elliptic-lite 0.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/CHANGELOG.md +3 -0
- data/Manifest.txt +16 -0
- data/README.md +399 -0
- data/Rakefile +29 -0
- data/lib/elliptic-lite.rb +9 -0
- data/lib/elliptic-lite/base.rb +76 -0
- data/lib/elliptic-lite/field.rb +151 -0
- data/lib/elliptic-lite/point.rb +179 -0
- data/lib/elliptic-lite/secp256k1.rb +31 -0
- data/lib/elliptic-lite/signature.rb +62 -0
- data/lib/elliptic-lite/version.rb +20 -0
- data/lib/elliptic/lite.rb +2 -0
- data/test/helper.rb +12 -0
- data/test/test_field.rb +142 -0
- data/test/test_point.rb +83 -0
- data/test/test_signature.rb +61 -0
- metadata +103 -0
checksums.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
1
|
+
---
|
2
|
+
SHA256:
|
3
|
+
metadata.gz: f2c2286683b5a48f1839bf0bbe75f2ef28f21e8a981c0b541979a2eebd303296
|
4
|
+
data.tar.gz: b68f47cca4cdb8a4f9b9881b7069f1fb3310f8126541b6b729b7745c2de4d49a
|
5
|
+
SHA512:
|
6
|
+
metadata.gz: 654d87c1b81c2268de218aed9311b445d40b616be9e111fe4475c017fcc4786acaf418151748e231719cb8bc80d82025ed0498e06b7f05aa032178aeb6c3ee9f
|
7
|
+
data.tar.gz: 18e2cbd29db18c580a7e229a649ff31c9c5def8ea51eb1c3b6752863758ed59078eb158c1d72659a492ff70ab7a4b23eb2893c80c06a960bfc834fe0f3ee5c22
|
data/CHANGELOG.md
ADDED
data/Manifest.txt
ADDED
@@ -0,0 +1,16 @@
|
|
1
|
+
CHANGELOG.md
|
2
|
+
Manifest.txt
|
3
|
+
README.md
|
4
|
+
Rakefile
|
5
|
+
lib/elliptic-lite.rb
|
6
|
+
lib/elliptic-lite/base.rb
|
7
|
+
lib/elliptic-lite/field.rb
|
8
|
+
lib/elliptic-lite/point.rb
|
9
|
+
lib/elliptic-lite/secp256k1.rb
|
10
|
+
lib/elliptic-lite/signature.rb
|
11
|
+
lib/elliptic-lite/version.rb
|
12
|
+
lib/elliptic/lite.rb
|
13
|
+
test/helper.rb
|
14
|
+
test/test_field.rb
|
15
|
+
test/test_point.rb
|
16
|
+
test/test_signature.rb
|
data/README.md
ADDED
@@ -0,0 +1,399 @@
|
|
1
|
+
# elliptic-lite - elliptic curve cryptography from scratch / zero - start with finite fields, add elliptic curve points and point addition and scalar multiplications, add the elliptic curve digital signature algorithm (ECDSA) using the secp256k1 curve / group to sign and verify messages and more
|
2
|
+
|
3
|
+
|
4
|
+
* home :: [github.com/rubycoco/blockchain](https://github.com/rubycoco/blockchain)
|
5
|
+
* bugs :: [github.com/rubycoco/blockchain/issues](https://github.com/rubycoco/blockchain/issues)
|
6
|
+
* gem :: [rubygems.org/gems/elliptic-lite](https://rubygems.org/gems/elliptic-lite)
|
7
|
+
* rdoc :: [rubydoc.info/gems/elliptic-lite](http://rubydoc.info/gems/elliptic-lite)
|
8
|
+
|
9
|
+
|
10
|
+
|
11
|
+
|
12
|
+
## Usage
|
13
|
+
|
14
|
+
|
15
|
+
### Finite Fields
|
16
|
+
|
17
|
+
Let's start with definining a finite field (mod 13), that is,
|
18
|
+
`F₁₃ = [0,1,2,3,4,5,6,7,8,9,10,11,12]` where the mod(ulus) is always
|
19
|
+
a prime number - and the prime number is 13 in this case:
|
20
|
+
|
21
|
+
|
22
|
+
|
23
|
+
``` ruby
|
24
|
+
require 'elliptic-lite'
|
25
|
+
|
26
|
+
|
27
|
+
class F₁₃ < FiniteField::Element
|
28
|
+
def self.prime() 13; end
|
29
|
+
end
|
30
|
+
|
31
|
+
F₁₃.prime #=> 13
|
32
|
+
|
33
|
+
F₁₃.include?( 0 ) #=> true
|
34
|
+
F₁₃.include?( 12 ) #=> true
|
35
|
+
F₁₃.include?( 13 ) #=> false
|
36
|
+
```
|
37
|
+
|
38
|
+
Let's try addition, subtraction, multiplication, exponentiation (power), and division
|
39
|
+
with finite fields
|
40
|
+
using the class-level `add`/`sub`/`mul`/`pow`/`div` methods:
|
41
|
+
|
42
|
+
|
43
|
+
``` ruby
|
44
|
+
F₁₃.add( 7, 12 ) #=> 6
|
45
|
+
F₁₃.sub( 7, 12 ) #=> 8
|
46
|
+
F₁₃.mul( 3, 12 ) #=> 10
|
47
|
+
F₁₃.pow( 3, 3 ) #=> 1
|
48
|
+
```
|
49
|
+
|
50
|
+
Let's try a finite field (mod 19):
|
51
|
+
|
52
|
+
``` ruby
|
53
|
+
F₁₉ = FiniteField.new(19)
|
54
|
+
|
55
|
+
F₁₉.div( 7, 5 ) #=> 9
|
56
|
+
```
|
57
|
+
|
58
|
+
|
59
|
+
|
60
|
+
And optional in a more object-oriented way with
|
61
|
+
overloaded math operators (`+`/`-`/`*`/`**`/`/`):
|
62
|
+
|
63
|
+
``` ruby
|
64
|
+
a = F₁₃[7]
|
65
|
+
b = F₁₃[12]
|
66
|
+
c = F₁₃[6]
|
67
|
+
a+b == c #=> true
|
68
|
+
|
69
|
+
c = F₁₃[8]
|
70
|
+
a-b == c #=> true
|
71
|
+
|
72
|
+
a = F₁₃[3]
|
73
|
+
b = F₁₃[12]
|
74
|
+
c = F₁₃[10]
|
75
|
+
a*b == c #=> true
|
76
|
+
|
77
|
+
a = F₁₃[3]
|
78
|
+
b = F₁₃[1]
|
79
|
+
a**3 == b #=> true
|
80
|
+
a*a*a == b #=> true
|
81
|
+
a*a*a == a**3 #=> true
|
82
|
+
|
83
|
+
a = F₁₉[2]
|
84
|
+
b = F₁₉[7]
|
85
|
+
c = F₁₉[3]
|
86
|
+
a/b == c #=> true
|
87
|
+
|
88
|
+
|
89
|
+
# -or-
|
90
|
+
F₁₃[7] + F₁₃[12] == F₁₃[6]
|
91
|
+
F₁₃[7] - F₁₃[12] == F₁₃[8]
|
92
|
+
F₁₃[3] * F₁₃[12] == F₁₃[10]
|
93
|
+
F₁₃[3] ** 3 == F₁₃[1]
|
94
|
+
F₁₃[3] * F₁₃[3] * F₁₃[3] == F₁₃[1]
|
95
|
+
F₁₃[3] ** 3 == F₁₃[3] * F₁₃[3] * F₁₃[3]
|
96
|
+
|
97
|
+
F₁₉[2] / F₁₉[7] == F₁₉[3]
|
98
|
+
```
|
99
|
+
|
100
|
+
|
101
|
+
|
102
|
+
### Elliptic Curves & Elliptic Curve Points (Over Integer Numbers)
|
103
|
+
|
104
|
+
|
105
|
+
Let's define an elliptic curve - `y³ = x² + ax + b` where a is 5 and b is 7:
|
106
|
+
|
107
|
+
``` ruby
|
108
|
+
CURVE_5_7 = Curve.new( a: 5, b: 7 )
|
109
|
+
```
|
110
|
+
|
111
|
+
And let's define a point class - a point being a pair of x/y-coordinates - for the elliptic curve `y³ = x² + 5x + 7` (with `a=5` and `b=7`):
|
112
|
+
|
113
|
+
``` ruby
|
114
|
+
class Point_5_7 < Point
|
115
|
+
def self.curve() CURVE_5_7; end
|
116
|
+
end
|
117
|
+
|
118
|
+
p1 = Point_5_7.new( -1, -1 ) # point with x/y coords: -1/-1
|
119
|
+
p2 = Point_5_7.new( -1, -2 ) # raise ArgumentError!! point NOT on curve
|
120
|
+
|
121
|
+
Point_5_7.on_curve?( -1, -1 ) #=> true
|
122
|
+
Point_5_7.on_curve?( -1, -2 ) #=> false
|
123
|
+
|
124
|
+
#-or-
|
125
|
+
p1 = Point_5_7[ -1, -1 ]
|
126
|
+
p2 = Point_5_7[ -1, -2 ]
|
127
|
+
|
128
|
+
# and the infinity point
|
129
|
+
inf = Point_5_7[ :infinity ]
|
130
|
+
inf.infinity? #=> true
|
131
|
+
```
|
132
|
+
|
133
|
+
Let's try point addition on the `y³ = x² + 5x + 7` elliptic curve (with `a=5` and `b=7`):
|
134
|
+
|
135
|
+
``` ruby
|
136
|
+
p1 = Point_5_7[-1, -1]
|
137
|
+
p2 = Point_5_7[-1, 1]
|
138
|
+
inf = Point_5_7[ :infinity ]
|
139
|
+
|
140
|
+
p1 + inf #=> Point_5_7[-1,-1]
|
141
|
+
inf + p2 #=> Point_5_7[-1,1]
|
142
|
+
p1 + p2 #=> Point_5_7[:infinity]
|
143
|
+
|
144
|
+
p1 = Point_5_7[ 2, 5]
|
145
|
+
p2 = Point_5_7[-1,-1]
|
146
|
+
p1 + p2 #=> Point_5_7[3,-7]
|
147
|
+
|
148
|
+
p1 = Point_5_7[-1,-1]
|
149
|
+
p1 + p1 #=> Point_5_7[18,77]
|
150
|
+
```
|
151
|
+
|
152
|
+
|
153
|
+
|
154
|
+
### Elliptic Curves & Elliptic Points Over Finite Fields
|
155
|
+
|
156
|
+
Let's change from "plain vanilla" integer numbers
|
157
|
+
to finite fields. Let's try F₂₂₃ - a finite field (mod 223)
|
158
|
+
where the mod(ulus) is the prime number 223.
|
159
|
+
|
160
|
+
``` ruby
|
161
|
+
class F₂₂₃ < FiniteField::Element
|
162
|
+
def self.prime() 223; end
|
163
|
+
end
|
164
|
+
```
|
165
|
+
|
166
|
+
Let's define an elliptic curve over F₂₂₃ - `y³ = x² + ax + b` where a is 0 and b is 7:
|
167
|
+
|
168
|
+
``` ruby
|
169
|
+
CURVE_F₂₂₃0_7 = Curve.new( a: 0, b: 7, f: F₂₂₃ )
|
170
|
+
```
|
171
|
+
|
172
|
+
And let's define a point class:
|
173
|
+
|
174
|
+
``` ruby
|
175
|
+
class Point_F₂₂₃0_7 < Point
|
176
|
+
def self.curve() CURVE_F₂₂₃0_7; end
|
177
|
+
end
|
178
|
+
```
|
179
|
+
|
180
|
+
And let's try point addition:
|
181
|
+
|
182
|
+
``` ruby
|
183
|
+
p1 = Point_F₂₂₃0_7[ 192, 105 ]
|
184
|
+
p2 = Point_F₂₂₃0_7[ 17, 56 ]
|
185
|
+
p1 + p2 #=> Point_F₂₂₃0_7[170,142]
|
186
|
+
|
187
|
+
p1 = Point_F₂₂₃0_7[ 170, 142 ]
|
188
|
+
p2 = Point_F₂₂₃0_7[ 60, 139 ]
|
189
|
+
p1 + p2 #=> Point_F₂₂₃0_7[220,181]
|
190
|
+
|
191
|
+
p1 = Point_F₂₂₃0_7[ 47, 71 ]
|
192
|
+
p2 = Point_F₂₂₃0_7[ 17, 56 ]
|
193
|
+
p1 + p2 #=> Point_F₂₂₃0_7[215,68]
|
194
|
+
```
|
195
|
+
|
196
|
+
And finally let's try scalar point multiplication:
|
197
|
+
|
198
|
+
``` ruby
|
199
|
+
p = Point_F₂₂₃0_7[ 192, 105 ]
|
200
|
+
p+p #=> Point_F₂₂₃0_7[49,71]
|
201
|
+
|
202
|
+
p = Point_F₂₂₃0_7[ 143, 98 ]
|
203
|
+
p+p #=> Point_F₂₂₃0_7[64,168]
|
204
|
+
|
205
|
+
p = Point_F₂₂₃0_7[ 47, 71 ]
|
206
|
+
p+p #=> Point_F₂₂₃0_7[36,111]
|
207
|
+
p+p+p+p #=> Point_F₂₂₃0_7[194,51]
|
208
|
+
p+p+p+p+p+p+p+p #=> Point_F₂₂₃0_7[116,55]
|
209
|
+
p+p+p+p+p+p+p+p+p+p+p+p+p+p+p+p+p+p+p+p+p #=> Point_F₂₂₃0_7[:infinity]
|
210
|
+
|
211
|
+
#-or-
|
212
|
+
|
213
|
+
2*p #=> Point_F₂₂₃0_7[36,111]
|
214
|
+
4*p #=> Point_F₂₂₃0_7[194,51]
|
215
|
+
8*p #=> Point_F₂₂₃0_7[116,55]
|
216
|
+
21*p #=> Point_F₂₂₃0_7[:infinity]
|
217
|
+
```
|
218
|
+
|
219
|
+
Or let's try the from 1 to inifinity, that is, the order of the group
|
220
|
+
using the generating point (47/71):
|
221
|
+
|
222
|
+
``` ruby
|
223
|
+
p = Point_F₂₂₃0_7[ 47, 71 ]
|
224
|
+
(1..21).each do |s|
|
225
|
+
product = s*p
|
226
|
+
puts " #{s}*#{p.inspect} => #{product.inspect}"
|
227
|
+
end
|
228
|
+
```
|
229
|
+
|
230
|
+
resulting in:
|
231
|
+
|
232
|
+
```
|
233
|
+
1*Point_F₂₂₃0_7[47,71] => Point_F₂₂₃0_7[47,71]
|
234
|
+
2*Point_F₂₂₃0_7[47,71] => Point_F₂₂₃0_7[36,111]
|
235
|
+
3*Point_F₂₂₃0_7[47,71] => Point_F₂₂₃0_7[15,137]
|
236
|
+
4*Point_F₂₂₃0_7[47,71] => Point_F₂₂₃0_7[194,51]
|
237
|
+
5*Point_F₂₂₃0_7[47,71] => Point_F₂₂₃0_7[126,96]
|
238
|
+
6*Point_F₂₂₃0_7[47,71] => Point_F₂₂₃0_7[139,137]
|
239
|
+
7*Point_F₂₂₃0_7[47,71] => Point_F₂₂₃0_7[92,47]
|
240
|
+
8*Point_F₂₂₃0_7[47,71] => Point_F₂₂₃0_7[116,55]
|
241
|
+
9*Point_F₂₂₃0_7[47,71] => Point_F₂₂₃0_7[69,86]
|
242
|
+
10*Point_F₂₂₃0_7[47,71] => Point_F₂₂₃0_7[154,150]
|
243
|
+
11*Point_F₂₂₃0_7[47,71] => Point_F₂₂₃0_7[154,73]
|
244
|
+
12*Point_F₂₂₃0_7[47,71] => Point_F₂₂₃0_7[69,137]
|
245
|
+
13*Point_F₂₂₃0_7[47,71] => Point_F₂₂₃0_7[116,168]
|
246
|
+
14*Point_F₂₂₃0_7[47,71] => Point_F₂₂₃0_7[92,176]
|
247
|
+
15*Point_F₂₂₃0_7[47,71] => Point_F₂₂₃0_7[139,86]
|
248
|
+
16*Point_F₂₂₃0_7[47,71] => Point_F₂₂₃0_7[126,127]
|
249
|
+
17*Point_F₂₂₃0_7[47,71] => Point_F₂₂₃0_7[194,172]
|
250
|
+
18*Point_F₂₂₃0_7[47,71] => Point_F₂₂₃0_7[15,86]
|
251
|
+
19*Point_F₂₂₃0_7[47,71] => Point_F₂₂₃0_7[36,112]
|
252
|
+
20*Point_F₂₂₃0_7[47,71] => Point_F₂₂₃0_7[47,152]
|
253
|
+
21*Point_F₂₂₃0_7[47,71] => Point_F₂₂₃0_7[:infinity]
|
254
|
+
```
|
255
|
+
|
256
|
+
|
257
|
+
|
258
|
+
## What's secp256k1?
|
259
|
+
|
260
|
+
|
261
|
+
Let's use the elliptic curve defined by secp256k1 and in use
|
262
|
+
for the public-key cryptography by Dodge, Bitcoin, Ethereum and many others.
|
263
|
+
|
264
|
+
secp256k1 refers to the parameters of the elliptic curve. The name represents the specific parameters of curve:
|
265
|
+
|
266
|
+
- sec: stands for Standards for Efficient Cryptography
|
267
|
+
- p: indicates that what follows are the parameters of the curve
|
268
|
+
- 256: length in bits of the field size
|
269
|
+
- k: Kolbitz curve, as opposed to random. The non-random construction allows for efficient construction
|
270
|
+
- 1: sequence number
|
271
|
+
|
272
|
+
|
273
|
+
Let's start with the finite field
|
274
|
+
using a big prime number (almost 2**256), that is,
|
275
|
+
`2**256 - 2**32 - 977`
|
276
|
+
or
|
277
|
+
` 115792089237316195423570985008687907853269984665640564039457584007908834671663`:
|
278
|
+
|
279
|
+
|
280
|
+
``` ruby
|
281
|
+
class S256Field < FiniteField::Element
|
282
|
+
P = 2**256 - 2**32 - 977
|
283
|
+
def self.prime() P; end
|
284
|
+
end
|
285
|
+
```
|
286
|
+
|
287
|
+
Let's define an elliptic curve over - `y³ = x² + ax + b` where a is 0 and b is 7
|
288
|
+
and let's define a point class:
|
289
|
+
|
290
|
+
``` ruby
|
291
|
+
class S256Point < Point
|
292
|
+
def self.curve() @curve ||= Curve.new( a: 0, b: 7, f: S256Field ); end
|
293
|
+
end
|
294
|
+
```
|
295
|
+
|
296
|
+
And let's define the group for the generation point (g)
|
297
|
+
with the order (n):
|
298
|
+
|
299
|
+
``` ruby
|
300
|
+
SECP256K1 = Group.new(
|
301
|
+
g: S256Point.new( 0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798,
|
302
|
+
0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8 ),
|
303
|
+
n: 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141
|
304
|
+
)
|
305
|
+
```
|
306
|
+
|
307
|
+
That are all the standard secp256k1 parameters to use the
|
308
|
+
Elliptic Curve Digital Signature Algorithm (ECDSA).
|
309
|
+
Let's try to verify a signature (r,s) for a message (z)
|
310
|
+
given a public key (that is, a point on the secp256k1 curve):
|
311
|
+
|
312
|
+
|
313
|
+
``` ruby
|
314
|
+
pubkey = PublicKey.new( 0x887387e452b8eacc4acfde10d9aaf7f6d9a0f975aabb10d006e4da568744d06c,
|
315
|
+
0x61de6d95231cd89026e286df3b6ae4a894a3378e393e93a0f45b666329a0ae34 )
|
316
|
+
|
317
|
+
# signature 1
|
318
|
+
z = 0xec208baa0fc1c19f708a9ca96fdeff3ac3f230bb4a7ba4aede4942ad003c0f60
|
319
|
+
r = 0xac8d1c87e51d0d441be8b3dd5b05c8795b48875dffe00b7ffcfac23010d3a395
|
320
|
+
s = 0x68342ceff8935ededd102dd876ffd6ba72d6a427a3edb13d26eb0781cb423c4
|
321
|
+
|
322
|
+
sig = Signature.new( r, s )
|
323
|
+
pubkey.verify?( z, sig ) #=> true
|
324
|
+
|
325
|
+
|
326
|
+
# signature 2
|
327
|
+
z = 0x7c076ff316692a3d7eb3c3bb0f8b1488cf72e1afcd929e29307032997a838a3d
|
328
|
+
r = 0xeff69ef2b1bd93a66ed5219add4fb51e11a840f404876325a1e8ffe0529a2c
|
329
|
+
s = 0xc7207fee197d27c618aea621406f6bf5ef6fca38681d82b2f06fddbdce6feab6
|
330
|
+
|
331
|
+
sig = Signature.new( r, s )
|
332
|
+
pubkey.verify?( z, sig ) #=> true
|
333
|
+
```
|
334
|
+
|
335
|
+
|
336
|
+
And let's sign a message using a private key (that is, a 256-bit integer
|
337
|
+
of the order (n) of the generation point):
|
338
|
+
|
339
|
+
``` ruby
|
340
|
+
e = 12345 ## private key - note: do NOT use - only for learning
|
341
|
+
key = PrivateKey.new( e )
|
342
|
+
|
343
|
+
z_hex = Digest::SHA256.hexdigest( 'Programming Elliptic Curve Cryptography!' )
|
344
|
+
z = z_hex.to_i( 16 ) ## convert 256-bit (32-byte) hexstring to (big) integer number
|
345
|
+
|
346
|
+
sig = key.sign( z )
|
347
|
+
sig.r #=> 35839919642726191515862186078164267963984698217861116280002507416364797996230
|
348
|
+
sig.s #=> 34481949470477153440646085306694123309931748956488082604284303792820502002529
|
349
|
+
|
350
|
+
|
351
|
+
pubkey = key.pubkey ## derive public key from private
|
352
|
+
# And let's verify signature using public key
|
353
|
+
pubkey.verify?( z, sig ) #=> true
|
354
|
+
|
355
|
+
# -or-
|
356
|
+
pubkey = PublicKey.new(
|
357
|
+
0xf01d6b9018ab421dd410404cb869072065522bf85734008f105cf385a023a80f,
|
358
|
+
0x0eba29d0f0c5408ed681984dc525982abefccd9f7ff01dd26da4999cf3f6a295 )
|
359
|
+
|
360
|
+
sig = Signature.new(
|
361
|
+
35839919642726191515862186078164267963984698217861116280002507416364797996230,
|
362
|
+
34481949470477153440646085306694123309931748956488082604284303792820502002529 )
|
363
|
+
|
364
|
+
pubkey.verify?( z, sig ) #=> true
|
365
|
+
```
|
366
|
+
|
367
|
+
|
368
|
+
That's it.
|
369
|
+
|
370
|
+
|
371
|
+
|
372
|
+
|
373
|
+
**Bitcon Public Service Announcement:**
|
374
|
+
|
375
|
+
> If we all buy Bitcoin from one another at ever higher
|
376
|
+
> prices we'll all be rich beyond our wildest dreams.
|
377
|
+
>
|
378
|
+
> -- Trolly McTrollface
|
379
|
+
|
380
|
+
**[BEWARE: Yes, Bitcoin Is a Ponzi - Learn How the Investment Fraud Works »](https://github.com/openblockchains/bitcoin-ponzi)**
|
381
|
+
|
382
|
+
|
383
|
+
## Install
|
384
|
+
|
385
|
+
Just install the gem:
|
386
|
+
|
387
|
+
$ gem install elliptic-lite
|
388
|
+
|
389
|
+
|
390
|
+
## License
|
391
|
+
|
392
|
+
The scripts are dedicated to the public domain.
|
393
|
+
Use it as you please with no restrictions whatsoever.
|
394
|
+
|
395
|
+
|
396
|
+
## Questions? Comments?
|
397
|
+
|
398
|
+
Send them along to the [wwwmake forum](http://groups.google.com/group/wwwmake).
|
399
|
+
Thanks!
|
data/Rakefile
ADDED
@@ -0,0 +1,29 @@
|
|
1
|
+
require 'hoe'
|
2
|
+
require './lib/elliptic-lite/version.rb'
|
3
|
+
|
4
|
+
Hoe.spec 'elliptic-lite' do
|
5
|
+
|
6
|
+
self.version = ECCLite::VERSION
|
7
|
+
|
8
|
+
self.summary = "elliptic-lite - elliptic curve cryptography from scratch / zero - start with finite fields, add elliptic curve points and point addition and scalar multiplications, add the elliptic curve digital signature algorithm (ECDSA) using the secp256k1 curve / group to sign and verify messages and more"
|
9
|
+
self.description = summary
|
10
|
+
|
11
|
+
self.urls = { home: 'https://github.com/rubycoco/blockchain' }
|
12
|
+
|
13
|
+
self.author = 'Gerald Bauer'
|
14
|
+
self.email = 'wwwmake@googlegroups.com'
|
15
|
+
|
16
|
+
# switch extension to .markdown for gihub formatting
|
17
|
+
self.readme_file = 'README.md'
|
18
|
+
self.history_file = 'CHANGELOG.md'
|
19
|
+
|
20
|
+
self.extra_deps = [
|
21
|
+
]
|
22
|
+
|
23
|
+
self.licenses = ['Public Domain']
|
24
|
+
|
25
|
+
self.spec_extras = {
|
26
|
+
required_ruby_version: '>= 2.3'
|
27
|
+
}
|
28
|
+
|
29
|
+
end
|