gaussian_naive_bayes 0.1.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/lib/gaussian_naive_bayes.rb +2 -0
- data/lib/gaussian_naive_bayes/classifier.rb +39 -0
- data/lib/gaussian_naive_bayes/learner.rb +54 -0
- metadata +46 -0
checksums.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
1
|
+
---
|
2
|
+
SHA1:
|
3
|
+
metadata.gz: 4ae196f08bdf0a291dcf4051bb3d06b6a3b5bee7
|
4
|
+
data.tar.gz: 9ba53c7eb6e2b94a15440994879fbbc7828a9a65
|
5
|
+
SHA512:
|
6
|
+
metadata.gz: 71d87ccbbe53ceb24fcad8375192286410bac830c4f4f95d9efc684ad4777d007ece18ebe61dc5a33fb7c9202b6403860954b5229cb9dd30be456f6e109fd9d4
|
7
|
+
data.tar.gz: 64d41fbac231ea14e6097ed64c98ee20fd6a575b3a81ea51cf3335bbffe6fa3200f00e7c346a71f80e03f63514ac17bbc80869a619c9f57ef56f984edc503fca
|
@@ -0,0 +1,39 @@
|
|
1
|
+
module GaussianNaiveBayes
|
2
|
+
class Classifier
|
3
|
+
attr_reader :categories_summaries, :categories_probabilities
|
4
|
+
def initialize(categories_summaries, categories_probabilities)
|
5
|
+
@categories_summaries = categories_summaries
|
6
|
+
@categories_probabilities = categories_probabilities
|
7
|
+
end
|
8
|
+
|
9
|
+
def classify(vector)
|
10
|
+
max_ln_category_probability(vector)[0]
|
11
|
+
end
|
12
|
+
|
13
|
+
def max_ln_category_probability(vector)
|
14
|
+
all_ln_categories_probabilities(vector).
|
15
|
+
to_a.
|
16
|
+
sort_by{|ln_category_probability| -ln_category_probability[1]}.
|
17
|
+
first
|
18
|
+
end
|
19
|
+
|
20
|
+
def all_ln_categories_probabilities(vector)
|
21
|
+
@categories_summaries.keys.inject({}) do |map, category|
|
22
|
+
map[category] = ln_category_probability(vector, category)
|
23
|
+
map
|
24
|
+
end
|
25
|
+
end
|
26
|
+
|
27
|
+
def ln_category_probability(vector, category)
|
28
|
+
sum = 0
|
29
|
+
vector.each_with_index do |feature_value, feature|
|
30
|
+
sum += ln_normal_distribution(feature_value, @categories_summaries[category][feature][:mean], @categories_summaries[category][feature][:standard_deviation])
|
31
|
+
end
|
32
|
+
sum + Math.log(@categories_probabilities[category])
|
33
|
+
end
|
34
|
+
|
35
|
+
def ln_normal_distribution(x, mean, stdev)
|
36
|
+
Math.log(1.0/(stdev*Math.sqrt(2*Math::PI))) - ((x - mean)**2)/(2*(stdev**2))
|
37
|
+
end
|
38
|
+
end
|
39
|
+
end
|
@@ -0,0 +1,54 @@
|
|
1
|
+
module GaussianNaiveBayes
|
2
|
+
class Learner
|
3
|
+
def train(vector, category)
|
4
|
+
@category_to_feature_group ||= {}
|
5
|
+
@category_to_feature_group[category] ||= {}
|
6
|
+
vector.each_with_index do |feature_value, feature|
|
7
|
+
@category_to_feature_group[category][feature] ||= []
|
8
|
+
@category_to_feature_group[category][feature] << feature_value
|
9
|
+
end
|
10
|
+
@category_to_num_instances ||= Hash.new(0)
|
11
|
+
@category_to_num_instances[category] += 1
|
12
|
+
end
|
13
|
+
|
14
|
+
def classifier
|
15
|
+
Classifier.new(categories_summaries, categories_probabilities)
|
16
|
+
end
|
17
|
+
|
18
|
+
def categories_summaries
|
19
|
+
@category_to_feature_group.inject({}) do |map, (category, feature_group)|
|
20
|
+
map[category] = category_summary(feature_group)
|
21
|
+
map
|
22
|
+
end
|
23
|
+
end
|
24
|
+
|
25
|
+
def category_summary(feature_group)
|
26
|
+
feature_group.inject({}) do |map, (feature, feature_values)|
|
27
|
+
map[feature] = {}
|
28
|
+
map[feature][:mean] = average(feature_values)
|
29
|
+
map[feature][:standard_deviation] = standard_deviation(feature_values)
|
30
|
+
map
|
31
|
+
end
|
32
|
+
end
|
33
|
+
|
34
|
+
def average(numbers)
|
35
|
+
numbers.reduce(&:+).to_f/numbers.length
|
36
|
+
end
|
37
|
+
|
38
|
+
def standard_deviation(numbers)
|
39
|
+
mean = average(numbers)
|
40
|
+
variance = numbers.inject(0) do |sum, number|
|
41
|
+
sum += (number - mean)**2
|
42
|
+
end.to_f/(numbers.length - 1)
|
43
|
+
Math.sqrt(variance)
|
44
|
+
end
|
45
|
+
|
46
|
+
def categories_probabilities
|
47
|
+
total_instances = @category_to_num_instances.values.reduce(&:+)
|
48
|
+
@category_to_num_instances.inject({}) do |map, (category, num_instances)|
|
49
|
+
map[category] = num_instances.to_f/total_instances
|
50
|
+
map
|
51
|
+
end
|
52
|
+
end
|
53
|
+
end
|
54
|
+
end
|
metadata
ADDED
@@ -0,0 +1,46 @@
|
|
1
|
+
--- !ruby/object:Gem::Specification
|
2
|
+
name: gaussian_naive_bayes
|
3
|
+
version: !ruby/object:Gem::Version
|
4
|
+
version: 0.1.1
|
5
|
+
platform: ruby
|
6
|
+
authors:
|
7
|
+
- An Le
|
8
|
+
autorequire:
|
9
|
+
bindir: bin
|
10
|
+
cert_chain: []
|
11
|
+
date: 2016-04-23 00:00:00.000000000 Z
|
12
|
+
dependencies: []
|
13
|
+
description:
|
14
|
+
email:
|
15
|
+
executables: []
|
16
|
+
extensions: []
|
17
|
+
extra_rdoc_files: []
|
18
|
+
files:
|
19
|
+
- lib/gaussian_naive_bayes.rb
|
20
|
+
- lib/gaussian_naive_bayes/classifier.rb
|
21
|
+
- lib/gaussian_naive_bayes/learner.rb
|
22
|
+
homepage: https://github.com/lntan/gaussian_naive_bayes
|
23
|
+
licenses:
|
24
|
+
- MIT
|
25
|
+
metadata: {}
|
26
|
+
post_install_message:
|
27
|
+
rdoc_options: []
|
28
|
+
require_paths:
|
29
|
+
- lib
|
30
|
+
required_ruby_version: !ruby/object:Gem::Requirement
|
31
|
+
requirements:
|
32
|
+
- - ">="
|
33
|
+
- !ruby/object:Gem::Version
|
34
|
+
version: '0'
|
35
|
+
required_rubygems_version: !ruby/object:Gem::Requirement
|
36
|
+
requirements:
|
37
|
+
- - ">="
|
38
|
+
- !ruby/object:Gem::Version
|
39
|
+
version: '0'
|
40
|
+
requirements: []
|
41
|
+
rubyforge_project:
|
42
|
+
rubygems_version: 2.6.3
|
43
|
+
signing_key:
|
44
|
+
specification_version: 4
|
45
|
+
summary: Implement the Gaussian Naive Bayes algorithm for classification
|
46
|
+
test_files: []
|