geokdtree 0.1.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- data/.gitignore +17 -0
- data/Gemfile +4 -0
- data/LICENSE.txt +13 -0
- data/README.md +121 -0
- data/Rakefile +30 -0
- data/example/usage.rb +65 -0
- data/ext/geokdtree/distance.c +70 -0
- data/ext/geokdtree/distance.h +38 -0
- data/ext/geokdtree/extconf.rb +7 -0
- data/ext/geokdtree/kdtree.c +782 -0
- data/ext/geokdtree/kdtree.h +135 -0
- data/geokdtree.gemspec +23 -0
- data/lib/geokdtree.rb +13 -0
- data/lib/geokdtree/tree.rb +139 -0
- data/lib/geokdtree/tree_ffi.rb +92 -0
- data/lib/geokdtree/version.rb +3 -0
- data/spec/geokdtree/geokdtree_spec.rb +209 -0
- metadata +97 -0
data/.gitignore
ADDED
data/Gemfile
ADDED
data/LICENSE.txt
ADDED
@@ -0,0 +1,13 @@
|
|
1
|
+
Copyright (c) 2013 Colin Surprenant <colin.surprenant@gmail.com>
|
2
|
+
|
3
|
+
Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
you may not use this file except in compliance with the License.
|
5
|
+
You may obtain a copy of the License at
|
6
|
+
|
7
|
+
http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
|
9
|
+
Unless required by applicable law or agreed to in writing, software
|
10
|
+
distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
See the License for the specific language governing permissions and
|
13
|
+
limitations under the License.
|
data/README.md
ADDED
@@ -0,0 +1,121 @@
|
|
1
|
+
# Ruby/FFI Geokdtree v0.1.0
|
2
|
+
|
3
|
+
Ruby & JRuby gem with a fast **k-d tree** C implementation using FFI bindings with support for latitude/longitude and **geo distance range search**.
|
4
|
+
|
5
|
+
A [k-d tree](https://en.wikipedia.org/wiki/K-d_tree) is a space-partitioning data structure for organizing points in a k-dimensional space and are useful for very **fast range searches** and **nearest neighbor searches**. k-d trees are a special case of binary space partitioning trees.
|
6
|
+
|
7
|
+
## Installation
|
8
|
+
|
9
|
+
Tested on OSX 10.8.2 with
|
10
|
+
- MRI Ruby 1.9.3 p362
|
11
|
+
- MRI Ruby 1.9.3 p385
|
12
|
+
- JRuby 1.7.2 (1.9.3 p327)
|
13
|
+
|
14
|
+
Add this line to your application's Gemfile:
|
15
|
+
|
16
|
+
gem 'geokdtree'
|
17
|
+
|
18
|
+
And then execute:
|
19
|
+
|
20
|
+
$ bundle
|
21
|
+
|
22
|
+
Or install it yourself as:
|
23
|
+
|
24
|
+
$ gem install geokdtree
|
25
|
+
|
26
|
+
## JRuby Notes
|
27
|
+
|
28
|
+
if the gem installation fails with the following error message, this is because JRuby disabled native extensions by default.
|
29
|
+
```
|
30
|
+
Gem::Installer::ExtensionBuildError: ERROR: Failed to build gem native extension
|
31
|
+
```
|
32
|
+
|
33
|
+
To fix this simply set the following JRuby runtime option
|
34
|
+
``` sh
|
35
|
+
$ export JRUBY_OPTS=-Xcext.enabled=true
|
36
|
+
```
|
37
|
+
|
38
|
+
## Usage
|
39
|
+
|
40
|
+
``` ruby
|
41
|
+
# simplest 2d tree
|
42
|
+
tree = Geokdtree::Tree.new(2)
|
43
|
+
tree.insert([1, 0])
|
44
|
+
tree.insert([2, 0])
|
45
|
+
tree.insert([3, 0])
|
46
|
+
|
47
|
+
result = tree.nearest([0, 0])
|
48
|
+
puts(result.point.inspect) # => [1.0, 0.0]
|
49
|
+
puts(result.data.inspect) # => nil
|
50
|
+
|
51
|
+
# simple 2d tree with point payload.
|
52
|
+
# abritary objects can be attached to each inserted point
|
53
|
+
tree = Geokdtree::Tree.new(2)
|
54
|
+
tree.insert([1, 0], "point 1")
|
55
|
+
tree.insert([2, 0], "point 2")
|
56
|
+
tree.insert([3, 0], "point 3")
|
57
|
+
|
58
|
+
# single nearest using standard/Euclidean relative distance
|
59
|
+
result = tree.nearest([0, 0])
|
60
|
+
puts(result.point.inspect) # => [1.0, 0.0]
|
61
|
+
puts(result.data.inspect) # => "point 1"
|
62
|
+
|
63
|
+
# nearests within range using standard/Euclidean relative distance
|
64
|
+
results = tree.nearest_range([0, 0], 2)
|
65
|
+
puts(results.size) # => 2
|
66
|
+
puts(results[0].point.inspect) # => [2.0, 0.0]
|
67
|
+
puts(results[0].data.inspect) # => "point 2"
|
68
|
+
puts(results[1].point.inspect) # => [1.0, 0.0]
|
69
|
+
puts(results[1].data.inspect) # => "point 1"
|
70
|
+
|
71
|
+
# 2d tree with lat/lng points
|
72
|
+
tree = Geokdtree::Tree.new(2)
|
73
|
+
tree.insert([40.7, -74.0], "New York")
|
74
|
+
tree.insert([37.77, -122.41], "San Francisco")
|
75
|
+
tree.insert([45.50, -73.55], "Montreal")
|
76
|
+
|
77
|
+
# single nearest using standard/Euclidean relative distance
|
78
|
+
result = tree.nearest([34.1, -118.2]) # Los Angeles
|
79
|
+
puts(result.point.inspect) # => [37.77, -122.41]
|
80
|
+
puts(result.data.inspect) # => "San Francisco"
|
81
|
+
|
82
|
+
|
83
|
+
# nearests within range using miles relative geo distance
|
84
|
+
results = tree.nearest_geo_range([47.6, -122.3], 800) # Seattle, within 800 mi
|
85
|
+
puts(results.size) # => 1
|
86
|
+
puts(results[0].point.inspect) # => [37.77, -122.41]
|
87
|
+
puts(results[0].data.inspect) # => "San Francisco"
|
88
|
+
|
89
|
+
# nearests within range using kilometer relative geo distance
|
90
|
+
results = tree.nearest_geo_range([42.35, -71.06], 500, :km) # Boston, within 500 km
|
91
|
+
puts(results.size) # => 2
|
92
|
+
puts(results[0].point.inspect) # => [45.5, -73.55]
|
93
|
+
puts(results[0].data.inspect) # => "Montreal"
|
94
|
+
puts(results[1].point.inspect) # => [40.7, -74.0]
|
95
|
+
puts(results[1].data.inspect) # => "New York"
|
96
|
+
|
97
|
+
# compute standard/Euclidean distance between two points
|
98
|
+
d = Geokdtree::Tree.distance([-1, 1], [1, 1])
|
99
|
+
puts(d) # => 2
|
100
|
+
|
101
|
+
# compute geo distance between two points (Montreal, Boston)
|
102
|
+
d = Geokdtree::Tree.geo_distance([45.5, -73.55], [42.35, -71.06], :km).round(0)
|
103
|
+
puts(d.inspect) # => 403
|
104
|
+
```
|
105
|
+
|
106
|
+
## Contributing
|
107
|
+
|
108
|
+
1. Fork it
|
109
|
+
2. Create your feature branch (`git checkout -b my-new-feature`)
|
110
|
+
3. Commit your changes (`git commit -am 'Add some feature'`)
|
111
|
+
4. Push to the branch (`git push origin my-new-feature`)
|
112
|
+
5. Create new Pull Request
|
113
|
+
|
114
|
+
## Credits
|
115
|
+
- [John Tsiombikas](http://nuclear.mutantstargoat.com/) for writing the [original C kdtree](https://code.google.com/p/kdtree/).
|
116
|
+
|
117
|
+
## Author
|
118
|
+
Colin Surprenant, [@colinsurprenant](http://twitter.com/colinsurprenant), [http://github.com/colinsurprenant](http://github.com/colinsurprenant), colin.surprenant@gmail.com
|
119
|
+
|
120
|
+
## License
|
121
|
+
Ruby/FFI Geokdtree is distributed under the Apache License, Version 2.0.
|
data/Rakefile
ADDED
@@ -0,0 +1,30 @@
|
|
1
|
+
require 'bundler/setup'
|
2
|
+
require 'rake'
|
3
|
+
require 'rake/clean'
|
4
|
+
require 'bundler/gem_tasks'
|
5
|
+
require 'rspec/core/rake_task'
|
6
|
+
|
7
|
+
task :default => :spec
|
8
|
+
|
9
|
+
desc "clean, make and run specsrkae"
|
10
|
+
task :spec do
|
11
|
+
RSpec::Core::RakeTask.new
|
12
|
+
end
|
13
|
+
|
14
|
+
desc "compile C ext and FFI ext and copy objects into lib"
|
15
|
+
task :make => [:clean] do
|
16
|
+
Dir.chdir("ext/geokdtree") do
|
17
|
+
ruby jruby? ? "-Xcext.enabled=true extconf.rb" : "extconf.rb"
|
18
|
+
sh "make"
|
19
|
+
end
|
20
|
+
cp "ext/geokdtree/geokdtree.bundle", "lib/"
|
21
|
+
end
|
22
|
+
|
23
|
+
CLEAN.include('ext/**/*{.o,.log,.so,.bundle}')
|
24
|
+
CLEAN.include('lib/**/*{.o,.log,.so,.bundle}')
|
25
|
+
CLEAN.include('ext/**/Makefile')
|
26
|
+
|
27
|
+
def jruby?
|
28
|
+
!!(defined?(RUBY_ENGINE) && RUBY_ENGINE == 'jruby')
|
29
|
+
end
|
30
|
+
|
data/example/usage.rb
ADDED
@@ -0,0 +1,65 @@
|
|
1
|
+
require 'bundler/setup'
|
2
|
+
require 'geokdtree'
|
3
|
+
|
4
|
+
# simplest 2d tree
|
5
|
+
tree = Geokdtree::Tree.new(2)
|
6
|
+
tree.insert([1, 0])
|
7
|
+
tree.insert([2, 0])
|
8
|
+
tree.insert([3, 0])
|
9
|
+
|
10
|
+
result = tree.nearest([0, 0])
|
11
|
+
puts(result.point.inspect) # => [1.0, 0.0]
|
12
|
+
puts(result.data.inspect) # => nil
|
13
|
+
|
14
|
+
# simple 2d tree with point payload. abritary objects can be attached to each inserted point
|
15
|
+
tree = Geokdtree::Tree.new(2)
|
16
|
+
tree.insert([1, 0], "point 1")
|
17
|
+
tree.insert([2, 0], "point 2")
|
18
|
+
tree.insert([3, 0], "point 3")
|
19
|
+
|
20
|
+
# single nearest using standard/Euclidean relative distance
|
21
|
+
result = tree.nearest([0, 0])
|
22
|
+
puts(result.point.inspect) # => [1.0, 0.0]
|
23
|
+
puts(result.data.inspect) # => "point 1"
|
24
|
+
|
25
|
+
# nearests within range using standard/Euclidean relative distance
|
26
|
+
results = tree.nearest_range([0, 0], 2)
|
27
|
+
puts(results.size) # => 2
|
28
|
+
puts(results[0].point.inspect) # => [2.0, 0.0]
|
29
|
+
puts(results[0].data.inspect) # => "point 2"
|
30
|
+
puts(results[1].point.inspect) # => [1.0, 0.0]
|
31
|
+
puts(results[1].data.inspect) # => "point 1"
|
32
|
+
|
33
|
+
# 2d tree with lat/lng points
|
34
|
+
tree = Geokdtree::Tree.new(2)
|
35
|
+
tree.insert([40.7, -74.0], "New York")
|
36
|
+
tree.insert([37.77, -122.41], "San Francisco")
|
37
|
+
tree.insert([45.50, -73.55], "Montreal")
|
38
|
+
|
39
|
+
# single nearest using standard/Euclidean relative distance
|
40
|
+
result = tree.nearest([34.1, -118.2]) # Los Angeles
|
41
|
+
puts(result.point.inspect) # => [37.77, -122.41]
|
42
|
+
puts(result.data.inspect) # => "San Francisco"
|
43
|
+
|
44
|
+
|
45
|
+
# nearests within range using miles relative geo distance
|
46
|
+
results = tree.nearest_geo_range([47.6, -122.3], 800) # Seattle, within 800 miles
|
47
|
+
puts(results.size) # => 1
|
48
|
+
puts(results[0].point.inspect) # => [37.77, -122.41]
|
49
|
+
puts(results[0].data.inspect) # => "San Francisco"
|
50
|
+
|
51
|
+
# nearests within range using kilometer relative geo distance
|
52
|
+
results = tree.nearest_geo_range([42.35, -71.06], 500, :km) # Boston, within 500 kilometer
|
53
|
+
puts(results.size) # => 2
|
54
|
+
puts(results[0].point.inspect) # => [45.5, -73.55]
|
55
|
+
puts(results[0].data.inspect) # => "Montreal"
|
56
|
+
puts(results[1].point.inspect) # => [40.7, -74.0]
|
57
|
+
puts(results[1].data.inspect) # => "New York"
|
58
|
+
|
59
|
+
# compute standard/Euclidean distance between two points
|
60
|
+
d = Geokdtree::Tree.distance([-1, 1], [1, 1])
|
61
|
+
puts(d) # => 2
|
62
|
+
|
63
|
+
# compute geo distance between two points
|
64
|
+
d = Geokdtree::Tree.geo_distance([45.5, -73.55], [42.35, -71.06], :km).round(0) # Montreal, Boston
|
65
|
+
puts(d.inspect) # => 403
|
@@ -0,0 +1,70 @@
|
|
1
|
+
#include <stdio.h>
|
2
|
+
#include <stdlib.h>
|
3
|
+
#include <string.h>
|
4
|
+
#include <math.h>
|
5
|
+
#include "distance.h"
|
6
|
+
|
7
|
+
static double RADIAN_PER_DEGREE = M_PI / 180.0;
|
8
|
+
|
9
|
+
/* return the square Euclidean distance from two points in k dimensions */
|
10
|
+
double square_euclidean_distance(const double *a, const double *b, int k) {
|
11
|
+
double d = 0, diff;
|
12
|
+
while (--k >= 0) {
|
13
|
+
diff = (a[k] - b[k]);
|
14
|
+
d += diff * diff;
|
15
|
+
}
|
16
|
+
return d;
|
17
|
+
}
|
18
|
+
|
19
|
+
/* return the Euclidean distance from two points in k dimensions */
|
20
|
+
double euclidean_distance(const double *a, const double *b, int k) {
|
21
|
+
return sqrt(square_euclidean_distance(a, b, k));
|
22
|
+
}
|
23
|
+
|
24
|
+
/* return the Euclidean distance from two points in two dimensions */
|
25
|
+
double euclidean_distance2(double ax, double ay, double bx, double by) {
|
26
|
+
double a[2];
|
27
|
+
double b[2];
|
28
|
+
a[0] = ax;
|
29
|
+
a[1] = ay;
|
30
|
+
b[0] = bx;
|
31
|
+
b[1] = by;
|
32
|
+
return sqrt(square_euclidean_distance(a, b, 2));
|
33
|
+
}
|
34
|
+
|
35
|
+
/* return the geo distance from two lat/lng points using the spherical law of cosines */
|
36
|
+
double slc_distance(const double *a, const double *b, double radius) {
|
37
|
+
double rlat1 = RADIAN_PER_DEGREE * a[0];
|
38
|
+
double rlng1 = RADIAN_PER_DEGREE * a[1];
|
39
|
+
double rlat2 = RADIAN_PER_DEGREE * b[0];
|
40
|
+
double rlng2 = RADIAN_PER_DEGREE * b[1];
|
41
|
+
return acos(sin(rlat1) * sin(rlat2) + cos(rlat1) * cos(rlat2) * cos(rlng2 - rlng1)) * radius;
|
42
|
+
}
|
43
|
+
|
44
|
+
/* return the geo distance from two lat/lng points using the spherical law of cosines */
|
45
|
+
double slc_distance2(double lat1, double lng1, double lat2, double lng2, double radius) {
|
46
|
+
double a[2];
|
47
|
+
double b[2];
|
48
|
+
a[0] = lat1, a[1] = lng1;
|
49
|
+
b[0] = lat2, b[1] = lng2;
|
50
|
+
return slc_distance(a, b, radius);
|
51
|
+
}
|
52
|
+
|
53
|
+
/* return the geo distance from two lat/lng points using the haversine formula */
|
54
|
+
double haversine_distance2(double lat1, double lng1, double lat2, double lng2, double radius) {
|
55
|
+
double rlat1 = RADIAN_PER_DEGREE * lat1;
|
56
|
+
double rlat2 = RADIAN_PER_DEGREE * lat2;
|
57
|
+
double rdistlat = RADIAN_PER_DEGREE * (lat2 - lat1);
|
58
|
+
double rdistlng = RADIAN_PER_DEGREE * (lng2 - lng1);
|
59
|
+
double a = SQ(sin(rdistlat / 2.0)) + cos(rlat1) * cos(rlat2) * SQ(sin(rdistlng / 2.0));
|
60
|
+
double c = 2.0 * atan2(sqrt(a), sqrt(1 - a));
|
61
|
+
return c * radius;
|
62
|
+
}
|
63
|
+
|
64
|
+
int bsq_compare(double a, double b) {
|
65
|
+
return (a > SQ(b)) - (a < SQ(b));
|
66
|
+
}
|
67
|
+
|
68
|
+
int std_compare(double a, double b) {
|
69
|
+
return (a > b) - (a < b);
|
70
|
+
}
|
@@ -0,0 +1,38 @@
|
|
1
|
+
#ifndef _DISTANCE_H_
|
2
|
+
#define _DISTANCE_H_
|
3
|
+
|
4
|
+
#ifdef __cplusplus
|
5
|
+
extern "C" {
|
6
|
+
#endif
|
7
|
+
|
8
|
+
#define RADIUS_MI 3958.760
|
9
|
+
#define RADIUS_KM 6371.0
|
10
|
+
#define KM_PER_MI 1.609
|
11
|
+
#define SQ(x) ((x) * (x))
|
12
|
+
|
13
|
+
/* return the square Euclidean distance from two points in k dimensions */
|
14
|
+
double square_euclidean_distance(const double *a, const double *b, int k);
|
15
|
+
|
16
|
+
/* return the Euclidean distance from two points in k dimensions */
|
17
|
+
double euclidean_distance(const double *a, const double *b, int k);
|
18
|
+
|
19
|
+
/* return the Euclidean distance from two points in two dimensions */
|
20
|
+
double euclidean_distance2(double ax, double ay, double bx, double by);
|
21
|
+
|
22
|
+
/* return the geo distance from two lat/lng points using the spherical law of cosines */
|
23
|
+
double slc_distance(const double *a, const double *b, double radius);
|
24
|
+
|
25
|
+
/* return the geo distance from two lat/lng points using the spherical law of cosines */
|
26
|
+
double slc_distance2(double lat1, double lng1, double lat2, double lng2, double radius);
|
27
|
+
|
28
|
+
/* return the geo distance from two lat/lng points using the haversine formula */
|
29
|
+
double haversine_distance2(double lat1, double lng1, double lat2, double lng2, double radius);
|
30
|
+
|
31
|
+
int bsq_compare(double a, double b);
|
32
|
+
int std_compare(double a, double b);
|
33
|
+
|
34
|
+
#ifdef __cplusplus
|
35
|
+
}
|
36
|
+
#endif
|
37
|
+
|
38
|
+
#endif /* _DISTANCE_H_ */
|
@@ -0,0 +1,782 @@
|
|
1
|
+
/*
|
2
|
+
This file is part of ``kdtree'', a library for working with kd-trees.
|
3
|
+
Copyright (C) 2007-2011 John Tsiombikas <nuclear@member.fsf.org>
|
4
|
+
|
5
|
+
Redistribution and use in source and binary forms, with or without
|
6
|
+
modification, are permitted provided that the following conditions are met:
|
7
|
+
|
8
|
+
1. Redistributions of source code must retain the above copyright notice, this
|
9
|
+
list of conditions and the following disclaimer.
|
10
|
+
2. Redistributions in binary form must reproduce the above copyright notice,
|
11
|
+
this list of conditions and the following disclaimer in the documentation
|
12
|
+
and/or other materials provided with the distribution.
|
13
|
+
3. The name of the author may not be used to endorse or promote products
|
14
|
+
derived from this software without specific prior written permission.
|
15
|
+
|
16
|
+
THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
17
|
+
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
18
|
+
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
|
19
|
+
EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
20
|
+
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
|
21
|
+
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
22
|
+
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
23
|
+
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
|
24
|
+
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
|
25
|
+
OF SUCH DAMAGE.
|
26
|
+
*/
|
27
|
+
|
28
|
+
/* single nearest neighbor search written by Tamas Nepusz <tamas@cs.rhul.ac.uk> */
|
29
|
+
|
30
|
+
/*
|
31
|
+
Feb 2013 - Colin Surprenant <colin.surprenant@gmail.com>
|
32
|
+
- inclusion in the ruby-ffi-kdtree gem
|
33
|
+
- added kd_nearest2
|
34
|
+
- added kd_nearest_range2
|
35
|
+
- added kd_insert2
|
36
|
+
- refactored find_nearest to externalize the distance computation and distance comparison
|
37
|
+
- refactored kd_nearest_range into kd_generic_nearest_range to externalize the distance computation and distance comparison
|
38
|
+
- added kd_nearest_geo_range
|
39
|
+
- added distance.[ch]
|
40
|
+
- removed all float functions
|
41
|
+
|
42
|
+
original source code from https://code.google.com/p/kdtree/
|
43
|
+
using version 0.5.6 dated Nov 2011
|
44
|
+
*/
|
45
|
+
|
46
|
+
#include <stdio.h>
|
47
|
+
#include <stdlib.h>
|
48
|
+
#include <string.h>
|
49
|
+
#include <math.h>
|
50
|
+
#include "kdtree.h"
|
51
|
+
#include "distance.h"
|
52
|
+
|
53
|
+
#if defined(WIN32) || defined(__WIN32__)
|
54
|
+
#include <malloc.h>
|
55
|
+
#endif
|
56
|
+
|
57
|
+
#ifdef USE_LIST_NODE_ALLOCATOR
|
58
|
+
|
59
|
+
#ifndef NO_PTHREADS
|
60
|
+
#include <pthread.h>
|
61
|
+
#else
|
62
|
+
|
63
|
+
#ifndef I_WANT_THREAD_BUGS
|
64
|
+
#error "You are compiling with the fast list node allocator, with pthreads disabled! This WILL break if used from multiple threads."
|
65
|
+
#endif /* I want thread bugs */
|
66
|
+
|
67
|
+
#endif /* pthread support */
|
68
|
+
#endif /* use list node allocator */
|
69
|
+
|
70
|
+
struct kdhyperrect {
|
71
|
+
int dim;
|
72
|
+
double *min, *max; /* minimum/maximum coords */
|
73
|
+
};
|
74
|
+
|
75
|
+
struct kdnode {
|
76
|
+
double *pos;
|
77
|
+
int dir;
|
78
|
+
void *data;
|
79
|
+
|
80
|
+
struct kdnode *left, *right; /* negative/positive side */
|
81
|
+
};
|
82
|
+
|
83
|
+
struct res_node {
|
84
|
+
struct kdnode *item;
|
85
|
+
double dist_sq;
|
86
|
+
struct res_node *next;
|
87
|
+
};
|
88
|
+
|
89
|
+
struct kdtree {
|
90
|
+
int dim;
|
91
|
+
struct kdnode *root;
|
92
|
+
struct kdhyperrect *rect;
|
93
|
+
void (*destr)(void*);
|
94
|
+
};
|
95
|
+
|
96
|
+
struct kdres {
|
97
|
+
struct kdtree *tree;
|
98
|
+
struct res_node *rlist, *riter;
|
99
|
+
int size;
|
100
|
+
};
|
101
|
+
|
102
|
+
#define SQ(x) ((x) * (x))
|
103
|
+
|
104
|
+
|
105
|
+
static int find_nearest(struct kdnode *node, const double *pos, double range, struct res_node *list, int ordered, int dim, double (*distance_function)(const double *, const double *, int k), int (*compare_function)(double, double));
|
106
|
+
static void kd_nearest_i(struct kdnode *node, const double *pos, struct kdnode **result, double *result_dist_sq, struct kdhyperrect* rect);
|
107
|
+
static double geo_distance_mi(const double *a, const double *b, int k);
|
108
|
+
static double geo_distance_km(const double *a, const double *b, int k);
|
109
|
+
|
110
|
+
static void clear_rec(struct kdnode *node, void (*destr)(void*));
|
111
|
+
static int insert_rec(struct kdnode **node, const double *pos, void *data, int dir, int dim);
|
112
|
+
static int rlist_insert(struct res_node *list, struct kdnode *item, double dist_sq);
|
113
|
+
static void clear_results(struct kdres *set);
|
114
|
+
|
115
|
+
static struct kdhyperrect* hyperrect_create(int dim, const double *min, const double *max);
|
116
|
+
static void hyperrect_free(struct kdhyperrect *rect);
|
117
|
+
static struct kdhyperrect* hyperrect_duplicate(const struct kdhyperrect *rect);
|
118
|
+
static void hyperrect_extend(struct kdhyperrect *rect, const double *pos);
|
119
|
+
static double hyperrect_dist_sq(struct kdhyperrect *rect, const double *pos);
|
120
|
+
|
121
|
+
#ifdef USE_LIST_NODE_ALLOCATOR
|
122
|
+
static struct res_node *alloc_resnode(void);
|
123
|
+
static void free_resnode(struct res_node*);
|
124
|
+
#else
|
125
|
+
#define alloc_resnode() malloc(sizeof(struct res_node))
|
126
|
+
#define free_resnode(n) free(n)
|
127
|
+
#endif
|
128
|
+
|
129
|
+
|
130
|
+
struct kdtree *kd_create(int k)
|
131
|
+
{
|
132
|
+
struct kdtree *tree;
|
133
|
+
|
134
|
+
if(!(tree = malloc(sizeof *tree))) {
|
135
|
+
return 0;
|
136
|
+
}
|
137
|
+
|
138
|
+
tree->dim = k;
|
139
|
+
tree->root = 0;
|
140
|
+
tree->destr = 0;
|
141
|
+
tree->rect = 0;
|
142
|
+
|
143
|
+
return tree;
|
144
|
+
}
|
145
|
+
|
146
|
+
void kd_free(struct kdtree *tree)
|
147
|
+
{
|
148
|
+
if(tree) {
|
149
|
+
kd_clear(tree);
|
150
|
+
free(tree);
|
151
|
+
}
|
152
|
+
}
|
153
|
+
|
154
|
+
static void clear_rec(struct kdnode *node, void (*destr)(void*))
|
155
|
+
{
|
156
|
+
if(!node) return;
|
157
|
+
|
158
|
+
clear_rec(node->left, destr);
|
159
|
+
clear_rec(node->right, destr);
|
160
|
+
|
161
|
+
if(destr) {
|
162
|
+
destr(node->data);
|
163
|
+
}
|
164
|
+
free(node->pos);
|
165
|
+
free(node);
|
166
|
+
}
|
167
|
+
|
168
|
+
void kd_clear(struct kdtree *tree)
|
169
|
+
{
|
170
|
+
clear_rec(tree->root, tree->destr);
|
171
|
+
tree->root = 0;
|
172
|
+
|
173
|
+
if (tree->rect) {
|
174
|
+
hyperrect_free(tree->rect);
|
175
|
+
tree->rect = 0;
|
176
|
+
}
|
177
|
+
}
|
178
|
+
|
179
|
+
void kd_data_destructor(struct kdtree *tree, void (*destr)(void*))
|
180
|
+
{
|
181
|
+
tree->destr = destr;
|
182
|
+
}
|
183
|
+
|
184
|
+
|
185
|
+
static int insert_rec(struct kdnode **nptr, const double *pos, void *data, int dir, int dim)
|
186
|
+
{
|
187
|
+
int new_dir;
|
188
|
+
struct kdnode *node;
|
189
|
+
|
190
|
+
if(!*nptr) {
|
191
|
+
if(!(node = malloc(sizeof *node))) {
|
192
|
+
return -1;
|
193
|
+
}
|
194
|
+
if(!(node->pos = malloc(dim * sizeof *node->pos))) {
|
195
|
+
free(node);
|
196
|
+
return -1;
|
197
|
+
}
|
198
|
+
memcpy(node->pos, pos, dim * sizeof *node->pos);
|
199
|
+
node->data = data;
|
200
|
+
node->dir = dir;
|
201
|
+
node->left = node->right = 0;
|
202
|
+
*nptr = node;
|
203
|
+
return 0;
|
204
|
+
}
|
205
|
+
|
206
|
+
node = *nptr;
|
207
|
+
new_dir = (node->dir + 1) % dim;
|
208
|
+
if(pos[node->dir] < node->pos[node->dir]) {
|
209
|
+
return insert_rec(&(*nptr)->left, pos, data, new_dir, dim);
|
210
|
+
}
|
211
|
+
return insert_rec(&(*nptr)->right, pos, data, new_dir, dim);
|
212
|
+
}
|
213
|
+
|
214
|
+
int kd_insert(struct kdtree *tree, const double *pos, void *data)
|
215
|
+
{
|
216
|
+
if (insert_rec(&tree->root, pos, data, 0, tree->dim)) {
|
217
|
+
return -1;
|
218
|
+
}
|
219
|
+
|
220
|
+
if (tree->rect == 0) {
|
221
|
+
tree->rect = hyperrect_create(tree->dim, pos, pos);
|
222
|
+
} else {
|
223
|
+
hyperrect_extend(tree->rect, pos);
|
224
|
+
}
|
225
|
+
|
226
|
+
return 0;
|
227
|
+
}
|
228
|
+
|
229
|
+
int kd_insert2(struct kdtree *tree, double x, double y, void *data)
|
230
|
+
{
|
231
|
+
double pos[2];
|
232
|
+
pos[0] = x;
|
233
|
+
pos[1] = y;
|
234
|
+
return kd_insert(tree, pos, data);
|
235
|
+
}
|
236
|
+
|
237
|
+
int kd_insert3(struct kdtree *tree, double x, double y, double z, void *data)
|
238
|
+
{
|
239
|
+
double pos[3];
|
240
|
+
pos[0] = x;
|
241
|
+
pos[1] = y;
|
242
|
+
pos[2] = z;
|
243
|
+
return kd_insert(tree, pos, data);
|
244
|
+
}
|
245
|
+
|
246
|
+
/* TODO: add > 16 dimensions handling */
|
247
|
+
static int find_nearest(
|
248
|
+
struct kdnode *node,
|
249
|
+
const double *pos,
|
250
|
+
double range,
|
251
|
+
struct res_node *list,
|
252
|
+
int ordered,
|
253
|
+
int dim,
|
254
|
+
double (*distance_function)(const double *, const double *, int k),
|
255
|
+
int (*compare_function)(double, double)
|
256
|
+
)
|
257
|
+
{
|
258
|
+
double dist, one_dim_dist, one_dim_relative_dist;
|
259
|
+
int i, ret, added_res = 0;
|
260
|
+
double one_dim_pos[16];
|
261
|
+
|
262
|
+
if(!node) return 0;
|
263
|
+
if(dim > 16) return -1;
|
264
|
+
|
265
|
+
dist = (*distance_function)(node->pos, pos, dim);
|
266
|
+
if((*compare_function)(dist, range) <= 0) {
|
267
|
+
if(rlist_insert(list, node, ordered ? dist : -1.0) == -1) {
|
268
|
+
return -1;
|
269
|
+
}
|
270
|
+
added_res = 1;
|
271
|
+
}
|
272
|
+
|
273
|
+
/* isolate single dimension position from node->pos into one_dim_pos for single dimension distance computation */
|
274
|
+
for(i = 0; i < dim; i++) {
|
275
|
+
one_dim_pos[i] = pos[i];
|
276
|
+
}
|
277
|
+
one_dim_pos[node->dir] = node->pos[node->dir];
|
278
|
+
|
279
|
+
one_dim_dist = (*distance_function)(pos, one_dim_pos, dim);
|
280
|
+
one_dim_relative_dist = pos[node->dir] - node->pos[node->dir];
|
281
|
+
|
282
|
+
ret = find_nearest(one_dim_relative_dist <= 0.0 ? node->left : node->right, pos, range, list, ordered, dim, distance_function, compare_function);
|
283
|
+
if(ret >= 0 && (*compare_function)(one_dim_dist, range) < 0) {
|
284
|
+
added_res += ret;
|
285
|
+
ret = find_nearest(one_dim_relative_dist <= 0.0 ? node->right : node->left, pos, range, list, ordered, dim, distance_function, compare_function);
|
286
|
+
}
|
287
|
+
if(ret == -1) {
|
288
|
+
return -1;
|
289
|
+
}
|
290
|
+
added_res += ret;
|
291
|
+
|
292
|
+
return added_res;
|
293
|
+
}
|
294
|
+
|
295
|
+
#if 0
|
296
|
+
static int find_nearest_n(struct kdnode *node, const double *pos, double range, int num, struct rheap *heap, int dim)
|
297
|
+
{
|
298
|
+
double dist_sq, dx;
|
299
|
+
int i, ret, added_res = 0;
|
300
|
+
|
301
|
+
if(!node) return 0;
|
302
|
+
|
303
|
+
/* if the photon is close enough, add it to the result heap */
|
304
|
+
dist_sq = 0;
|
305
|
+
for(i=0; i<dim; i++) {
|
306
|
+
dist_sq += SQ(node->pos[i] - pos[i]);
|
307
|
+
}
|
308
|
+
if(dist_sq <= range_sq) {
|
309
|
+
if(heap->size >= num) {
|
310
|
+
/* get furthest element */
|
311
|
+
struct res_node *maxelem = rheap_get_max(heap);
|
312
|
+
|
313
|
+
/* and check if the new one is closer than that */
|
314
|
+
if(maxelem->dist_sq > dist_sq) {
|
315
|
+
rheap_remove_max(heap);
|
316
|
+
|
317
|
+
if(rheap_insert(heap, node, dist_sq) == -1) {
|
318
|
+
return -1;
|
319
|
+
}
|
320
|
+
added_res = 1;
|
321
|
+
|
322
|
+
range_sq = dist_sq;
|
323
|
+
}
|
324
|
+
} else {
|
325
|
+
if(rheap_insert(heap, node, dist_sq) == -1) {
|
326
|
+
return =1;
|
327
|
+
}
|
328
|
+
added_res = 1;
|
329
|
+
}
|
330
|
+
}
|
331
|
+
|
332
|
+
|
333
|
+
/* find signed distance from the splitting plane */
|
334
|
+
dx = pos[node->dir] - node->pos[node->dir];
|
335
|
+
|
336
|
+
ret = find_nearest_n(dx <= 0.0 ? node->left : node->right, pos, range, num, heap, dim);
|
337
|
+
if(ret >= 0 && fabs(dx) < range) {
|
338
|
+
added_res += ret;
|
339
|
+
ret = find_nearest_n(dx <= 0.0 ? node->right : node->left, pos, range, num, heap, dim);
|
340
|
+
}
|
341
|
+
|
342
|
+
}
|
343
|
+
#endif
|
344
|
+
|
345
|
+
static void kd_nearest_i(struct kdnode *node, const double *pos, struct kdnode **result, double *result_dist_sq, struct kdhyperrect* rect)
|
346
|
+
{
|
347
|
+
int dir = node->dir;
|
348
|
+
int i;
|
349
|
+
double dummy, dist_sq;
|
350
|
+
struct kdnode *nearer_subtree, *farther_subtree;
|
351
|
+
double *nearer_hyperrect_coord, *farther_hyperrect_coord;
|
352
|
+
|
353
|
+
/* Decide whether to go left or right in the tree */
|
354
|
+
dummy = pos[dir] - node->pos[dir];
|
355
|
+
if (dummy <= 0) {
|
356
|
+
nearer_subtree = node->left;
|
357
|
+
farther_subtree = node->right;
|
358
|
+
nearer_hyperrect_coord = rect->max + dir;
|
359
|
+
farther_hyperrect_coord = rect->min + dir;
|
360
|
+
} else {
|
361
|
+
nearer_subtree = node->right;
|
362
|
+
farther_subtree = node->left;
|
363
|
+
nearer_hyperrect_coord = rect->min + dir;
|
364
|
+
farther_hyperrect_coord = rect->max + dir;
|
365
|
+
}
|
366
|
+
|
367
|
+
if (nearer_subtree) {
|
368
|
+
/* Slice the hyperrect to get the hyperrect of the nearer subtree */
|
369
|
+
dummy = *nearer_hyperrect_coord;
|
370
|
+
*nearer_hyperrect_coord = node->pos[dir];
|
371
|
+
/* Recurse down into nearer subtree */
|
372
|
+
kd_nearest_i(nearer_subtree, pos, result, result_dist_sq, rect);
|
373
|
+
/* Undo the slice */
|
374
|
+
*nearer_hyperrect_coord = dummy;
|
375
|
+
}
|
376
|
+
|
377
|
+
/* Check the distance of the point at the current node, compare it
|
378
|
+
* with our best so far */
|
379
|
+
dist_sq = 0;
|
380
|
+
for(i=0; i < rect->dim; i++) {
|
381
|
+
dist_sq += SQ(node->pos[i] - pos[i]);
|
382
|
+
}
|
383
|
+
if (dist_sq < *result_dist_sq) {
|
384
|
+
*result = node;
|
385
|
+
*result_dist_sq = dist_sq;
|
386
|
+
}
|
387
|
+
|
388
|
+
if (farther_subtree) {
|
389
|
+
/* Get the hyperrect of the farther subtree */
|
390
|
+
dummy = *farther_hyperrect_coord;
|
391
|
+
*farther_hyperrect_coord = node->pos[dir];
|
392
|
+
/* Check if we have to recurse down by calculating the closest
|
393
|
+
* point of the hyperrect and see if it's closer than our
|
394
|
+
* minimum distance in result_dist_sq. */
|
395
|
+
if (hyperrect_dist_sq(rect, pos) < *result_dist_sq) {
|
396
|
+
/* Recurse down into farther subtree */
|
397
|
+
kd_nearest_i(farther_subtree, pos, result, result_dist_sq, rect);
|
398
|
+
}
|
399
|
+
/* Undo the slice on the hyperrect */
|
400
|
+
*farther_hyperrect_coord = dummy;
|
401
|
+
}
|
402
|
+
}
|
403
|
+
|
404
|
+
struct kdres *kd_nearest(struct kdtree *kd, const double *pos)
|
405
|
+
{
|
406
|
+
struct kdhyperrect *rect;
|
407
|
+
struct kdnode *result;
|
408
|
+
struct kdres *rset;
|
409
|
+
double dist_sq;
|
410
|
+
int i;
|
411
|
+
|
412
|
+
if (!kd) return 0;
|
413
|
+
if (!kd->rect) return 0;
|
414
|
+
|
415
|
+
/* Allocate result set */
|
416
|
+
if(!(rset = malloc(sizeof *rset))) {
|
417
|
+
return 0;
|
418
|
+
}
|
419
|
+
if(!(rset->rlist = alloc_resnode())) {
|
420
|
+
free(rset);
|
421
|
+
return 0;
|
422
|
+
}
|
423
|
+
rset->rlist->next = 0;
|
424
|
+
rset->tree = kd;
|
425
|
+
|
426
|
+
/* Duplicate the bounding hyperrectangle, we will work on the copy */
|
427
|
+
if (!(rect = hyperrect_duplicate(kd->rect))) {
|
428
|
+
kd_res_free(rset);
|
429
|
+
return 0;
|
430
|
+
}
|
431
|
+
|
432
|
+
/* Our first guesstimate is the root node */
|
433
|
+
result = kd->root;
|
434
|
+
dist_sq = 0;
|
435
|
+
for (i = 0; i < kd->dim; i++)
|
436
|
+
dist_sq += SQ(result->pos[i] - pos[i]);
|
437
|
+
|
438
|
+
/* Search for the nearest neighbour recursively */
|
439
|
+
kd_nearest_i(kd->root, pos, &result, &dist_sq, rect);
|
440
|
+
|
441
|
+
/* Free the copy of the hyperrect */
|
442
|
+
hyperrect_free(rect);
|
443
|
+
|
444
|
+
/* Store the result */
|
445
|
+
if (result) {
|
446
|
+
if (rlist_insert(rset->rlist, result, -1.0) == -1) {
|
447
|
+
kd_res_free(rset);
|
448
|
+
return 0;
|
449
|
+
}
|
450
|
+
rset->size = 1;
|
451
|
+
kd_res_rewind(rset);
|
452
|
+
return rset;
|
453
|
+
} else {
|
454
|
+
kd_res_free(rset);
|
455
|
+
return 0;
|
456
|
+
}
|
457
|
+
}
|
458
|
+
|
459
|
+
|
460
|
+
struct kdres *kd_nearest2(struct kdtree *tree, double x, double y)
|
461
|
+
{
|
462
|
+
double pos[2];
|
463
|
+
pos[0] = x;
|
464
|
+
pos[1] = y;
|
465
|
+
return kd_nearest(tree, pos);
|
466
|
+
}
|
467
|
+
|
468
|
+
struct kdres *kd_nearest3(struct kdtree *tree, double x, double y, double z)
|
469
|
+
{
|
470
|
+
double pos[3];
|
471
|
+
pos[0] = x;
|
472
|
+
pos[1] = y;
|
473
|
+
pos[2] = z;
|
474
|
+
return kd_nearest(tree, pos);
|
475
|
+
}
|
476
|
+
|
477
|
+
/* ---- nearest N search ---- */
|
478
|
+
/*
|
479
|
+
static kdres *kd_nearest_n(struct kdtree *kd, const double *pos, int num)
|
480
|
+
{
|
481
|
+
int ret;
|
482
|
+
struct kdres *rset;
|
483
|
+
|
484
|
+
if(!(rset = malloc(sizeof *rset))) {
|
485
|
+
return 0;
|
486
|
+
}
|
487
|
+
if(!(rset->rlist = alloc_resnode())) {
|
488
|
+
free(rset);
|
489
|
+
return 0;
|
490
|
+
}
|
491
|
+
rset->rlist->next = 0;
|
492
|
+
rset->tree = kd;
|
493
|
+
|
494
|
+
if((ret = find_nearest_n(kd->root, pos, range, num, rset->rlist, kd->dim)) == -1) {
|
495
|
+
kd_res_free(rset);
|
496
|
+
return 0;
|
497
|
+
}
|
498
|
+
rset->size = ret;
|
499
|
+
kd_res_rewind(rset);
|
500
|
+
return rset;
|
501
|
+
}*/
|
502
|
+
|
503
|
+
struct kdres *kd_generic_nearest_range(
|
504
|
+
struct kdtree *kd,
|
505
|
+
const double *pos,
|
506
|
+
double range,
|
507
|
+
double (*distance_function)(const double *, const double *, int k),
|
508
|
+
int (*compare_function)(double, double)
|
509
|
+
)
|
510
|
+
{
|
511
|
+
int ret;
|
512
|
+
struct kdres *rset;
|
513
|
+
|
514
|
+
if(!(rset = malloc(sizeof *rset))) {
|
515
|
+
return 0;
|
516
|
+
}
|
517
|
+
if(!(rset->rlist = alloc_resnode())) {
|
518
|
+
free(rset);
|
519
|
+
return 0;
|
520
|
+
}
|
521
|
+
rset->rlist->next = 0;
|
522
|
+
rset->tree = kd;
|
523
|
+
|
524
|
+
if((ret = find_nearest(kd->root, pos, range, rset->rlist, 0, kd->dim, distance_function, compare_function)) == -1) {
|
525
|
+
kd_res_free(rset);
|
526
|
+
return 0;
|
527
|
+
}
|
528
|
+
rset->size = ret;
|
529
|
+
kd_res_rewind(rset);
|
530
|
+
return rset;
|
531
|
+
}
|
532
|
+
|
533
|
+
struct kdres *kd_nearest_range(struct kdtree *kd, const double *pos, double range)
|
534
|
+
{
|
535
|
+
return kd_generic_nearest_range(kd, pos, range, square_euclidean_distance, bsq_compare);
|
536
|
+
}
|
537
|
+
|
538
|
+
struct kdres *kd_nearest_range2(struct kdtree *tree, double x, double y, double range)
|
539
|
+
{
|
540
|
+
double pos[2];
|
541
|
+
pos[0] = x;
|
542
|
+
pos[1] = y;
|
543
|
+
return kd_nearest_range(tree, pos, range);
|
544
|
+
}
|
545
|
+
|
546
|
+
struct kdres *kd_nearest_range3(struct kdtree *tree, double x, double y, double z, double range)
|
547
|
+
{
|
548
|
+
double pos[3];
|
549
|
+
pos[0] = x;
|
550
|
+
pos[1] = y;
|
551
|
+
pos[2] = z;
|
552
|
+
return kd_nearest_range(tree, pos, range);
|
553
|
+
}
|
554
|
+
|
555
|
+
static double geo_distance_mi(const double *a, const double *b, int k)
|
556
|
+
{
|
557
|
+
/* just ignore k, we know its 2d but k is required per distance function signature */
|
558
|
+
return slc_distance(a, b, RADIUS_MI);
|
559
|
+
}
|
560
|
+
|
561
|
+
static double geo_distance_km(const double *a, const double *b, int k)
|
562
|
+
{
|
563
|
+
/* just ignore k, we know its 2d but k is required per distance function signature */
|
564
|
+
return slc_distance(a, b, RADIUS_KM);
|
565
|
+
}
|
566
|
+
|
567
|
+
struct kdres *kd_nearest_geo_range(struct kdtree *kd, double lat, double lng, double range, int units)
|
568
|
+
{
|
569
|
+
double pos[2];
|
570
|
+
pos[0] = lat;
|
571
|
+
pos[1] = lng;
|
572
|
+
if(units != GEO_UNITS_MI) {
|
573
|
+
return kd_generic_nearest_range(kd, pos, range, geo_distance_km, std_compare);
|
574
|
+
}
|
575
|
+
return kd_generic_nearest_range(kd, pos, range, geo_distance_mi, std_compare);
|
576
|
+
}
|
577
|
+
|
578
|
+
void kd_res_free(struct kdres *rset)
|
579
|
+
{
|
580
|
+
clear_results(rset);
|
581
|
+
free_resnode(rset->rlist);
|
582
|
+
free(rset);
|
583
|
+
}
|
584
|
+
|
585
|
+
int kd_res_size(struct kdres *set)
|
586
|
+
{
|
587
|
+
return (set->size);
|
588
|
+
}
|
589
|
+
|
590
|
+
void kd_res_rewind(struct kdres *rset)
|
591
|
+
{
|
592
|
+
rset->riter = rset->rlist->next;
|
593
|
+
}
|
594
|
+
|
595
|
+
int kd_res_end(struct kdres *rset)
|
596
|
+
{
|
597
|
+
return rset->riter == 0;
|
598
|
+
}
|
599
|
+
|
600
|
+
int kd_res_next(struct kdres *rset)
|
601
|
+
{
|
602
|
+
rset->riter = rset->riter->next;
|
603
|
+
return rset->riter != 0;
|
604
|
+
}
|
605
|
+
|
606
|
+
void *kd_res_item(struct kdres *rset, double *pos)
|
607
|
+
{
|
608
|
+
if(rset->riter) {
|
609
|
+
if(pos) {
|
610
|
+
memcpy(pos, rset->riter->item->pos, rset->tree->dim * sizeof *pos);
|
611
|
+
}
|
612
|
+
return rset->riter->item->data;
|
613
|
+
}
|
614
|
+
return 0;
|
615
|
+
}
|
616
|
+
|
617
|
+
void *kd_res_item3(struct kdres *rset, double *x, double *y, double *z)
|
618
|
+
{
|
619
|
+
if(rset->riter) {
|
620
|
+
if(*x) *x = rset->riter->item->pos[0];
|
621
|
+
if(*y) *y = rset->riter->item->pos[1];
|
622
|
+
if(*z) *z = rset->riter->item->pos[2];
|
623
|
+
}
|
624
|
+
return 0;
|
625
|
+
}
|
626
|
+
|
627
|
+
void *kd_res_item_data(struct kdres *set)
|
628
|
+
{
|
629
|
+
return kd_res_item(set, 0);
|
630
|
+
}
|
631
|
+
|
632
|
+
/* ---- hyperrectangle helpers ---- */
|
633
|
+
static struct kdhyperrect* hyperrect_create(int dim, const double *min, const double *max)
|
634
|
+
{
|
635
|
+
size_t size = dim * sizeof(double);
|
636
|
+
struct kdhyperrect* rect = 0;
|
637
|
+
|
638
|
+
if (!(rect = malloc(sizeof(struct kdhyperrect)))) {
|
639
|
+
return 0;
|
640
|
+
}
|
641
|
+
|
642
|
+
rect->dim = dim;
|
643
|
+
if (!(rect->min = malloc(size))) {
|
644
|
+
free(rect);
|
645
|
+
return 0;
|
646
|
+
}
|
647
|
+
if (!(rect->max = malloc(size))) {
|
648
|
+
free(rect->min);
|
649
|
+
free(rect);
|
650
|
+
return 0;
|
651
|
+
}
|
652
|
+
memcpy(rect->min, min, size);
|
653
|
+
memcpy(rect->max, max, size);
|
654
|
+
|
655
|
+
return rect;
|
656
|
+
}
|
657
|
+
|
658
|
+
static void hyperrect_free(struct kdhyperrect *rect)
|
659
|
+
{
|
660
|
+
free(rect->min);
|
661
|
+
free(rect->max);
|
662
|
+
free(rect);
|
663
|
+
}
|
664
|
+
|
665
|
+
static struct kdhyperrect* hyperrect_duplicate(const struct kdhyperrect *rect)
|
666
|
+
{
|
667
|
+
return hyperrect_create(rect->dim, rect->min, rect->max);
|
668
|
+
}
|
669
|
+
|
670
|
+
static void hyperrect_extend(struct kdhyperrect *rect, const double *pos)
|
671
|
+
{
|
672
|
+
int i;
|
673
|
+
|
674
|
+
for (i=0; i < rect->dim; i++) {
|
675
|
+
if (pos[i] < rect->min[i]) {
|
676
|
+
rect->min[i] = pos[i];
|
677
|
+
}
|
678
|
+
if (pos[i] > rect->max[i]) {
|
679
|
+
rect->max[i] = pos[i];
|
680
|
+
}
|
681
|
+
}
|
682
|
+
}
|
683
|
+
|
684
|
+
static double hyperrect_dist_sq(struct kdhyperrect *rect, const double *pos)
|
685
|
+
{
|
686
|
+
int i;
|
687
|
+
double result = 0;
|
688
|
+
|
689
|
+
for (i=0; i < rect->dim; i++) {
|
690
|
+
if (pos[i] < rect->min[i]) {
|
691
|
+
result += SQ(rect->min[i] - pos[i]);
|
692
|
+
} else if (pos[i] > rect->max[i]) {
|
693
|
+
result += SQ(rect->max[i] - pos[i]);
|
694
|
+
}
|
695
|
+
}
|
696
|
+
|
697
|
+
return result;
|
698
|
+
}
|
699
|
+
|
700
|
+
/* ---- static helpers ---- */
|
701
|
+
|
702
|
+
#ifdef USE_LIST_NODE_ALLOCATOR
|
703
|
+
/* special list node allocators. */
|
704
|
+
static struct res_node *free_nodes;
|
705
|
+
|
706
|
+
#ifndef NO_PTHREADS
|
707
|
+
static pthread_mutex_t alloc_mutex = PTHREAD_MUTEX_INITIALIZER;
|
708
|
+
#endif
|
709
|
+
|
710
|
+
static struct res_node *alloc_resnode(void)
|
711
|
+
{
|
712
|
+
struct res_node *node;
|
713
|
+
|
714
|
+
#ifndef NO_PTHREADS
|
715
|
+
pthread_mutex_lock(&alloc_mutex);
|
716
|
+
#endif
|
717
|
+
|
718
|
+
if(!free_nodes) {
|
719
|
+
node = malloc(sizeof *node);
|
720
|
+
} else {
|
721
|
+
node = free_nodes;
|
722
|
+
free_nodes = free_nodes->next;
|
723
|
+
node->next = 0;
|
724
|
+
}
|
725
|
+
|
726
|
+
#ifndef NO_PTHREADS
|
727
|
+
pthread_mutex_unlock(&alloc_mutex);
|
728
|
+
#endif
|
729
|
+
|
730
|
+
return node;
|
731
|
+
}
|
732
|
+
|
733
|
+
static void free_resnode(struct res_node *node)
|
734
|
+
{
|
735
|
+
#ifndef NO_PTHREADS
|
736
|
+
pthread_mutex_lock(&alloc_mutex);
|
737
|
+
#endif
|
738
|
+
|
739
|
+
node->next = free_nodes;
|
740
|
+
free_nodes = node;
|
741
|
+
|
742
|
+
#ifndef NO_PTHREADS
|
743
|
+
pthread_mutex_unlock(&alloc_mutex);
|
744
|
+
#endif
|
745
|
+
}
|
746
|
+
#endif /* list node allocator or not */
|
747
|
+
|
748
|
+
|
749
|
+
/* inserts the item. if dist_sq is >= 0, then do an ordered insert */
|
750
|
+
/* TODO make the ordering code use heapsort */
|
751
|
+
static int rlist_insert(struct res_node *list, struct kdnode *item, double dist_sq)
|
752
|
+
{
|
753
|
+
struct res_node *rnode;
|
754
|
+
|
755
|
+
if(!(rnode = alloc_resnode())) {
|
756
|
+
return -1;
|
757
|
+
}
|
758
|
+
rnode->item = item;
|
759
|
+
rnode->dist_sq = dist_sq;
|
760
|
+
|
761
|
+
if(dist_sq >= 0.0) {
|
762
|
+
while(list->next && list->next->dist_sq < dist_sq) {
|
763
|
+
list = list->next;
|
764
|
+
}
|
765
|
+
}
|
766
|
+
rnode->next = list->next;
|
767
|
+
list->next = rnode;
|
768
|
+
return 0;
|
769
|
+
}
|
770
|
+
|
771
|
+
static void clear_results(struct kdres *rset)
|
772
|
+
{
|
773
|
+
struct res_node *tmp, *node = rset->rlist->next;
|
774
|
+
|
775
|
+
while(node) {
|
776
|
+
tmp = node;
|
777
|
+
node = node->next;
|
778
|
+
free_resnode(tmp);
|
779
|
+
}
|
780
|
+
|
781
|
+
rset->rlist->next = 0;
|
782
|
+
}
|