fraction-tree 1.1.0 → 2.0.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/lib/fraction_tree/extensions.rb +29 -0
- data/lib/fraction_tree/fraction_tree.rb +256 -0
- data/lib/fraction_tree/node.rb +249 -0
- data/lib/fraction_tree.rb +5 -323
- metadata +34 -3
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: afa73aeb4956a309b6e03e8d58426e407164e4697280b1d27f672a4e73963eb5
|
4
|
+
data.tar.gz: a643a87bd78aee13fe93d5d0e28322b5cfbc5c46b67e7617e0e217160461f635
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 3dca9f6465ebbc4ce801c48f7dec3fa8e1e2ed98742afd997b6cce5e7c2dcb46588ce49e9f786c9ac5166b20e765f6d0be94844ec1fb85a7661f9c19ce3ef29c
|
7
|
+
data.tar.gz: bb93ac7938caa3d50950295449e386e4eed308fb0d1d4228ed9e62139e210017174c03c3ad1840bb983f7d46c45c93bd33a4c7b3ae9d2bbed667c5523d9693b0
|
@@ -0,0 +1,29 @@
|
|
1
|
+
class String
|
2
|
+
# @return [FractionTree::Node] string Stern-Brocot decoded
|
3
|
+
# @example
|
4
|
+
# "1/0".to_node => (1/0)
|
5
|
+
#
|
6
|
+
def to_node
|
7
|
+
if self.include?(".")
|
8
|
+
number = self.to_d
|
9
|
+
numerator, denominator = number.numerator, number.denominator
|
10
|
+
elsif self.include?("/")
|
11
|
+
(numerator, denominator) = self.split("/").map(&:to_i)
|
12
|
+
else
|
13
|
+
number = self.to_r
|
14
|
+
numerator, denominator = number.numerator, number.denominator
|
15
|
+
end
|
16
|
+
number = denominator.zero? ? Float::INFINITY : Rational(numerator, denominator)
|
17
|
+
FractionTree::Node.new(number)
|
18
|
+
end
|
19
|
+
end
|
20
|
+
|
21
|
+
class Numeric
|
22
|
+
# @return [FractionTree::Node] string Stern-Brocot decoded
|
23
|
+
# @example
|
24
|
+
# Float::INFINITY.to_node => (1/0)
|
25
|
+
#
|
26
|
+
def to_node
|
27
|
+
FractionTree.node(self)
|
28
|
+
end
|
29
|
+
end
|
@@ -0,0 +1,256 @@
|
|
1
|
+
# @author Jose Hales-Garcia
|
2
|
+
#
|
3
|
+
class FractionTree
|
4
|
+
DEFAULT_TREE_DEPTH = 20
|
5
|
+
|
6
|
+
private_class_method :new
|
7
|
+
|
8
|
+
class << self
|
9
|
+
# @return the left-most node of the range of the tree
|
10
|
+
# @example
|
11
|
+
# FractionTree.left_node => 0/1
|
12
|
+
# @note defaults to Stern-Brocot left-most range, 0
|
13
|
+
#
|
14
|
+
def left_node
|
15
|
+
@left_node || 0/1r
|
16
|
+
end
|
17
|
+
|
18
|
+
# @return the right-most node of the range of the tree
|
19
|
+
# @example
|
20
|
+
# FractionTree.right_node => Infinity
|
21
|
+
# @note defaults to Stern-Brocot right-most range, Infinity
|
22
|
+
#
|
23
|
+
def right_node
|
24
|
+
@right_node || Float::INFINITY
|
25
|
+
end
|
26
|
+
|
27
|
+
# Set the left-most node of the range of the tree
|
28
|
+
# @example
|
29
|
+
# FractionTree.left_node = 1/1r
|
30
|
+
#
|
31
|
+
def left_node=(rhs)
|
32
|
+
@left_node = rhs
|
33
|
+
end
|
34
|
+
|
35
|
+
# Set the right-most node of the range of the tree
|
36
|
+
# @example
|
37
|
+
# FractionTree.right_node = 2/1r
|
38
|
+
#
|
39
|
+
def right_node=(rhs)
|
40
|
+
@right_node = rhs
|
41
|
+
end
|
42
|
+
|
43
|
+
# @return the range of the tree
|
44
|
+
# @example
|
45
|
+
# FractionTree.range => (0/1..Infinity)
|
46
|
+
# @note defaults to Stern-Brocot range, (0..Infinity)
|
47
|
+
#
|
48
|
+
def range
|
49
|
+
(left_node..right_node)
|
50
|
+
end
|
51
|
+
|
52
|
+
# Set the range of the tree
|
53
|
+
# @example
|
54
|
+
# FractionTree.range = :farey
|
55
|
+
# => (0/1..1/1)
|
56
|
+
# @note Accepts keywords:
|
57
|
+
# :farey, :keyboard, :scale_step, :log2 => (0/1..1/1)
|
58
|
+
# :stern_brocot, :scale => (0/1..1/0)
|
59
|
+
# :octave_reduced => (1/1..2/1)
|
60
|
+
#
|
61
|
+
def range=(rhs)
|
62
|
+
case rhs
|
63
|
+
when :farey, :keyboard, :scale_step, :log2
|
64
|
+
@left_node, @right_node = 0/1r, 1/1r
|
65
|
+
when :stern_brocot, :scale
|
66
|
+
@left_node, @right_node = 0/1r, Float::INFINITY
|
67
|
+
when :octave_reduced
|
68
|
+
@left_node, @right_node = 1/1r, 2/1r
|
69
|
+
else
|
70
|
+
@left_node = @right_node = nil
|
71
|
+
end
|
72
|
+
end
|
73
|
+
|
74
|
+
# The cache of nodes used for faster lookup
|
75
|
+
# @note Intended for internal use.
|
76
|
+
def nodes
|
77
|
+
@@nodes ||= {}
|
78
|
+
end
|
79
|
+
|
80
|
+
# Reset the cache of nodes
|
81
|
+
# @example
|
82
|
+
# FractionTree.reset_nodes => {}
|
83
|
+
#
|
84
|
+
def reset_nodes
|
85
|
+
@@nodes = {}
|
86
|
+
end
|
87
|
+
|
88
|
+
# @return [FractionTree::Node] the node in the tree representing the given number
|
89
|
+
# @example
|
90
|
+
# FractionTree.node(3/2r) => (3/2)
|
91
|
+
#
|
92
|
+
def node(number)
|
93
|
+
validate(number)
|
94
|
+
nodes[number] ||= Node.new(number)
|
95
|
+
end
|
96
|
+
|
97
|
+
# @return [FractionTree::Node] the node decoded from the given string
|
98
|
+
# @example
|
99
|
+
# FractionTree.decode("RLL") => (4/3)
|
100
|
+
#
|
101
|
+
def decode(str)
|
102
|
+
wrk_node = Node.decode(str)
|
103
|
+
nodes[wrk_node.number] ||= wrk_node
|
104
|
+
end
|
105
|
+
|
106
|
+
# @return [FractionTree::Node] the mediant sum of the given numbers
|
107
|
+
# @example
|
108
|
+
# FractionTree.mediant_sum(3/2r, 4/3r) => (7/5)
|
109
|
+
#
|
110
|
+
def mediant_sum(n1, n2)
|
111
|
+
Node.new(n1) + Node.new(n2)
|
112
|
+
end
|
113
|
+
|
114
|
+
# @return [Boolean] whether two numbers are neighbors
|
115
|
+
# @example
|
116
|
+
# FractionTree.neighbors?(3/2r, 4/3r) => true
|
117
|
+
# FractionTree.neighbors?(3/2r, 7/4r) => false
|
118
|
+
# FractionTree.neighbors?(2/1r, Float::INFINITY) => true
|
119
|
+
# @param number1 of comparison
|
120
|
+
# @param number2 of comparison
|
121
|
+
# @note Neighbor definition: abs(a * d - b * c) = 1, for a/b, c/d
|
122
|
+
# @note Float::INFINITY => 1/0
|
123
|
+
#
|
124
|
+
def neighbors?(number1, number2)
|
125
|
+
(a, b) = number1.infinite? ? [1, 0] : [number1.numerator, number1.denominator]
|
126
|
+
(c, d) = number2.infinite? ? [1, 0] : [number2.numerator, number2.denominator]
|
127
|
+
(a * d - b * c).abs == 1
|
128
|
+
end
|
129
|
+
|
130
|
+
# @return [Array] a multi-dimensional array of fraction tree nodes
|
131
|
+
# @example
|
132
|
+
# FractionTree.tree(depth: 4)
|
133
|
+
# => [[(0/1), (1/0)],
|
134
|
+
# [(1/1)],
|
135
|
+
# [(1/2), (2/1)],
|
136
|
+
# [(1/3), (2/3), (3/2), (3/1)]]
|
137
|
+
#
|
138
|
+
# @param depth [Integer] the depth of the tree
|
139
|
+
# @param left_node [FractionTree::Node] the left starting node
|
140
|
+
# @param right_node [FractionTree::Node] the right starting node
|
141
|
+
#
|
142
|
+
def tree(depth: 10, left_node: default_left_node, right_node: default_right_node)
|
143
|
+
Array.new(depth, 0).tap do |sbt|
|
144
|
+
row = 0
|
145
|
+
sbt[row] = [left_node, right_node]
|
146
|
+
i = 2
|
147
|
+
while i <= depth do
|
148
|
+
figure_from = sbt[0..row].flatten.sort
|
149
|
+
new_frow = Array.new(2**(i-2), 0)
|
150
|
+
idx = 0
|
151
|
+
figure_from.each_cons(2) do |left, right|
|
152
|
+
new_frow[idx] = left + right
|
153
|
+
idx += 1
|
154
|
+
end
|
155
|
+
row += 1
|
156
|
+
sbt[row] = new_frow
|
157
|
+
i += 1
|
158
|
+
end
|
159
|
+
end
|
160
|
+
end
|
161
|
+
|
162
|
+
# @return [FractionTree::Node] the mediant child of the given numbers
|
163
|
+
# @example
|
164
|
+
# FractionTree.child_of(1/1r, 4/3r) => (5/4)
|
165
|
+
# FractionTree.child_of(7/4r, 4/3r) => nil
|
166
|
+
#
|
167
|
+
# @param number1 [Rational] one of two parents
|
168
|
+
# @param number2 [Rational] two of two parents
|
169
|
+
# @note return nil if bc - ad |= 1, for a/b, c/d
|
170
|
+
#
|
171
|
+
def child_of(number1, number2)
|
172
|
+
return nil unless neighbors?(number1, number2)
|
173
|
+
# node(number1.numerator, number1.denominator) + node(number2.numerator, number2.denominator)
|
174
|
+
node(number1) + node(number2)
|
175
|
+
end
|
176
|
+
|
177
|
+
# @return [Array] of fraction tree nodes descended from parent1 and parent2
|
178
|
+
# Return empty array if bc - ad |= 1, for a/b, c/d
|
179
|
+
# @example
|
180
|
+
# FractionTree.descendants_of(1/1r, 4/3r)
|
181
|
+
# => [(1/1), (7/6), (6/5), (11/9), (5/4), (14/11), (9/7), (13/10), (4/3)]
|
182
|
+
#
|
183
|
+
# @param parent1 [Rational] one of two parents
|
184
|
+
# @param parent2 [Rational] two of two parents
|
185
|
+
# @param depth [Integer] the depth to collect
|
186
|
+
#
|
187
|
+
def descendants_of(parent1, parent2, depth: 5)
|
188
|
+
return [] unless neighbors?(parent1, parent2)
|
189
|
+
sequence(depth:, left_node: Node.new(parent1), right_node: Node.new(parent2))
|
190
|
+
end
|
191
|
+
|
192
|
+
# @return [Array] a sequence of fraction tree nodes
|
193
|
+
# @example
|
194
|
+
# FractionTree.new.sequence(3)
|
195
|
+
# => [(0/1), (1/3), (1/2), (2/3), (1/1), (3/2), (2/1), (3/1), (1/0)]
|
196
|
+
#
|
197
|
+
# @param depth [Integer] the number of iterations of the algorithm to run. The number of nodes returned will be greater
|
198
|
+
# @param left_node [FractionTree::Node] the left starting node
|
199
|
+
# @param right_node [FractionTree::Node] the right starting node
|
200
|
+
#
|
201
|
+
def sequence(depth: 5, left_node: default_left_node, right_node: default_right_node)
|
202
|
+
[left_node]+_sequence(depth:, left_node:, right_node:)+[right_node]
|
203
|
+
end
|
204
|
+
|
205
|
+
# @return [Array] of numerators of the fraction tree nodes. Aka the Stern-Brocot sequence.
|
206
|
+
# @example
|
207
|
+
# FractionTree.numeric_sequence.take(12)
|
208
|
+
# => [1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2]
|
209
|
+
#
|
210
|
+
def numeric_sequence
|
211
|
+
return enum_for :numeric_sequence unless block_given?
|
212
|
+
a=[1,1]
|
213
|
+
|
214
|
+
0.step do |i|
|
215
|
+
yield a[i]
|
216
|
+
a << a[i]+a[i+1] << a[i+1]
|
217
|
+
end
|
218
|
+
end
|
219
|
+
|
220
|
+
private
|
221
|
+
def validate(num)
|
222
|
+
raise(ArgumentError, "#{num} not in range of #{range}", caller[0]) unless range.include?(num)
|
223
|
+
end
|
224
|
+
|
225
|
+
def default_left_node
|
226
|
+
node(left_node)
|
227
|
+
end
|
228
|
+
|
229
|
+
def default_right_node
|
230
|
+
node(right_node)
|
231
|
+
end
|
232
|
+
|
233
|
+
def _node(num, den=nil)
|
234
|
+
if num.kind_of?(Float)
|
235
|
+
num = num.to_d
|
236
|
+
end
|
237
|
+
if num.infinite?
|
238
|
+
num, den = 1, 0
|
239
|
+
end
|
240
|
+
if den.nil?
|
241
|
+
den = num.denominator
|
242
|
+
num = num.numerator
|
243
|
+
end
|
244
|
+
Node.new(num, den)
|
245
|
+
end
|
246
|
+
|
247
|
+
def _sequence(depth: 5, left_node:, right_node:)
|
248
|
+
return [] if depth == 0
|
249
|
+
|
250
|
+
mediant = left_node + right_node
|
251
|
+
|
252
|
+
# Generate left segment, mediant, then right segment
|
253
|
+
_sequence(depth: depth - 1, left_node:, right_node: mediant) + [mediant] + _sequence(depth: depth - 1, left_node: mediant, right_node:)
|
254
|
+
end
|
255
|
+
end
|
256
|
+
end
|
@@ -0,0 +1,249 @@
|
|
1
|
+
# @author Jose Hales-Garcia
|
2
|
+
#
|
3
|
+
class FractionTree
|
4
|
+
class Node
|
5
|
+
extend Forwardable
|
6
|
+
include Comparable
|
7
|
+
|
8
|
+
def_delegators :@number, :zero?, :infinite?
|
9
|
+
|
10
|
+
attr_reader :numerator, :denominator, :number
|
11
|
+
|
12
|
+
IDENTITY_MATRIX = Matrix.identity(2)
|
13
|
+
LEFT_MATRIX = Matrix[[1,1],[0,1]]
|
14
|
+
RIGHT_MATRIX = Matrix[[1,0],[1,1]]
|
15
|
+
|
16
|
+
def initialize(num)
|
17
|
+
(@numerator, @denominator) = fraction_pair(num)
|
18
|
+
@number = num
|
19
|
+
end
|
20
|
+
|
21
|
+
alias :to_r :number
|
22
|
+
|
23
|
+
class << self
|
24
|
+
# @return [FractionTree::Node] the fraction decoded from the given string
|
25
|
+
# @example
|
26
|
+
# FractionTree::Node.decode("RLL") => (4/3)
|
27
|
+
#
|
28
|
+
def decode(string)
|
29
|
+
result = IDENTITY_MATRIX
|
30
|
+
|
31
|
+
string.split("").each do |direction|
|
32
|
+
case direction
|
33
|
+
when "L", "0", "l"
|
34
|
+
result = result * LEFT_MATRIX
|
35
|
+
when "R", "1", "r"
|
36
|
+
result = result * RIGHT_MATRIX
|
37
|
+
end
|
38
|
+
end
|
39
|
+
FractionTree.node(Rational(result.row(1).sum, result.row(0).sum))
|
40
|
+
end
|
41
|
+
|
42
|
+
# @return [String] the Stern-Brocot encoding of number
|
43
|
+
# @example
|
44
|
+
# FractionTree::Node.encode(4/3r) => "RLL"
|
45
|
+
#
|
46
|
+
def encode(number)
|
47
|
+
return nil if (number.infinite? || number.zero?)
|
48
|
+
|
49
|
+
m = number.numerator
|
50
|
+
n = number.denominator
|
51
|
+
|
52
|
+
return "I" if m == n
|
53
|
+
|
54
|
+
"".tap do |string|
|
55
|
+
while m != n
|
56
|
+
if m < n
|
57
|
+
string << "L"
|
58
|
+
n = n - m
|
59
|
+
else
|
60
|
+
string << "R"
|
61
|
+
m = m - n
|
62
|
+
end
|
63
|
+
end
|
64
|
+
end
|
65
|
+
end
|
66
|
+
|
67
|
+
# @return [Array] pair of numbers less and greater than the provided number by provided difference
|
68
|
+
# @example
|
69
|
+
# FractionTree::Node.plus_minus(3, 2) => [1, 5]
|
70
|
+
# @param
|
71
|
+
# num the base
|
72
|
+
# diff the number subtracted and added to base
|
73
|
+
#
|
74
|
+
def plus_minus(num, diff)
|
75
|
+
[num - diff, num + diff]
|
76
|
+
end
|
77
|
+
|
78
|
+
# @return [Integer] the decimal power of the provided number
|
79
|
+
# @example
|
80
|
+
# FractionTree::Node.decimal_power(1000) => 3
|
81
|
+
# @param
|
82
|
+
# logarithmand the number from which the log base 10 is obtained
|
83
|
+
#
|
84
|
+
def decimal_power(logarithmand)
|
85
|
+
Math.log10(logarithmand.abs).floor
|
86
|
+
end
|
87
|
+
end
|
88
|
+
|
89
|
+
# @return [Array] set of fraction tree nodes leading to the given number
|
90
|
+
# @example
|
91
|
+
# FractionTree.node(7/4r).path
|
92
|
+
# => [(0/1), (1/0), (1/1), (2/1), (3/2), (5/3), (7/4)]
|
93
|
+
#
|
94
|
+
def path
|
95
|
+
return nil if infinite? || zero?
|
96
|
+
|
97
|
+
ln = tree.node(FractionTree.left_node)
|
98
|
+
rn = tree.node(FractionTree.right_node)
|
99
|
+
mn = ln + rn
|
100
|
+
return [ln, rn, mn] if mn == tree.node(number)
|
101
|
+
|
102
|
+
result = IDENTITY_MATRIX
|
103
|
+
m = numerator
|
104
|
+
n = denominator
|
105
|
+
[].tap do |p|
|
106
|
+
p << ln << rn << mn
|
107
|
+
while m != n
|
108
|
+
if m < n
|
109
|
+
result = result * LEFT_MATRIX
|
110
|
+
n = n - m
|
111
|
+
else
|
112
|
+
result = result * RIGHT_MATRIX
|
113
|
+
m = m - n
|
114
|
+
end
|
115
|
+
p << tree.node(Rational(result.row(1).sum,result.row(0).sum))
|
116
|
+
end
|
117
|
+
end
|
118
|
+
end
|
119
|
+
|
120
|
+
# @return [Array] a pair of fraction tree nodes leading to the given number.
|
121
|
+
# @example
|
122
|
+
# FractionTree.node(15/13r).parents => [(8/7), (7/6)]
|
123
|
+
# FractionTree.node(Math::PI).parents => [(1181999955934188/376242271442657), (1959592697655605/623757728557343)]
|
124
|
+
#
|
125
|
+
def parents
|
126
|
+
tmp = path
|
127
|
+
[tmp[-2], tmp[-2..-1].inject(&:-)].sort
|
128
|
+
end
|
129
|
+
|
130
|
+
# @return [Array] of [FractionTree::Node], sequence of Farey neighbors to self. A Farey neighbor is a number c/d, who's relationship to a/b is such that ad − bc = 1, when c/d < a/b and bc − ad = 1 when c/d > a/b.
|
131
|
+
# @example
|
132
|
+
# FractionTree.node(3/2r).neighbors(10)
|
133
|
+
# => [(1/1), (2/1), (4/3), (5/3), (7/5), (8/5), (10/7), (11/7), (13/9), (14/9)]
|
134
|
+
# @param r range of harmonic series to search
|
135
|
+
#
|
136
|
+
def neighbors(r = 10**(self.class.decimal_power(number.numerator)+2))
|
137
|
+
ratio = number.to_r
|
138
|
+
denominator = ratio.denominator
|
139
|
+
|
140
|
+
[].tap do |collection|
|
141
|
+
(1..r-1).each do |i|
|
142
|
+
lower, upper = self.class.plus_minus(ratio, Rational(1,i*denominator))
|
143
|
+
collection << tree.node(lower) if tree.neighbors?(ratio, lower)
|
144
|
+
collection << tree.node(upper) if tree.neighbors?(ratio, upper)
|
145
|
+
end
|
146
|
+
end
|
147
|
+
end
|
148
|
+
|
149
|
+
# @return [Array] the ancestors shared by self and the given number
|
150
|
+
# @example
|
151
|
+
# FractionTree.node(4/3r).common_ancestors_with(7/4r)
|
152
|
+
# => [(0/1), (1/0), (1/1), (2/1), (3/2)]
|
153
|
+
#
|
154
|
+
# @param num [Numeric] other number sharing descendants with self
|
155
|
+
#
|
156
|
+
def common_ancestors_with(num)
|
157
|
+
path & tree.node(num).path
|
158
|
+
end
|
159
|
+
|
160
|
+
# @return [Array] of fraction tree nodes, descending from parents of number
|
161
|
+
# @example
|
162
|
+
# FractionTree.node(5/4r).descendancy_from(depth: 3)
|
163
|
+
# => [(1/1), (7/6), (6/5), (11/9), (5/4), (14/11), (9/7), (13/10), (4/3)]
|
164
|
+
#
|
165
|
+
# @param depth [Integer] how many nodes to collect
|
166
|
+
#
|
167
|
+
def descendancy_from(depth: 5)
|
168
|
+
(parent1, parent2) = parents
|
169
|
+
tree.descendants_of(parent1.number, parent2.number, depth:)
|
170
|
+
end
|
171
|
+
|
172
|
+
# @return [FractionTree::Node] child of self and given number
|
173
|
+
# @example
|
174
|
+
# FractionTree.node(5/4r).child_with(4/3r)
|
175
|
+
# => (9/7)
|
176
|
+
# @note return nil if bc - ad |= 1, for a/b, c/d
|
177
|
+
#
|
178
|
+
def child_with(num)
|
179
|
+
tree.child_of(number, num)
|
180
|
+
end
|
181
|
+
|
182
|
+
# @return [String] encoding of self
|
183
|
+
# @example
|
184
|
+
# FractionTree.node(5/4r).encoding => "RLLL"
|
185
|
+
#
|
186
|
+
def encoding
|
187
|
+
@encoding ||= self.class.encode(number)
|
188
|
+
end
|
189
|
+
|
190
|
+
# @return [FractionTree::Node] sum of self and another node
|
191
|
+
# @example
|
192
|
+
# FractionTree.node(5/4r) + FractionTree.node(3/2r)
|
193
|
+
# => (4/3)
|
194
|
+
#
|
195
|
+
def +(rhs)
|
196
|
+
tree.node(Rational(self.numerator+rhs.numerator, self.denominator+rhs.denominator))
|
197
|
+
end
|
198
|
+
|
199
|
+
# @return [FractionTree::Node] difference of self and another node
|
200
|
+
# @example
|
201
|
+
# FractionTree.node(5/4r) - FractionTree.node(3/2r)
|
202
|
+
# => (1/1)
|
203
|
+
#
|
204
|
+
def -(rhs)
|
205
|
+
tree.node(Rational((self.numerator-rhs.numerator).abs, (self.denominator-rhs.denominator).abs))
|
206
|
+
end
|
207
|
+
|
208
|
+
def inspect
|
209
|
+
"(#{numerator}/#{denominator})"
|
210
|
+
end
|
211
|
+
alias :to_s :inspect
|
212
|
+
|
213
|
+
def <=>(rhs)
|
214
|
+
self.number <=> rhs.number
|
215
|
+
end
|
216
|
+
|
217
|
+
def ==(rhs)
|
218
|
+
self.number == rhs.number
|
219
|
+
end
|
220
|
+
|
221
|
+
# Needed for intersection operations to work.
|
222
|
+
# https://blog.mnishiguchi.com/ruby-intersection-of-object-arrays
|
223
|
+
# https://shortrecipes.blogspot.com/2006/10/ruby-intersection-of-two-arrays-of.html
|
224
|
+
# Also, allows using with Set, which uses Hash as storage and equality of its elements is determined according to Object#eql? and Object#hash.
|
225
|
+
#
|
226
|
+
def eql?(rhs)
|
227
|
+
rhs.instance_of?(self.class) && number == rhs.number
|
228
|
+
end
|
229
|
+
|
230
|
+
def hash
|
231
|
+
p, q = 17, 37
|
232
|
+
p = q * @id.hash
|
233
|
+
p = q * @name.hash
|
234
|
+
end
|
235
|
+
|
236
|
+
private
|
237
|
+
def tree
|
238
|
+
FractionTree #self.class.tree
|
239
|
+
end
|
240
|
+
|
241
|
+
def fraction_pair(number)
|
242
|
+
if number.infinite?
|
243
|
+
[1, 0]
|
244
|
+
else
|
245
|
+
[number.numerator, number.denominator]
|
246
|
+
end
|
247
|
+
end
|
248
|
+
end
|
249
|
+
end
|
data/lib/fraction_tree.rb
CHANGED
@@ -1,325 +1,7 @@
|
|
1
|
+
require "matrix"
|
2
|
+
require "forwardable"
|
1
3
|
require "bigdecimal/util"
|
2
4
|
require "continued_fractions"
|
3
|
-
|
4
|
-
|
5
|
-
|
6
|
-
class FractionTree
|
7
|
-
DEFAULT_TREE_DEPTH = 20
|
8
|
-
|
9
|
-
class << self
|
10
|
-
# @return [Array] the boundary nodes of the tree
|
11
|
-
# @example
|
12
|
-
# FractionTree.base_segment => [(0/1), (1/0)]
|
13
|
-
#
|
14
|
-
def base_segment
|
15
|
-
[Node.new(0,1), Node.new(1,0)]
|
16
|
-
end
|
17
|
-
|
18
|
-
# @return [Array] a multi-dimensional array with the elements of fraction tree, organized by level/row
|
19
|
-
# @example
|
20
|
-
# FractionTree.tree(4)
|
21
|
-
# => [[(0/1), (1/0)],
|
22
|
-
# [(1/1)],
|
23
|
-
# [(1/2), (2/1)],
|
24
|
-
# [(1/3), (2/3), (3/2), (3/1)]]
|
25
|
-
#
|
26
|
-
# @param number [Integer] the depth of the tree
|
27
|
-
#
|
28
|
-
def tree(depth=DEFAULT_TREE_DEPTH)
|
29
|
-
Array.new(depth, 0).tap do |sbt|
|
30
|
-
row = 0
|
31
|
-
sbt[row] = base_segment
|
32
|
-
i = 2
|
33
|
-
while i <= depth do
|
34
|
-
figure_from = sbt[0..row].flatten.sort
|
35
|
-
new_frow = Array.new(2**(i-2), 0)
|
36
|
-
idx = 0
|
37
|
-
figure_from.each_cons(2) do |left,right|
|
38
|
-
new_frow[idx] = Node.new(left.numerator+right.numerator, left.denominator+right.denominator)
|
39
|
-
idx += 1
|
40
|
-
end
|
41
|
-
row += 1
|
42
|
-
sbt[row] = new_frow
|
43
|
-
i += 1
|
44
|
-
end
|
45
|
-
end
|
46
|
-
end
|
47
|
-
|
48
|
-
# @return [Array] a sequence of fraction tree nodes
|
49
|
-
# @example
|
50
|
-
# FractionTree.sequence(3)
|
51
|
-
# => [(0/1), (1/3), (1/2), (2/3), (1/1), (3/2), (2/1), (3/1), (1/0)]
|
52
|
-
#
|
53
|
-
# @param depth [Integer] the number of iterations of the algorithm to run. The number of nodes returned will be greater
|
54
|
-
# @param segment [Array] a tuple array of [FractionTree::Node] defining the segment of the tree to collect nodes.
|
55
|
-
#
|
56
|
-
def sequence(depth=5, segment: base_segment)
|
57
|
-
[segment.first]+_sequence(depth, segment:)+[segment.last]
|
58
|
-
end
|
59
|
-
|
60
|
-
# @return [Array] set of fraction nodes leading to the given number
|
61
|
-
# @example
|
62
|
-
# FractionTree.path_to(7/4r) => [(1/1), (2/1), (3/2), (5/3), (7/4)]
|
63
|
-
#
|
64
|
-
# @param number [Rational] the target the fraction path leads to
|
65
|
-
# @param find_parents [Boolean] list all ancestors or only immediate parents
|
66
|
-
# @param segment [Array] a tuple of [FractionTree::Node], defining the segment's starting left and right boundaries
|
67
|
-
#
|
68
|
-
def path_to(number, find_parents: false, segment: base_segment)
|
69
|
-
return Node.new(number.numerator, number.denominator) if number.zero?
|
70
|
-
number = number.kind_of?(Float) ? number.to_d : number
|
71
|
-
|
72
|
-
q = Node.new(number.numerator, number.denominator)
|
73
|
-
l = segment.first
|
74
|
-
h = segment.last
|
75
|
-
not_found = true
|
76
|
-
parents = []
|
77
|
-
results = []
|
78
|
-
while not_found
|
79
|
-
m = (l + h)
|
80
|
-
if m < q
|
81
|
-
l = m
|
82
|
-
elsif m > q
|
83
|
-
h = m
|
84
|
-
else
|
85
|
-
parents << l << h
|
86
|
-
not_found = false
|
87
|
-
end
|
88
|
-
results << m
|
89
|
-
end
|
90
|
-
find_parents == false ? results : parents
|
91
|
-
end
|
92
|
-
|
93
|
-
# @return [Array] a pair of fraction tree nodes leading to the given number.
|
94
|
-
# For irrational numbers, the parent nodes are one of an infinite series, whose nearness is determined by the limits of the system
|
95
|
-
# @example
|
96
|
-
# FractionTree.parents_of(15/13r) => [(8/7), (7/6)]
|
97
|
-
# FractionTree.parents_of(Math::PI) => [(447288330638589/142376297616907), (436991388364966/139098679093749)]
|
98
|
-
#
|
99
|
-
# @param number [Rational] the child number whose parents are being sought
|
100
|
-
#
|
101
|
-
def parents_of(number)
|
102
|
-
path_to(number, find_parents: true)
|
103
|
-
end
|
104
|
-
|
105
|
-
# @return [Array] the ancestors shared by the given descendants
|
106
|
-
# @example
|
107
|
-
# FractionTree.common_ancestors_between(4/3r, 7/4r)
|
108
|
-
# => [(1/1), (2/1), (3/2)]
|
109
|
-
#
|
110
|
-
# @param number1 [Rational] one of two descendants
|
111
|
-
# @param number2 [Rational] two of two descendants
|
112
|
-
#
|
113
|
-
def common_ancestors_between(number1, number2)
|
114
|
-
path_to(number1) & path_to(number2)
|
115
|
-
end
|
116
|
-
|
117
|
-
# @return [Array] the descendants of number starting at its parents
|
118
|
-
# @example
|
119
|
-
# FractionTree.descendancy_from(5/4r, 3)
|
120
|
-
# => [(1/1), (7/6), (6/5), (11/9), (5/4), (14/11), (9/7), (13/10), (4/3)]
|
121
|
-
#
|
122
|
-
# @param number [Rational] around which descendancy is focused
|
123
|
-
# @param depth [Integer] how many nodes to collect
|
124
|
-
#
|
125
|
-
def descendancy_from(number, depth=5)
|
126
|
-
parent1, parent2 = parents_of(number)
|
127
|
-
descendants_of(parent1, parent2, depth)
|
128
|
-
end
|
129
|
-
|
130
|
-
# @return [FractionTree::Node] the mediant child of the given numbers
|
131
|
-
# Return nil if bc - ad |= 1, for a/b, c/d
|
132
|
-
# @example
|
133
|
-
# FractionTree.child_of(1/1r, 4/3r) => (5/4)
|
134
|
-
# FractionTree.child_of(7/4r, 4/3r) => nil
|
135
|
-
#
|
136
|
-
# @param number1 [Rational] one of two parents
|
137
|
-
# @param number2 [Rational] two of two parents
|
138
|
-
# @param strict_neighbors [Boolean] whether to apply the strict Farey tree neighbor requirement
|
139
|
-
#
|
140
|
-
def child_of(number1, number2, strict_neighbors: true)
|
141
|
-
return nil unless farey_neighbors?(number1, number2) || !strict_neighbors
|
142
|
-
Node.new(number1.numerator, number1.denominator) + Node.new(number2.numerator, number2.denominator)
|
143
|
-
end
|
144
|
-
|
145
|
-
# @return [Array] of nodes descended from parent1 and parent2
|
146
|
-
# Return empty array if bc - ad |= 1, for a/b, c/d
|
147
|
-
# @example
|
148
|
-
# FractionTree.descendants_of(1/1r, 4/3r, 3)
|
149
|
-
# => [(1/1), (7/6), (6/5), (11/9), (5/4), (14/11), (9/7), (13/10), (4/3)]
|
150
|
-
#
|
151
|
-
# @param parent1 [Rational] one of two parents
|
152
|
-
# @param parent2 [Rational] two of two parents
|
153
|
-
# @param depth [Integer] the depth to collect
|
154
|
-
# @param strict_neighbors [Boolean] whether to apply the strict Farey tree neighbor requirement
|
155
|
-
#
|
156
|
-
def descendants_of(parent1, parent2, depth=5, strict_neighbors: true)
|
157
|
-
return [] unless farey_neighbors?(parent1, parent2) || !strict_neighbors
|
158
|
-
segment = [Node.new(parent1.numerator, parent1.denominator), Node.new(parent2.numerator, parent2.denominator)]
|
159
|
-
sequence(depth, segment: segment)
|
160
|
-
end
|
161
|
-
|
162
|
-
# @return [Array] of FractionTree::Nodes leading quotient-wise to number
|
163
|
-
# @example
|
164
|
-
# FractionTree.quotient_walk(15/13r)
|
165
|
-
# => [(1/1), (2/1), (3/2), (4/3), (5/4), (6/5), (7/6), (8/7), (15/13)]
|
166
|
-
#
|
167
|
-
# @param number [Numeric] to walk toward
|
168
|
-
# @param limit [Integer] the depth of the walk. Useful for irrational numbers
|
169
|
-
# @param segment [Array] the tuple of [FractionTree::Node] defining the segment of the tree
|
170
|
-
#
|
171
|
-
def quotient_walk(number, limit: 10, segment: computed_base_segment(number))
|
172
|
-
iterating_quotients = ContinuedFraction.new(number, limit).quotients.drop(1)
|
173
|
-
comparing_node = Node.new(number.numerator, number.denominator)
|
174
|
-
|
175
|
-
segment.tap do |arr|
|
176
|
-
held_node = arr[-2]
|
177
|
-
moving_node = arr[-1]
|
178
|
-
|
179
|
-
iterating_quotients.each do |q|
|
180
|
-
(1..q).each do |i|
|
181
|
-
arr << held_node + moving_node
|
182
|
-
# We don't want to walk past the number when it's a rational number and we've reached it
|
183
|
-
break if arr.include?(comparing_node)
|
184
|
-
moving_node = arr[-1]
|
185
|
-
end
|
186
|
-
held_node = arr[-2]
|
187
|
-
end
|
188
|
-
end
|
189
|
-
end
|
190
|
-
|
191
|
-
# @return [Array] of numerators of the fraction tree nodes. Also known as the Stern-Brocot sequence.
|
192
|
-
# @example
|
193
|
-
# FractionTree.numeric_sequence.take(12)
|
194
|
-
# => [1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2]
|
195
|
-
#
|
196
|
-
def numeric_sequence
|
197
|
-
return enum_for :numeric_sequence unless block_given?
|
198
|
-
a=[1,1]
|
199
|
-
|
200
|
-
0.step do |i|
|
201
|
-
yield a[i]
|
202
|
-
a << a[i]+a[i+1] << a[i+1]
|
203
|
-
end
|
204
|
-
end
|
205
|
-
|
206
|
-
# @return [Array] of Farey neighbors to the given number. A Farey neighbor is a number b/c, who's relationship to a/b is such that ad − bc = 1, when c/d < a/b and bc − ad = 1 when c/d > a/b.
|
207
|
-
# @example
|
208
|
-
# FractionTree.farey_neighbors(3/2r, 10)
|
209
|
-
# => [(1/1), (2/1), (4/3), (5/3), (7/5), (8/5), (10/7), (11/7), (13/9), (14/9)]
|
210
|
-
# @param number with neighbors
|
211
|
-
# @param range of harmonic series to search
|
212
|
-
#
|
213
|
-
def farey_neighbors(number, range = 10**(decimal_power(number.numerator)+2))
|
214
|
-
ratio = number.to_r
|
215
|
-
denominator = ratio.denominator
|
216
|
-
|
217
|
-
[].tap do |collection|
|
218
|
-
(1..range-1).each do |i|
|
219
|
-
lower, upper = plus_minus(ratio, Rational(1,i*denominator))
|
220
|
-
collection << lower if farey_neighbors?(ratio, lower)
|
221
|
-
collection << upper if farey_neighbors?(ratio, upper)
|
222
|
-
end
|
223
|
-
end
|
224
|
-
end
|
225
|
-
|
226
|
-
# @return [Boolean] whether two numbers are Farey neighbors
|
227
|
-
# @example
|
228
|
-
# FractionTree.farey_neighbors?(3/2r, 4/3r) => true
|
229
|
-
# FractionTree.farey_neighbors?(3/2r, 7/4r) => false
|
230
|
-
# @param num1 of comparison
|
231
|
-
# @param num2 of comparison
|
232
|
-
#
|
233
|
-
def farey_neighbors?(num1, num2)
|
234
|
-
(num1.numerator * num2.denominator - num1.denominator * num2.numerator).abs == 1
|
235
|
-
end
|
236
|
-
|
237
|
-
private
|
238
|
-
def computed_base_segment(number)
|
239
|
-
floor = number.floor
|
240
|
-
[Node.new(floor,1), Node.new(floor+1,1)]
|
241
|
-
end
|
242
|
-
|
243
|
-
def _sequence(depth = 5, segment:)
|
244
|
-
return [] if depth == 0
|
245
|
-
|
246
|
-
mediant = segment.first + segment.last
|
247
|
-
|
248
|
-
# Generate left segment, mediant, then right segment
|
249
|
-
_sequence(depth - 1, segment: [segment.first, mediant]) + [mediant] + _sequence(depth - 1, segment: [mediant, segment.last])
|
250
|
-
end
|
251
|
-
|
252
|
-
def plus_minus(number, diff)
|
253
|
-
[number - diff, number + diff]
|
254
|
-
end
|
255
|
-
|
256
|
-
def decimal_power(number)
|
257
|
-
Math.log10(number.abs).floor
|
258
|
-
end
|
259
|
-
end
|
260
|
-
|
261
|
-
class Node
|
262
|
-
include Comparable
|
263
|
-
|
264
|
-
attr_reader :numerator, :denominator, :weight
|
265
|
-
|
266
|
-
def initialize(n,d)
|
267
|
-
@numerator = n
|
268
|
-
@denominator = d
|
269
|
-
@weight = (d == 0 ? Float::INFINITY : Rational(@numerator, @denominator))
|
270
|
-
end
|
271
|
-
|
272
|
-
alias :to_r :weight
|
273
|
-
|
274
|
-
def inspect
|
275
|
-
"(#{numerator}/#{denominator})"
|
276
|
-
end
|
277
|
-
alias :to_s :inspect
|
278
|
-
|
279
|
-
def <=>(rhs)
|
280
|
-
self.weight <=> rhs.weight
|
281
|
-
end
|
282
|
-
|
283
|
-
def ==(rhs)
|
284
|
-
self.weight == rhs.weight
|
285
|
-
end
|
286
|
-
|
287
|
-
# Needed for intersection operations to work.
|
288
|
-
# https://blog.mnishiguchi.com/ruby-intersection-of-object-arrays
|
289
|
-
# https://shortrecipes.blogspot.com/2006/10/ruby-intersection-of-two-arrays-of.html
|
290
|
-
# Also, allows using with Set, which uses Hash as storage and equality of its elements is determined according to Object#eql? and Object#hash.
|
291
|
-
#
|
292
|
-
def eql?(rhs)
|
293
|
-
rhs.instance_of?(self.class) && weight == rhs.weight
|
294
|
-
end
|
295
|
-
|
296
|
-
def hash
|
297
|
-
p, q = 17, 37
|
298
|
-
p = q * @id.hash
|
299
|
-
p = q * @name.hash
|
300
|
-
end
|
301
|
-
|
302
|
-
def +(rhs)
|
303
|
-
self.class.new(self.numerator+rhs.numerator, self.denominator+rhs.denominator)
|
304
|
-
end
|
305
|
-
end
|
306
|
-
end
|
307
|
-
|
308
|
-
class SternBrocotTree < FractionTree; end
|
309
|
-
class ScaleTree < FractionTree; end
|
310
|
-
|
311
|
-
class OctaveReducedTree < FractionTree
|
312
|
-
def self.base_segment
|
313
|
-
[Node.new(1,1), Node.new(2,1)]
|
314
|
-
end
|
315
|
-
end
|
316
|
-
|
317
|
-
class FareyTree < FractionTree
|
318
|
-
def self.base_segment
|
319
|
-
[Node.new(0,1), Node.new(1,1)]
|
320
|
-
end
|
321
|
-
end
|
322
|
-
|
323
|
-
class KeyboardTree < FareyTree; end
|
324
|
-
class ScaleStepTree < FareyTree; end
|
325
|
-
class Log2Tree < FareyTree; end
|
5
|
+
require_relative "fraction_tree/node"
|
6
|
+
require_relative "fraction_tree/extensions"
|
7
|
+
require_relative "fraction_tree/fraction_tree"
|
metadata
CHANGED
@@ -1,15 +1,43 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: fraction-tree
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version:
|
4
|
+
version: 2.0.1
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Jose Hales-Garcia
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2024-
|
11
|
+
date: 2024-08-31 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
|
+
- !ruby/object:Gem::Dependency
|
14
|
+
name: matrix
|
15
|
+
requirement: !ruby/object:Gem::Requirement
|
16
|
+
requirements:
|
17
|
+
- - "~>"
|
18
|
+
- !ruby/object:Gem::Version
|
19
|
+
version: '0.4'
|
20
|
+
type: :runtime
|
21
|
+
prerelease: false
|
22
|
+
version_requirements: !ruby/object:Gem::Requirement
|
23
|
+
requirements:
|
24
|
+
- - "~>"
|
25
|
+
- !ruby/object:Gem::Version
|
26
|
+
version: '0.4'
|
27
|
+
- !ruby/object:Gem::Dependency
|
28
|
+
name: forwardable
|
29
|
+
requirement: !ruby/object:Gem::Requirement
|
30
|
+
requirements:
|
31
|
+
- - "~>"
|
32
|
+
- !ruby/object:Gem::Version
|
33
|
+
version: '1.3'
|
34
|
+
type: :runtime
|
35
|
+
prerelease: false
|
36
|
+
version_requirements: !ruby/object:Gem::Requirement
|
37
|
+
requirements:
|
38
|
+
- - "~>"
|
39
|
+
- !ruby/object:Gem::Version
|
40
|
+
version: '1.3'
|
13
41
|
- !ruby/object:Gem::Dependency
|
14
42
|
name: continued_fractions
|
15
43
|
requirement: !ruby/object:Gem::Requirement
|
@@ -87,6 +115,9 @@ extensions: []
|
|
87
115
|
extra_rdoc_files: []
|
88
116
|
files:
|
89
117
|
- lib/fraction_tree.rb
|
118
|
+
- lib/fraction_tree/extensions.rb
|
119
|
+
- lib/fraction_tree/fraction_tree.rb
|
120
|
+
- lib/fraction_tree/node.rb
|
90
121
|
homepage: https://jolohaga.github.io/fraction-tree/
|
91
122
|
licenses:
|
92
123
|
- MIT
|
@@ -107,7 +138,7 @@ required_rubygems_version: !ruby/object:Gem::Requirement
|
|
107
138
|
- !ruby/object:Gem::Version
|
108
139
|
version: '3.1'
|
109
140
|
requirements: []
|
110
|
-
rubygems_version: 3.5.
|
141
|
+
rubygems_version: 3.5.18
|
111
142
|
signing_key:
|
112
143
|
specification_version: 4
|
113
144
|
summary: Fraction tree
|