euler-manager 0.0.3 → 0.0.4

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA1:
3
- metadata.gz: 447013a7c859092f978f3b6a4dbefc6a14f4e2fb
4
- data.tar.gz: 0b907b27f22ace75cf8224fee337594388528342
3
+ metadata.gz: 37a60549e5415b6cc0d09b8afea60b3e656e3db0
4
+ data.tar.gz: 5e62eeec4e26819a192e9e9bbf3e96fdfaaea0c2
5
5
  SHA512:
6
- metadata.gz: ba1398de991d32d38e0636e22918285764e2d81e57a2f577429935b48fe3d72e457f5158bcc0dc264fbc51358dad4fddee9be24f576f036eb3470412d2ca2c8d
7
- data.tar.gz: 3c0404df093b431cf63efece09ccca26fe2c775e32b308a1cfe23ddc7da9278a6b514406cca756f486ecdc3b6b2fa23a2382cd16454f9098b14386f78ec865fe
6
+ metadata.gz: b3d71ace9f4cd974a60762f71080ddfe2ada0a5db8ad3a64e0c18bf7f49d4e8289959a1774c382e5460715e9b7886daa6077af515f73d3b49c4553ab28f62e79
7
+ data.tar.gz: c186c4e16eeb61f68b22198a4fa4802666cb775b34f4f281e0588d3d489feff86a3654e78b5963dc92ad6b3c0e0742ff75dc45b2ca9fc32115dc34cc9f7f485f
data/data/problems/10.yml CHANGED
@@ -3,6 +3,6 @@
3
3
  :name: Summation of primes
4
4
  :url: http://projecteuler.net/problem=10
5
5
  :content: "\r\n<p>The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17.</p>\r\n<p>Find
6
- the sum of all the primes below two million.</p>\r\n<!--\r\n<p class=\"info\">Note:
6
+ the sum of all the primes below two million.</p>\r\n<!--\r\n<p class=\"note\">Note:
7
7
  This problem has been changed recently, please check that you are using the right
8
8
  parameters.</p>\r\n-->\r\n\r\n\r\n"
@@ -22,5 +22,5 @@
22
22
  an algorithm to provide a near optimum set. The optimum set for <i>n</i> = 6 is
23
23
  A = {11, 18, 19, 20, 22, 25}, with S(A) = 115 and corresponding set string: 111819202225.</p>\r\n<p>Given
24
24
  that A is an optimum special sum set for <i>n</i> = 7, find its set string.</p>\r\n<p
25
- class=\"info\">NOTE: This problem is related to problems <a href=\"index.php?section=problems&amp;id=105\">105</a>
26
- and <a href=\"index.php?section=problems&amp;id=106\">106</a>.</p>\r\n"
25
+ class=\"note\">NOTE: This problem is related to <a href=\"problem=105\">Problem
26
+ 105</a> and <a href=\"problem=106\">Problem 106</a>.</p>\r\n"
@@ -17,5 +17,5 @@
17
17
  examples given above are the first two sets in the file), identify all the special
18
18
  sum sets, A<sub>1</sub>, A<sub>2</sub>, ..., A<sub><i>k</i></sub>, and find the
19
19
  value of S(A<sub>1</sub>) + S(A<sub>2</sub>) + ... + S(A<sub><i>k</i></sub>).</p>\r\n<p
20
- class=\"info\">NOTE: This problem is related to problems <a href=\"index.php?section=problems&amp;id=103\">103</a>
21
- and <a href=\"index.php?section=problems&amp;id=106\">106</a>.</p>\r\n"
20
+ class=\"note\">NOTE: This problem is related to <a href=\"problem=103\">Problem
21
+ 103</a> and <a href=\"problem=106\">Problem 106</a>.</p>\r\n"
@@ -15,5 +15,5 @@
15
15
  = 4, only 1 of these pairs need to be tested for equality (first rule). Similarly,
16
16
  when <i>n</i> = 7, only 70 out of the 966 subset pairs need to be tested.</p>\r\n<p>For
17
17
  <i>n</i> = 12, how many of the 261625 subset pairs that can be obtained need to
18
- be tested for equality?</p>\r\n<p class=\"info\">NOTE: This problem is related to
19
- problems <a href=\"index.php?section=problems&amp;id=103\">103</a> and <a href=\"index.php?section=problems&amp;id=105\">105</a>.</p>\r\n"
18
+ be tested for equality?</p>\r\n<p class=\"note\">NOTE: This problem is related to
19
+ <a href=\"problem=103\">Problem 103</a> and <a href=\"problem=105\">Problem 105</a>.</p>\r\n"
@@ -27,6 +27,6 @@
27
27
  style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\" width=\"15\"
28
28
  height=\"1\" alt=\"\"><br> 4</div></td>\r\n</tr>\n</table>\n</div>\r\n<p>What is
29
29
  the least value of <var>n</var> for which the number of distinct solutions exceeds
30
- one-thousand?</p>\r\n<p class=\"info\">NOTE: This problem is an easier version of
31
- problem <a href=\"index.php?section=problems&amp;id=110\">110</a>; it is strongly
32
- advised that you solve this one first.</p>\r\n"
30
+ one-thousand?</p>\r\n<p class=\"note\">NOTE: This problem is an easier version of
31
+ <a href=\"problem=110\">Problem 110</a>; it is strongly advised that you solve this
32
+ one first.</p>\r\n"
@@ -13,7 +13,7 @@
13
13
  can be verified that when <var>n</var> = 1260 there are 113 distinct solutions and
14
14
  this is the least value of <var>n</var> for which the total number of distinct solutions
15
15
  exceeds one hundred.</p>\r\n<p>What is the least value of <var>n</var> for which
16
- the number of distinct solutions exceeds four million?</p>\r\n<p class=\"info\">NOTE:
17
- This problem is a much more difficult version of problem <a href=\"index.php?section=problems&amp;id=108\">108</a>
18
- and as it is well beyond the limitations of a brute force approach it requires a
19
- clever implementation.</p>\r\n"
16
+ the number of distinct solutions exceeds four million?</p>\r\n<p class=\"note\">NOTE:
17
+ This problem is a much more difficult version of <a href=\"problem=108\">Problem
18
+ 108</a> and as it is well beyond the limitations of a brute force approach it requires
19
+ a clever implementation.</p>\r\n"
@@ -100,7 +100,7 @@
100
100
  height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table cellspacing=\"1\"
101
101
  cellpadding=\"0\" border=\"1\"><tr>\n<td colspan=\"7\" style=\"background-color:#cc0000\"><img
102
102
  src=\"images/spacer.gif\" width=\"158\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td> </td>\r\n</tr>\n</table>\n<p>How
103
- many ways can a row measuring fifty units in length be filled?</p>\r\n<p class=\"info\">NOTE:
103
+ many ways can a row measuring fifty units in length be filled?</p>\r\n<p class=\"note\">NOTE:
104
104
  Although the example above does not lend itself to the possibility, in general it
105
105
  is permitted to mix block sizes. For example, on a row measuring eight units in
106
106
  length you could use red (3), black (1), and red (4).</p>\r\n"
@@ -2,16 +2,15 @@
2
2
  :id: 115
3
3
  :name: Counting block combinations II
4
4
  :url: http://projecteuler.net/problem=115
5
- :content: "\r\n<p class=\"info\">NOTE: This is a more difficult version of problem
6
- <a href=\"index.php?section=problems&amp;id=114\">114</a>.</p>\r\n<p>A row measuring
7
- <i>n</i> units in length has red blocks with a minimum length of <i>m</i> units
8
- placed on it, such that any two red blocks (which are allowed to be different lengths)
9
- are separated by at least one black square.</p>\r\n<p>Let the fill-count function,
10
- F(<i>m</i>, <i>n</i>), represent the number of ways that a row can be filled.</p>\r\n<p>For
11
- example, F(3, 29) = 673135 and F(3, 30) = 1089155.</p>\r\n<p>That is, for <i>m</i>
12
- = 3, it can be seen that <i>n</i> = 30 is the smallest value for which the fill-count
13
- function first exceeds one million.</p>\r\n<p>In the same way, for <i>m</i> = 10,
14
- it can be verified that F(10, 56) = 880711 and F(10, 57) = 1148904, so <i>n</i>
15
- = 57 is the least value for which the fill-count function first exceeds one million.</p>\r\n<p>For
16
- <i>m</i> = 50, find the least value of <i>n</i> for which the fill-count function
17
- first exceeds one million.</p>\r\n\r\n"
5
+ :content: "\r\n<p class=\"note\">NOTE: This is a more difficult version of <a href=\"problem=114\">Problem
6
+ 114</a>.</p>\r\n<p>A row measuring <i>n</i> units in length has red blocks with
7
+ a minimum length of <i>m</i> units placed on it, such that any two red blocks (which
8
+ are allowed to be different lengths) are separated by at least one black square.</p>\r\n<p>Let
9
+ the fill-count function, F(<i>m</i>, <i>n</i>), represent the number of ways that
10
+ a row can be filled.</p>\r\n<p>For example, F(3, 29) = 673135 and F(3, 30) = 1089155.</p>\r\n<p>That
11
+ is, for <i>m</i> = 3, it can be seen that <i>n</i> = 30 is the smallest value for
12
+ which the fill-count function first exceeds one million.</p>\r\n<p>In the same way,
13
+ for <i>m</i> = 10, it can be verified that F(10, 56) = 880711 and F(10, 57) = 1148904,
14
+ so <i>n</i> = 57 is the least value for which the fill-count function first exceeds
15
+ one million.</p>\r\n<p>For <i>m</i> = 50, find the least value of <i>n</i> for which
16
+ the fill-count function first exceeds one million.</p>\r\n\r\n"
@@ -72,5 +72,5 @@
72
72
  that colours cannot be mixed there are 7 + 3 + 2 = 12 ways of replacing the black
73
73
  tiles in a row measuring five units in length.</p>\r\n<p>How many different ways
74
74
  can the black tiles in a row measuring fifty units in length be replaced if colours
75
- cannot be mixed and at least one coloured tile must be used?</p>\r\n<p class=\"info\">NOTE:
76
- This is related to problem <a href=\"index.php?section=problems&amp;id=117\">117</a>.</p>\r\n"
75
+ cannot be mixed and at least one coloured tile must be used?</p>\r\n<p class=\"note\">NOTE:
76
+ This is related to <a href=\"problem=117\">Problem 117</a>.</p>\r\n"
@@ -78,5 +78,5 @@
78
78
  src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"4\"
79
79
  style=\"background-color:#0000cc\"><img src=\"images/spacer.gif\" width=\"92\" height=\"20\"
80
80
  alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td> </td>\r\n</tr>\n</table>\n<p>How
81
- many ways can a row measuring fifty units in length be tiled?</p>\r\n<p class=\"info\">NOTE:
82
- This is related to problem <a href=\"index.php?section=problems&amp;id=116\">116</a>.</p>\r\n"
81
+ many ways can a row measuring fifty units in length be tiled?</p>\r\n<p class=\"note\">NOTE:
82
+ This is related to <a href=\"problem=116\">Problem 116</a>.</p>\r\n"
data/data/problems/14.yml CHANGED
@@ -24,5 +24,5 @@
24
24
  1</div>\r\n<p>It can be seen that this sequence (starting at 13 and finishing at
25
25
  1) contains 10 terms. Although it has not been proved yet (Collatz Problem), it
26
26
  is thought that all starting numbers finish at 1.</p>\r\n<p>Which starting number,
27
- under one million, produces the longest chain?</p>\r\n<p class=\"info\"><b>NOTE:</b>
27
+ under one million, produces the longest chain?</p>\r\n<p class=\"note\"><b>NOTE:</b>
28
28
  Once the chain starts the terms are allowed to go above one million.</p>\r\n\r\n"
@@ -1,6 +1,6 @@
1
1
  ---
2
2
  :id: 159
3
- :name: "Digital root sums of factorisations\r\n"
3
+ :name: Digital root sums of factorisations
4
4
  :url: http://projecteuler.net/problem=159
5
5
  :content: "\r\n<p>A composite number can be factored many different ways. \r\nFor
6
6
  instance, not including multiplication by one, 24 can be factored in 7 distinct
data/data/problems/17.yml CHANGED
@@ -5,7 +5,7 @@
5
5
  :content: "\r\n<p>If the numbers 1 to 5 are written out in words: one, two, three,
6
6
  four, five, then there are 3 + 3 + 5 + 4 + 4 = 19 letters used in total.</p>\r\n<p>If
7
7
  all the numbers from 1 to 1000 (one thousand) inclusive were written out in words,
8
- how many letters would be used? </p>\r\n<br><p class=\"info\"><b>NOTE:</b> Do not
8
+ how many letters would be used? </p>\r\n<br><p class=\"note\"><b>NOTE:</b> Do not
9
9
  count spaces or hyphens. For example, 342 (three hundred and forty-two) contains
10
10
  23 letters and 115 (one hundred and fifteen) contains 20 letters. The use of \"and\"
11
11
  when writing out numbers is in compliance with British usage.</p>\r\n"
@@ -1,6 +1,6 @@
1
1
  ---
2
2
  :id: 179
3
- :name: "Consecutive positive divisors\r\n"
3
+ :name: Consecutive positive divisors
4
4
  :url: http://projecteuler.net/problem=179
5
5
  :content: "\r\n<p>Find the number of integers 1 <img src=\"images/symbol_lt.gif\"
6
6
  width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\" style=\"vertical-align:middle;\">
data/data/problems/18.yml CHANGED
@@ -14,8 +14,8 @@
14
14
  83 40 80 70 33<br>\r\n41 48 72 33 47 32 37 16 94 29<br>\r\n53 71 44 65 25 43 91
15
15
  52 97 51 14<br>\r\n70 11 33 28 77 73 17 78 39 68 17 57<br>\r\n91 71 52 38 17 14
16
16
  91 43 58 50 27 29 48<br>\r\n63 66 04 68 89 53 67 30 73 16 69 87 40 31<br>\r\n04
17
- 62 98 27 23 09 70 98 73 93 38 53 60 04 23</p>\r\n<p class=\"info\"><b>NOTE:</b>
17
+ 62 98 27 23 09 70 98 73 93 38 53 60 04 23</p>\r\n<p class=\"note\"><b>NOTE:</b>
18
18
  As there are only 16384 routes, it is possible to solve this problem by trying every
19
- route. However, <a href=\"index.php?section=problems&amp;id=67\">Problem 67</a>,
20
- is the same challenge with a triangle containing one-hundred rows; it cannot be
21
- solved by brute force, and requires a clever method! ;o)</p>\r\n"
19
+ route. However, <a href=\"problem=67\">Problem 67</a>, is the same challenge with
20
+ a triangle containing one-hundred rows; it cannot be solved by brute force, and
21
+ requires a clever method! ;o)</p>\r\n"
@@ -1,6 +1,6 @@
1
1
  ---
2
2
  :id: 190
3
- :name: "Maximising a weighted product\r\n"
3
+ :name: Maximising a weighted product
4
4
  :url: http://projecteuler.net/problem=190
5
5
  :content: "\r\n<p>Let S<sub>m</sub> = (x<sub>1</sub>, x<sub>2</sub>, ... , x<sub>m</sub>)
6
6
  be the m-tuple of positive real numbers with x<sub>1</sub> + x<sub>2</sub> + ...
@@ -1,6 +1,6 @@
1
1
  ---
2
2
  :id: 312
3
- :name: "Cyclic paths on Sierpiński graphs\r\n"
3
+ :name: Cyclic paths on Sierpiński graphs
4
4
  :url: http://projecteuler.net/problem=312
5
5
  :content: "\r\n<p>- A <b>Sierpiński graph</b> of order-1 (<var>S</var><sub>1</sub>)
6
6
  is an equilateral triangle.<br>\r\n- <var>S</var><sub><var>n</var>+1</sub> is obtained
data/data/problems/32.yml CHANGED
@@ -9,6 +9,6 @@
9
9
  height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"> 186 = 7254,
10
10
  containing multiplicand, multiplier, and product is 1 through 9 pandigital.</p>\r\n\r\n<p>Find
11
11
  the sum of all products whose multiplicand/multiplier/product identity can be written
12
- as a 1 through 9 pandigital.</p>\r\n\r\n<div class=\"info\">HINT: Some products
12
+ as a 1 through 9 pandigital.</p>\r\n\r\n<div class=\"note\">HINT: Some products
13
13
  can be obtained in more than one way so be sure to only include it once in your
14
14
  sum.</div>\r\n\r\n"
@@ -1,6 +1,6 @@
1
1
  ---
2
2
  :id: 369
3
- :name: "Badugi\r\n"
3
+ :name: Badugi
4
4
  :url: http://projecteuler.net/problem=369
5
5
  :content: "\r\n<p>In a standard 52 card deck of playing cards, a set of 4 cards is
6
6
  a <b>Badugi</b> if it contains 4 cards with no pairs and no two cards of the same
@@ -1,6 +1,6 @@
1
1
  ---
2
2
  :id: 374
3
- :name: "Maximum Integer Partition Product\r\n"
3
+ :name: Maximum Integer Partition Product
4
4
  :url: http://projecteuler.net/problem=374
5
5
  :content: "\r\n<p>An integer partition of a number <var>n</var> is a way of writing
6
6
  <var>n</var> as a sum of positive integers.</p>\r\n\r\n<p>Partitions that differ
data/data/problems/54.yml CHANGED
@@ -20,20 +20,20 @@
20
20
  five hands dealt to two players:</p>\r\n<div style=\"text-align:center;\">\r\n<table>\n<tr>\n<td><b>Hand</b></td>\n<td> </td>\n<td><b>Player
21
21
  1</b></td>\n<td> </td>\n<td><b>Player 2</b></td>\n<td> </td>\n<td><b>Winner</b></td>\r\n</tr>\n<tr>\n<td
22
22
  style=\"vertical-align:top;\"><b>1</b></td>\n<td> </td>\n<td>5H 5C 6S 7S KD<br><div
23
- class=\"info\">Pair of Fives</div>\n</td>\n<td> </td>\n<td>2C 3S 8S 8D TD<br><div
24
- class=\"info\">Pair of Eights</div>\n</td>\n<td> </td>\n<td style=\"vertical-align:top;\">Player
23
+ class=\"note\">Pair of Fives</div>\n</td>\n<td> </td>\n<td>2C 3S 8S 8D TD<br><div
24
+ class=\"note\">Pair of Eights</div>\n</td>\n<td> </td>\n<td style=\"vertical-align:top;\">Player
25
25
  2</td>\r\n</tr>\n<tr>\n<td style=\"vertical-align:top;\"><b>2</b></td>\n<td> </td>\n<td>5D
26
- 8C 9S JS AC<br><div class=\"info\">Highest card Ace</div>\n</td>\n<td> </td>\n<td>2C
27
- 5C 7D 8S QH<br><div class=\"info\">Highest card Queen</div>\n</td>\n<td> </td>\n<td
26
+ 8C 9S JS AC<br><div class=\"note\">Highest card Ace</div>\n</td>\n<td> </td>\n<td>2C
27
+ 5C 7D 8S QH<br><div class=\"note\">Highest card Queen</div>\n</td>\n<td> </td>\n<td
28
28
  style=\"vertical-align:top;\">Player 1</td>\r\n</tr>\n<tr>\n<td style=\"vertical-align:top;\"><b>3</b></td>\n<td> </td>\n<td>2D
29
- 9C AS AH AC<br><div class=\"info\">Three Aces</div>\n</td>\n<td> </td>\n<td>3D 6D
30
- 7D TD QD<br><div class=\"info\">Flush with Diamonds</div>\n</td>\n<td> </td>\n<td
29
+ 9C AS AH AC<br><div class=\"note\">Three Aces</div>\n</td>\n<td> </td>\n<td>3D 6D
30
+ 7D TD QD<br><div class=\"note\">Flush with Diamonds</div>\n</td>\n<td> </td>\n<td
31
31
  style=\"vertical-align:top;\">Player 2</td>\r\n</tr>\n<tr>\n<td style=\"vertical-align:top;\"><b>4</b></td>\n<td> </td>\n<td>4D
32
- 6S 9H QH QC<br><div class=\"info\">Pair of Queens<br>Highest card Nine</div>\n</td>\n<td> </td>\n<td>3D
33
- 6D 7H QD QS<br><div class=\"info\">Pair of Queens<br>Highest card Seven</div>\n</td>\n<td> </td>\n<td
32
+ 6S 9H QH QC<br><div class=\"note\">Pair of Queens<br>Highest card Nine</div>\n</td>\n<td> </td>\n<td>3D
33
+ 6D 7H QD QS<br><div class=\"note\">Pair of Queens<br>Highest card Seven</div>\n</td>\n<td> </td>\n<td
34
34
  style=\"vertical-align:top;\">Player 1</td>\r\n</tr>\n<tr>\n<td style=\"vertical-align:top;\"><b>5</b></td>\n<td> </td>\n<td>2H
35
- 2D 4C 4D 4S<br><div class=\"info\">Full House<br>With Three Fours</div>\n</td>\n<td> </td>\n<td>3C
36
- 3D 3S 9S 9D<br><div class=\"info\">Full House<br>with Three Threes</div>\n</td>\n<td> </td>\n<td
35
+ 2D 4C 4D 4S<br><div class=\"note\">Full House<br>With Three Fours</div>\n</td>\n<td> </td>\n<td>3C
36
+ 3D 3S 9S 9D<br><div class=\"note\">Full House<br>with Three Threes</div>\n</td>\n<td> </td>\n<td
37
37
  style=\"vertical-align:top;\">Player 1</td>\r\n</tr>\n</table>\n</div>\r\n<p>The
38
38
  file, <a href=\"project/poker.txt\">poker.txt</a>, contains one-thousand random
39
39
  hands dealt to two players. Each line of the file contains ten cards (separated
data/data/problems/55.yml CHANGED
@@ -17,5 +17,5 @@
17
17
  producing a palindrome: 4668731596684224866951378664 (53 iterations, 28-digits).</p>\r\n<p>Surprisingly,
18
18
  there are palindromic numbers that are themselves Lychrel numbers; the first example
19
19
  is 4994.</p>\r\n<p>How many Lychrel numbers are there below ten-thousand?</p>\r\n<p
20
- class=\"info\">NOTE: Wording was modified slightly on 24 April 2007 to emphasise
20
+ class=\"note\">NOTE: Wording was modified slightly on 24 April 2007 to emphasise
21
21
  the theoretical nature of Lychrel numbers.</p>\r\n"
data/data/problems/65.yml CHANGED
@@ -5,14 +5,11 @@
5
5
  :content: "\r\n<p>The square root of 2 can be written as an infinite continued fraction.</p>\r\n<div
6
6
  style=\"margin-left:20px;\">\r\n<table border=\"0\" cellspacing=\"0\" cellpadding=\"0\">\n<tr>\n<td>\n<img
7
7
  src=\"images/symbol_radic.gif\" width=\"14\" height=\"16\" alt=\"√\" border=\"0\"
8
- style=\"vertical-align:middle;\">2 = 1 +</td>\r\n<td colspan=\"4\"><div style=\"text-align:center;\">1<br><img
9
- src=\"images/blackdot.gif\" width=\"135\" height=\"1\" alt=\"\"><br>\n</div></td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td>2
10
- +</td>\r\n<td colspan=\"3\"><div style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\"
11
- width=\"110\" height=\"1\" alt=\"\"><br>\n</div></td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td> </td>\r\n<td>2
12
- +</td>\r\n<td colspan=\"2\"><div style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\"
13
- width=\"85\" height=\"1\" alt=\"\"><br>\n</div></td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td>2
14
- +</td>\r\n<td><div style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\"
15
- width=\"60\" height=\"1\" alt=\"\"><br>\n</div></td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td>2
8
+ style=\"vertical-align:middle;\">2 = 1 +</td>\r\n<td colspan=\"4\" style=\"border-bottom:1px
9
+ solid #000;\"><div style=\"text-align:center;\">1</div></td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td>2
10
+ +</td>\r\n<td colspan=\"3\" style=\"border-bottom:1px solid #000;\"><div style=\"text-align:center;\">1</div></td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td> </td>\r\n<td>2
11
+ +</td>\r\n<td colspan=\"2\" style=\"border-bottom:1px solid #000;\"><div style=\"text-align:center;\">1</div></td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td>2
12
+ +</td>\r\n<td style=\"border-bottom:1px solid #000;\"><div style=\"text-align:center;\">1</div></td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td>2
16
13
  + ...</td>\r\n</tr>\n</table>\n</div>\r\n<p>The infinite continued fraction can
17
14
  be written, <img src=\"images/symbol_radic.gif\" width=\"14\" height=\"16\" alt=\"√\"
18
15
  border=\"0\" style=\"vertical-align:middle;\">2 = [1;(2)], (2) indicates that 2
@@ -22,41 +19,34 @@
22
19
  fractions for square roots provide the best rational approximations. Let us consider
23
20
  the convergents for <img src=\"images/symbol_radic.gif\" width=\"14\" height=\"16\"
24
21
  alt=\"√\" border=\"0\" style=\"vertical-align:middle;\">2.</p>\r\n<div style=\"margin-left:20px;\">\r\n\r\n<table
25
- border=\"0\" cellspacing=\"0\" cellpadding=\"0\">\n<tr>\n<td>1 +</td>\r\n<td><div
26
- style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\" width=\"15\"
27
- height=\"1\" alt=\"\"><br>\n</div></td>\r\n<td>= 3/2</td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td><div
22
+ border=\"0\" cellspacing=\"0\" cellpadding=\"0\">\n<tr>\n<td>1 +</td>\r\n<td style=\"border-bottom:1px
23
+ solid #000;\"><div style=\"text-align:center;\">1</div></td>\r\n<td>= 3/2</td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td><div
28
24
  style=\"text-align:center;\">2</div></td>\r\n<td> </td>\r\n</tr>\n</table>\n<table
29
- border=\"0\" cellspacing=\"0\" cellpadding=\"0\">\n<tr>\n<td>1 +</td>\r\n<td colspan=\"2\"><div
30
- style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\" width=\"50\"
31
- height=\"1\" alt=\"\"><br>\n</div></td>\r\n<td>= 7/5</td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td>2
32
- +</td>\r\n<td><div style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\"
33
- width=\"15\" height=\"1\" alt=\"\"><br>\n</div></td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td> </td>\r\n<td><div
25
+ border=\"0\" cellspacing=\"0\" cellpadding=\"0\">\n<tr>\n<td>1 +</td>\r\n<td colspan=\"2\"
26
+ style=\"border-bottom:1px solid #000;\"><div style=\"text-align:center;\">1</div></td>\r\n<td>=
27
+ 7/5</td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td>2 +</td>\r\n<td style=\"border-bottom:1px
28
+ solid #000;\"><div style=\"text-align:center;\">1</div></td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td> </td>\r\n<td><div
34
29
  style=\"text-align:center;\">2</div></td>\r\n<td> </td>\r\n</tr>\n</table>\n<table
35
- border=\"0\" cellspacing=\"0\" cellpadding=\"0\">\n<tr>\n<td>1 +</td>\r\n<td colspan=\"3\"><div
36
- style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\" width=\"80\"
37
- height=\"1\" alt=\"\"><br>\n</div></td>\r\n<td>= 17/12</td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td>2
38
- +</td>\r\n<td colspan=\"2\"><div style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\"
39
- width=\"50\" height=\"1\" alt=\"\"><br>\n</div></td>\r\n<td> </td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td> </td>\r\n<td>2
40
- +</td>\r\n<td><div style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\"
41
- width=\"15\" height=\"1\" alt=\"\"><br>\n</div></td>\r\n<td> </td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td><div
30
+ border=\"0\" cellspacing=\"0\" cellpadding=\"0\">\n<tr>\n<td>1 +</td>\r\n<td colspan=\"3\"
31
+ style=\"border-bottom:1px solid #000;\"><div style=\"text-align:center;\">1</div></td>\r\n<td>=
32
+ 17/12</td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td>2 +</td>\r\n<td colspan=\"2\" style=\"border-bottom:1px
33
+ solid #000;\"><div style=\"text-align:center;\">1</div></td>\r\n<td> </td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td> </td>\r\n<td>2
34
+ +</td>\r\n<td style=\"border-bottom:1px solid #000;\"><div style=\"text-align:center;\">1</div></td>\r\n<td> </td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td><div
42
35
  style=\"text-align:center;\">2</div></td>\r\n<td> </td>\r\n</tr>\n</table>\n<table
43
- border=\"0\" cellspacing=\"0\" cellpadding=\"0\">\n<tr>\n<td>1 +</td>\r\n<td colspan=\"4\"><div
44
- style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\" width=\"110\"
45
- height=\"1\" alt=\"\"><br>\n</div></td>\r\n<td>= 41/29</td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td>2
46
- +</td>\r\n<td colspan=\"3\"><div style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\"
47
- width=\"80\" height=\"1\" alt=\"\"><br>\n</div></td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td> </td>\r\n<td>2
48
- +</td>\r\n<td colspan=\"2\"><div style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\"
49
- width=\"50\" height=\"1\" alt=\"\"><br>\n</div></td>\r\n<td> </td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td>2
50
- +</td>\r\n<td><div style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\"
51
- width=\"15\" height=\"1\" alt=\"\"><br>\n</div></td>\r\n<td> </td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td><div
36
+ border=\"0\" cellspacing=\"0\" cellpadding=\"0\">\n<tr>\n<td>1 +</td>\r\n<td colspan=\"4\"
37
+ style=\"border-bottom:1px solid #000;\"><div style=\"text-align:center;\">1</div></td>\r\n<td>=
38
+ 41/29</td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td>2 +</td>\r\n<td colspan=\"3\" style=\"border-bottom:1px
39
+ solid #000;\"><div style=\"text-align:center;\">1</div></td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td> </td>\r\n<td>2
40
+ +</td>\r\n<td colspan=\"2\" style=\"border-bottom:1px solid #000;\"><div style=\"text-align:center;\">1</div></td>\r\n<td> </td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td>2
41
+ +</td>\r\n<td style=\"border-bottom:1px solid #000;\"><div style=\"text-align:center;\">1</div></td>\r\n<td> </td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td><div
52
42
  style=\"text-align:center;\">2</div></td>\r\n<td> </td>\r\n</tr>\n</table>\n</div>\r\n<p>Hence
53
43
  the sequence of the first ten convergents for <img src=\"images/symbol_radic.gif\"
54
44
  width=\"14\" height=\"16\" alt=\"√\" border=\"0\" style=\"vertical-align:middle;\">2
55
- are:</p>\r\n<div class=\"info\">1, 3/2, 7/5, 17/12, 41/29, 99/70, 239/169, 577/408,
45
+ are:</p>\r\n<div class=\"note\">1, 3/2, 7/5, 17/12, 41/29, 99/70, 239/169, 577/408,
56
46
  1393/985, 3363/2378, ...</div>\r\n<p>What is most surprising is that the important
57
47
  mathematical constant,<br><i>e</i> = [2; 1,2,1, 1,4,1, 1,6,1 , ... , 1,2<i>k</i>,1,
58
48
  ...].</p>\r\n<p>The first ten terms in the sequence of convergents for <i>e</i>
59
- are:</p>\r\n<div class=\"info\">2, 3, 8/3, 11/4, 19/7, 87/32, 106/39, 193/71, 1264/465,
49
+ are:</p>\r\n<div class=\"note\">2, 3, 8/3, 11/4, 19/7, 87/32, 106/39, 193/71, 1264/465,
60
50
  1457/536, ...</div>\r\n<p>The sum of digits in the numerator of the 10<sup>th</sup>
61
51
  convergent is 1+4+5+7=17.</p>\r\n<p>Find the sum of digits in the numerator of the
62
52
  100<sup>th</sup> convergent of the continued fraction for <i>e</i>.</p>\r\n"
data/data/problems/67.yml CHANGED
@@ -9,9 +9,9 @@
9
9
  6<br>\r\n8 5 <span style=\"color:#ff0000;\"><b>9</b></span> 3</p>\r\n<p>That is,
10
10
  3 + 7 + 4 + 9 = 23.</p>\r\n<p>Find the maximum total from top to bottom in <a href=\"project/triangle.txt\">triangle.txt</a>
11
11
  (right click and 'Save Link/Target As...'), a 15K text file containing a triangle
12
- with one-hundred rows.</p>\r\n<p class=\"info\"><b>NOTE:</b> This is a much more
13
- difficult version of <a href=\"index.php?section=problems&amp;id=18\">Problem 18</a>.
14
- It is not possible to try every route to solve this problem, as there are 2<sup>99</sup>
15
- altogether! If you could check one trillion (10<sup>12</sup>) routes every second
16
- it would take over twenty billion years to check them all. There is an efficient
17
- algorithm to solve it. ;o)</p>\r\n\r\n"
12
+ with one-hundred rows.</p>\r\n<p class=\"note\"><b>NOTE:</b> This is a much more
13
+ difficult version of <a href=\"problem=18\">Problem 18</a>. It is not possible to
14
+ try every route to solve this problem, as there are 2<sup>99</sup> altogether! If
15
+ you could check one trillion (10<sup>12</sup>) routes every second it would take
16
+ over twenty billion years to check them all. There is an efficient algorithm to
17
+ solve it. ;o)</p>\r\n\r\n"
data/data/problems/8.yml CHANGED
@@ -2,5 +2,12 @@
2
2
  :id: 8
3
3
  :name: Largest product in a series
4
4
  :url: http://projecteuler.net/problem=8
5
- :content: "\r\n\n<p>Find the greatest product of five consecutive digits in the 1000-digit
6
- number.</p>\n<p style=\"font-family:courier new;font-size:10pt;text-align:center;\">\n73167176531330624919225119674426574742355349194934<br>\n96983520312774506326239578318016984801869478851843<br>\n85861560789112949495459501737958331952853208805511<br>\n12540698747158523863050715693290963295227443043557<br>\n66896648950445244523161731856403098711121722383113<br>\n62229893423380308135336276614282806444486645238749<br>\n30358907296290491560440772390713810515859307960866<br>\n70172427121883998797908792274921901699720888093776<br>\n65727333001053367881220235421809751254540594752243<br>\n52584907711670556013604839586446706324415722155397<br>\n53697817977846174064955149290862569321978468622482<br>\n83972241375657056057490261407972968652414535100474<br>\n82166370484403199890008895243450658541227588666881<br>\n16427171479924442928230863465674813919123162824586<br>\n17866458359124566529476545682848912883142607690042<br>\n24219022671055626321111109370544217506941658960408<br>\n07198403850962455444362981230987879927244284909188<br>\n84580156166097919133875499200524063689912560717606<br>\n05886116467109405077541002256983155200055935729725<br>\n71636269561882670428252483600823257530420752963450<br></p>\n\r\n"
5
+ :content: "\r\n<p>The four adjacent digits in the 1000-digit number that have the
6
+ greatest product are 9 <img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\"
7
+ alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"> 9 <img src=\"images/symbol_times.gif\"
8
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">
9
+ 8 <img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
10
+ style=\"vertical-align:middle;\"> 9 = 5832.</p>\r\n<p style=\"font-family:courier
11
+ new;text-align:center;\">\r\n73167176531330624919225119674426574742355349194934<br>\r\n96983520312774506326239578318016984801869478851843<br>\r\n85861560789112949495459501737958331952853208805511<br>\r\n12540698747158523863050715693290963295227443043557<br>\r\n66896648950445244523161731856403098711121722383113<br>\r\n62229893423380308135336276614282806444486645238749<br>\r\n30358907296290491560440772390713810515859307960866<br>\r\n70172427121883998797908792274921901699720888093776<br>\r\n65727333001053367881220235421809751254540594752243<br>\r\n52584907711670556013604839586446706324415722155397<br>\r\n53697817977846174064955149290862569321978468622482<br>\r\n83972241375657056057490261407972968652414535100474<br>\r\n82166370484403199890008895243450658541227588666881<br>\r\n16427171479924442928230863465674813919123162824586<br>\r\n17866458359124566529476545682848912883142607690042<br>\r\n24219022671055626321111109370544217506941658960408<br>\r\n07198403850962455444362981230987879927244284909188<br>\r\n84580156166097919133875499200524063689912560717606<br>\r\n05886116467109405077541002256983155200055935729725<br>\r\n71636269561882670428252483600823257530420752963450<br></p>\r\n<p>Find
12
+ the thirteen adjacent digits in the 1000-digit number that have the greatest product.
13
+ What is the value of this product?</p>\r\n"
data/data/problems/82.yml CHANGED
@@ -2,11 +2,11 @@
2
2
  :id: 82
3
3
  :name: 'Path sum: three ways'
4
4
  :url: http://projecteuler.net/problem=82
5
- :content: "\r\n<p class=\"info\">NOTE: This problem is a more challenging version
6
- of <a href=\"index.php?section=problems&amp;id=81\">Problem 81</a>.</p>\r\n<p>The
7
- minimal path sum in the 5 by 5 matrix below, by starting in any cell in the left
8
- column and finishing in any cell in the right column, and only moving up, down,
9
- and right, is indicated in red and bold; the sum is equal to 994.</p>\r\n<div style=\"text-align:center;\">\r\n<table
5
+ :content: "\r\n<p class=\"note\">NOTE: This problem is a more challenging version
6
+ of <a href=\"problem=81\">Problem 81</a>.</p>\r\n<p>The minimal path sum in the
7
+ 5 by 5 matrix below, by starting in any cell in the left column and finishing in
8
+ any cell in the right column, and only moving up, down, and right, is indicated
9
+ in red and bold; the sum is equal to 994.</p>\r\n<div style=\"text-align:center;\">\r\n<table
10
10
  cellpadding=\"0\" cellspacing=\"0\" border=\"0\" align=\"center\"><tr>\n<td>\n<img
11
11
  src=\"images/bracket_left.gif\" width=\"8\" height=\"120\" alt=\"\" align=\"middle\"><br>\n</td>\r\n<td>\r\n<table
12
12
  cellpadding=\"3\" cellspacing=\"0\" border=\"0\">\n<tr>\n<td>131</td>\n<td>673</td>\n<td><span
data/data/problems/83.yml CHANGED
@@ -2,10 +2,10 @@
2
2
  :id: 83
3
3
  :name: 'Path sum: four ways'
4
4
  :url: http://projecteuler.net/problem=83
5
- :content: "\r\n<p class=\"info\">NOTE: This problem is a significantly more challenging
6
- version of <a href=\"index.php?section=problems&amp;id=81\">Problem 81</a>.</p>\r\n<p>In
7
- the 5 by 5 matrix below, the minimal path sum from the top left to the bottom right,
8
- by moving left, right, up, and down, is indicated in bold red and is equal to 2297.</p>\r\n<div
5
+ :content: "\r\n<p class=\"note\">NOTE: This problem is a significantly more challenging
6
+ version of <a href=\"problem=81\">Problem 81</a>.</p>\r\n<p>In the 5 by 5 matrix
7
+ below, the minimal path sum from the top left to the bottom right, by moving left,
8
+ right, up, and down, is indicated in bold red and is equal to 2297.</p>\r\n<div
9
9
  style=\"text-align:center;\">\r\n<table cellpadding=\"0\" cellspacing=\"0\" border=\"0\"
10
10
  align=\"center\"><tr>\n<td>\n<img src=\"images/bracket_left.gif\" width=\"8\" height=\"120\"
11
11
  alt=\"\" align=\"middle\"><br>\n</td>\r\n<td>\r\n<table cellpadding=\"3\" cellspacing=\"0\"
data/data/problems/89.yml CHANGED
@@ -14,5 +14,5 @@
14
14
  in descending units and obey the subtractive pair rule (see <a href=\"about=roman_numerals\">About
15
15
  Roman Numerals...</a> for the definitive rules for this problem).</p>\r\n<p>Find
16
16
  the number of characters saved by writing each of these in their minimal form.</p>\r\n<p
17
- class=\"info\">Note: You can assume that all the Roman numerals in the file contain
17
+ class=\"note\">Note: You can assume that all the Roman numerals in the file contain
18
18
  no more than four consecutive identical units.</p>\r\n\r\n"
data/lib/euler/version.rb CHANGED
@@ -1,3 +1,3 @@
1
1
  module Euler
2
- VERSION = '0.0.3'
2
+ VERSION = '0.0.4'
3
3
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: euler-manager
3
3
  version: !ruby/object:Gem::Version
4
- version: 0.0.3
4
+ version: 0.0.4
5
5
  platform: ruby
6
6
  authors:
7
7
  - William Yaworsky
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2014-05-29 00:00:00.000000000 Z
11
+ date: 2014-05-30 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: commander