eps 0.5.0 → 0.6.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +4 -0
- data/LICENSE.txt +1 -1
- data/README.md +4 -58
- data/lib/eps/base_estimator.rb +1 -1
- data/lib/eps/evaluators/linear_regression.rb +1 -1
- data/lib/eps/evaluators/naive_bayes.rb +1 -1
- data/lib/eps/version.rb +1 -1
- metadata +4 -8
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 701cde7907172e33d54d05ee0f2236dbfa84486744e7a510190618848c878418
|
4
|
+
data.tar.gz: a6be730db321a5143e34727497c6ed675f8d734b6195cd4fdc5f8e6bc4e98ff1
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 6c76ec99a116a91cb9550b9a007b3150689b76649b14aa0c85582176fb44a08957b37c40e54ed1adb6447d8c5ec06757a611fad51a582581031f5724317ee888
|
7
|
+
data.tar.gz: 2176bf4351c26df4562a2879ecb2f0637d2d23bb624dc683790befa2029c2a3d89388b7d5b3183d4d48789801068d7442807c28c2a53439089e2ba0943e0bc9b
|
data/CHANGELOG.md
CHANGED
data/LICENSE.txt
CHANGED
data/README.md
CHANGED
@@ -7,7 +7,7 @@ Machine learning for Ruby
|
|
7
7
|
|
8
8
|
Check out [this post](https://ankane.org/rails-meet-data-science) for more info on machine learning with Rails
|
9
9
|
|
10
|
-
[](https://github.com/ankane/eps/actions)
|
11
11
|
|
12
12
|
## Installation
|
13
13
|
|
@@ -414,7 +414,7 @@ Eps::Model.new(data, validation_set: validation_set)
|
|
414
414
|
Split on a specific value
|
415
415
|
|
416
416
|
```ruby
|
417
|
-
Eps::Model.new(data, split: {column: :listed_at, value: Date.parse("
|
417
|
+
Eps::Model.new(data, split: {column: :listed_at, value: Date.parse("2025-01-01")})
|
418
418
|
```
|
419
419
|
|
420
420
|
Specify the validation set size (the default is `0.25`, which is 25%)
|
@@ -435,7 +435,7 @@ The database is another place you can store models. It’s good if you retrain m
|
|
435
435
|
|
436
436
|
> We recommend adding monitoring and guardrails as well if you retrain automatically
|
437
437
|
|
438
|
-
Create an
|
438
|
+
Create an Active Record model to store the predictive model.
|
439
439
|
|
440
440
|
```sh
|
441
441
|
rails generate model Model key:string:uniq data:text
|
@@ -479,61 +479,7 @@ Weights are supported for metrics as well
|
|
479
479
|
Eps.metrics(actual, predicted, weight: weight)
|
480
480
|
```
|
481
481
|
|
482
|
-
Reweighing is one method to [mitigate bias](
|
483
|
-
|
484
|
-
## Upgrading
|
485
|
-
|
486
|
-
## 0.3.0
|
487
|
-
|
488
|
-
Eps 0.3.0 brings a number of improvements, including support for LightGBM and cross-validation. There are a number of breaking changes to be aware of:
|
489
|
-
|
490
|
-
- LightGBM is now the default for new models. On Mac, run:
|
491
|
-
|
492
|
-
```sh
|
493
|
-
brew install libomp
|
494
|
-
```
|
495
|
-
|
496
|
-
Pass the `algorithm` option to use linear regression or naive Bayes.
|
497
|
-
|
498
|
-
```ruby
|
499
|
-
Eps::Model.new(data, algorithm: :linear_regression) # or :naive_bayes
|
500
|
-
```
|
501
|
-
|
502
|
-
- Cross-validation happens automatically by default. You no longer need to create training and test sets manually. If you were splitting on a time, use:
|
503
|
-
|
504
|
-
```ruby
|
505
|
-
Eps::Model.new(data, split: {column: :listed_at, value: Date.parse("2019-01-01")})
|
506
|
-
```
|
507
|
-
|
508
|
-
Or randomly, use:
|
509
|
-
|
510
|
-
```ruby
|
511
|
-
Eps::Model.new(data, split: {validation_size: 0.3})
|
512
|
-
```
|
513
|
-
|
514
|
-
To continue splitting manually, use:
|
515
|
-
|
516
|
-
```ruby
|
517
|
-
Eps::Model.new(data, validation_set: test_set)
|
518
|
-
```
|
519
|
-
|
520
|
-
- It’s no longer possible to load models in JSON or PFA formats. Retrain models and save them as PMML.
|
521
|
-
|
522
|
-
## 0.2.0
|
523
|
-
|
524
|
-
Eps 0.2.0 brings a number of improvements, including support for classification.
|
525
|
-
|
526
|
-
We recommend:
|
527
|
-
|
528
|
-
1. Changing `Eps::Regressor` to `Eps::Model`
|
529
|
-
2. Converting models from JSON to PMML
|
530
|
-
|
531
|
-
```ruby
|
532
|
-
model = Eps::Model.load_json("model.json")
|
533
|
-
File.write("model.pmml", model.to_pmml)
|
534
|
-
```
|
535
|
-
|
536
|
-
3. Renaming `app/stats_models` to `app/ml_models`
|
482
|
+
Reweighing is one method to [mitigate bias](https://fairlearn.org/) in training data
|
537
483
|
|
538
484
|
## History
|
539
485
|
|
data/lib/eps/base_estimator.rb
CHANGED
@@ -13,7 +13,7 @@ module Eps
|
|
13
13
|
raise "Probabilities not supported" if probabilities
|
14
14
|
|
15
15
|
intercept = @coefficients["_intercept"] || 0.0
|
16
|
-
scores =
|
16
|
+
scores = Array.new(x.size, intercept)
|
17
17
|
|
18
18
|
@features.each do |k, type|
|
19
19
|
raise "Missing data in #{k}" if !x.columns[k] || x.columns[k].any?(&:nil?)
|
data/lib/eps/version.rb
CHANGED
metadata
CHANGED
@@ -1,14 +1,13 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: eps
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.
|
4
|
+
version: 0.6.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Andrew Kane
|
8
|
-
autorequire:
|
9
8
|
bindir: bin
|
10
9
|
cert_chain: []
|
11
|
-
date:
|
10
|
+
date: 2025-02-01 00:00:00.000000000 Z
|
12
11
|
dependencies:
|
13
12
|
- !ruby/object:Gem::Dependency
|
14
13
|
name: lightgbm
|
@@ -52,7 +51,6 @@ dependencies:
|
|
52
51
|
- - ">="
|
53
52
|
- !ruby/object:Gem::Version
|
54
53
|
version: '0'
|
55
|
-
description:
|
56
54
|
email: andrew@ankane.org
|
57
55
|
executables: []
|
58
56
|
extensions: []
|
@@ -86,7 +84,6 @@ homepage: https://github.com/ankane/eps
|
|
86
84
|
licenses:
|
87
85
|
- MIT
|
88
86
|
metadata: {}
|
89
|
-
post_install_message:
|
90
87
|
rdoc_options: []
|
91
88
|
require_paths:
|
92
89
|
- lib
|
@@ -94,15 +91,14 @@ required_ruby_version: !ruby/object:Gem::Requirement
|
|
94
91
|
requirements:
|
95
92
|
- - ">="
|
96
93
|
- !ruby/object:Gem::Version
|
97
|
-
version: '3'
|
94
|
+
version: '3.1'
|
98
95
|
required_rubygems_version: !ruby/object:Gem::Requirement
|
99
96
|
requirements:
|
100
97
|
- - ">="
|
101
98
|
- !ruby/object:Gem::Version
|
102
99
|
version: '0'
|
103
100
|
requirements: []
|
104
|
-
rubygems_version: 3.
|
105
|
-
signing_key:
|
101
|
+
rubygems_version: 3.6.2
|
106
102
|
specification_version: 4
|
107
103
|
summary: Machine learning for Ruby. Supports regression (linear regression) and classification
|
108
104
|
(naive Bayes)
|