[0], ay = a[1], az = a[2], aw = a[3],
2944
+ bx = b[0], by = b[1], bz = b[2], bw = a[3];
2945
+
2946
+ var cosHalfTheta = ax * bx + ay * by + az * bz + aw * bw,
2947
+ halfTheta,
2948
+ sinHalfTheta,
2949
+ ratioA,
2950
+ ratioB;
2951
+
2952
+ if (Math.abs(cosHalfTheta) >= 1.0) {
2953
+ if (out !== a) {
2954
+ out[0] = ax;
2955
+ out[1] = ay;
2956
+ out[2] = az;
2957
+ out[3] = aw;
2958
+ }
2959
+ return out;
2960
+ }
2961
+
2962
+ halfTheta = Math.acos(cosHalfTheta);
2963
+ sinHalfTheta = Math.sqrt(1.0 - cosHalfTheta * cosHalfTheta);
2964
+
2965
+ if (Math.abs(sinHalfTheta) < 0.001) {
2966
+ out[0] = (ax * 0.5 + bx * 0.5);
2967
+ out[1] = (ay * 0.5 + by * 0.5);
2968
+ out[2] = (az * 0.5 + bz * 0.5);
2969
+ out[3] = (aw * 0.5 + bw * 0.5);
2970
+ return out;
2971
+ }
2972
+
2973
+ ratioA = Math.sin((1 - t) * halfTheta) / sinHalfTheta;
2974
+ ratioB = Math.sin(t * halfTheta) / sinHalfTheta;
2975
+
2976
+ out[0] = (ax * ratioA + bx * ratioB);
2977
+ out[1] = (ay * ratioA + by * ratioB);
2978
+ out[2] = (az * ratioA + bz * ratioB);
2979
+ out[3] = (aw * ratioA + bw * ratioB);
2980
+
2981
+ return out;
2982
+ };
2983
+
2984
+ /**
2985
+ * Calculates the inverse of a quat
2986
+ *
2987
+ * @param {quat} out the receiving quaternion
2988
+ * @param {quat} a quat to calculate inverse of
2989
+ * @returns {quat} out
2990
+ */
2991
+ quat.invert = function(out, a) {
2992
+ var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3],
2993
+ dot = a0*a0 + a1*a1 + a2*a2 + a3*a3,
2994
+ invDot = dot ? 1.0/dot : 0;
2995
+
2996
+ // TODO: Would be faster to return [0,0,0,0] immediately if dot == 0
2997
+
2998
+ out[0] = -a0*invDot;
2999
+ out[1] = -a1*invDot;
3000
+ out[2] = -a2*invDot;
3001
+ out[3] = a3*invDot;
3002
+ return out;
3003
+ };
3004
+
3005
+ /**
3006
+ * Calculates the conjugate of a quat
3007
+ * If the quaternion is normalized, this function is faster than quat.inverse and produces the same result.
3008
+ *
3009
+ * @param {quat} out the receiving quaternion
3010
+ * @param {quat} a quat to calculate conjugate of
3011
+ * @returns {quat} out
3012
+ */
3013
+ quat.conjugate = function (out, a) {
3014
+ out[0] = -a[0];
3015
+ out[1] = -a[1];
3016
+ out[2] = -a[2];
3017
+ out[3] = a[3];
3018
+ return out;
3019
+ };
3020
+
3021
+ /**
3022
+ * Caclulates the length of a quat
3023
+ *
3024
+ * @param {quat} a vector to calculate length of
3025
+ * @returns {Number} length of a
3026
+ */
3027
+ quat.len = quat.length = vec4.length;
3028
+
3029
+ /**
3030
+ * Caclulates the squared length of a quat
3031
+ *
3032
+ * @param {quat} a vector to calculate squared length of
3033
+ * @returns {Number} squared length of a
3034
+ */
3035
+ quat.sqrLen = quat.squaredLength = vec4.squaredLength;
3036
+
3037
+ /**
3038
+ * Normalize a quat
3039
+ *
3040
+ * @param {quat} out the receiving quaternion
3041
+ * @param {quat} a quaternion to normalize
3042
+ * @returns {quat} out
3043
+ */
3044
+ quat.normalize = vec4.normalize;
3045
+
3046
+ /**
3047
+ * Returns a string representation of a quatenion
3048
+ *
3049
+ * @param {quat} vec vector to represent as a string
3050
+ * @returns {String} string representation of the vector
3051
+ */
3052
+ quat.str = function (a) {
3053
+ return 'quat(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ')';
3054
+ };
3055
+
3056
+ if(typeof(exports) !== 'undefined') {
3057
+ exports.quat = quat;
3058
+ }
3059
+ ;
3060
+
3061
+
3062
+
3063
+
3064
+
3065
+
3066
+
3067
+
3068
+
3069
+
3070
+ })(shim.exports);
3071
+ })();