deepbeige 0.2.0 → 0.2.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- data/VERSION +1 -1
- data/deep_beige.rb +43 -33
- data/deepbeige.gemspec +2 -2
- data/main.rb +11 -1
- data/neural_net.rb +48 -5
- data/node.rb +25 -21
- metadata +3 -3
    
        data/VERSION
    CHANGED
    
    | @@ -1 +1 @@ | |
| 1 | 
            -
            0.2. | 
| 1 | 
            +
            0.2.1
         | 
    
        data/deep_beige.rb
    CHANGED
    
    | @@ -75,40 +75,15 @@ class DeepBeige | |
| 75 75 | 
             
                  puts "Evolving Generation #{generation_number}"
         | 
| 76 76 | 
             
                  player_number = 0
         | 
| 77 77 | 
             
                  @population.each do |neuralnet|
         | 
| 78 | 
            -
                     | 
| 79 | 
            -
                     | 
| 80 | 
            -
                     | 
| 81 | 
            -
                    
         | 
| 82 | 
            -
                    5.times do
         | 
| 83 | 
            -
                      game = game.class.new
         | 
| 84 | 
            -
                      game.quiet = true
         | 
| 85 | 
            -
                      opponent_number = rand(@population.count)
         | 
| 86 | 
            -
                      #puts "#{player_number} versus opponent #{opponent_number}"
         | 
| 87 | 
            -
                      opponent_net = @population[opponent_number]
         | 
| 88 | 
            -
                      player2 = DeepBeige.new
         | 
| 89 | 
            -
                      player2.neural_net = opponent_net
         | 
| 90 | 
            -
                      player2.game_name = @game_name
         | 
| 91 | 
            -
                      
         | 
| 92 | 
            -
                      players = [player1,player2]
         | 
| 93 | 
            -
                      table = Table.new game, players
         | 
| 94 | 
            -
                      table.quiet = true
         | 
| 95 | 
            -
                      table.play_game
         | 
| 96 | 
            -
                      if game.drawn?
         | 
| 97 | 
            -
                        players.each do |player|
         | 
| 98 | 
            -
                          scores[player.id] +=1
         | 
| 99 | 
            -
                        end
         | 
| 100 | 
            -
             | 
| 101 | 
            -
                      elsif game.won?
         | 
| 102 | 
            -
                        winner = players[game.winner]
         | 
| 103 | 
            -
                        players.each do |player|
         | 
| 104 | 
            -
                          if player.id == winner.id
         | 
| 105 | 
            -
                            scores[player.id] +=2
         | 
| 106 | 
            -
                          else
         | 
| 107 | 
            -
                            scores[player.id] -=2
         | 
| 108 | 
            -
                          end
         | 
| 109 | 
            -
                        end
         | 
| 110 | 
            -
                      end
         | 
| 78 | 
            +
                    player = DeepBeige.new 
         | 
| 79 | 
            +
                    player.neural_net = neuralnet
         | 
| 80 | 
            +
                    player.game_name = game.name
         | 
| 111 81 |  | 
| 82 | 
            +
                    5.times do
         | 
| 83 | 
            +
                      play_as_player game.name, player, 1, scores
         | 
| 84 | 
            +
                    end
         | 
| 85 | 
            +
                    5.times do 
         | 
| 86 | 
            +
                      play_as_player game.name, player, 2, scores
         | 
| 112 87 | 
             
                    end
         | 
| 113 88 | 
             
                    player_number += 1
         | 
| 114 89 | 
             
                  end 
         | 
| @@ -208,6 +183,41 @@ private | |
| 208 183 | 
             
                end
         | 
| 209 184 | 
             
                save_population name
         | 
| 210 185 | 
             
              end
         | 
| 186 | 
            +
              
         | 
| 187 | 
            +
            private
         | 
| 188 | 
            +
              def play_as_player game_name, player, player_number, scores
         | 
| 189 | 
            +
                game = game_from_name game_name
         | 
| 190 | 
            +
                game.quiet = true
         | 
| 191 | 
            +
                opponent_number = rand(@population.count)
         | 
| 192 | 
            +
                #puts "#{player_number} versus opponent #{opponent_number}"
         | 
| 193 | 
            +
                opponent_net = @population[opponent_number]
         | 
| 194 | 
            +
                opponent = DeepBeige.new
         | 
| 195 | 
            +
                opponent.neural_net = opponent_net
         | 
| 196 | 
            +
                opponent.game_name = @game_name
         | 
| 197 | 
            +
                players = [player, opponent]
         | 
| 198 | 
            +
                if player_number == 2
         | 
| 199 | 
            +
                  player = [opponent,player]
         | 
| 200 | 
            +
                end
         | 
| 201 | 
            +
             | 
| 202 | 
            +
                table = Table.new game, players
         | 
| 203 | 
            +
                table.quiet = true
         | 
| 204 | 
            +
                table.play_game
         | 
| 205 | 
            +
                if game.drawn?
         | 
| 206 | 
            +
                  players.each do |player|
         | 
| 207 | 
            +
                    scores[player.id] +=1
         | 
| 208 | 
            +
                  end
         | 
| 209 | 
            +
             | 
| 210 | 
            +
                elsif game.won?
         | 
| 211 | 
            +
                  winner = players[game.winner]
         | 
| 212 | 
            +
                  players.each do |player|
         | 
| 213 | 
            +
                    if player.id == winner.id
         | 
| 214 | 
            +
                      scores[player.id] +=2
         | 
| 215 | 
            +
                    else
         | 
| 216 | 
            +
                      scores[player.id] -=2
         | 
| 217 | 
            +
                    end
         | 
| 218 | 
            +
                  end
         | 
| 219 | 
            +
                end
         | 
| 220 | 
            +
              end
         | 
| 211 221 | 
             
            end
         | 
| 212 222 |  | 
| 213 223 |  | 
    
        data/deepbeige.gemspec
    CHANGED
    
    | @@ -5,11 +5,11 @@ | |
| 5 5 |  | 
| 6 6 | 
             
            Gem::Specification.new do |s|
         | 
| 7 7 | 
             
              s.name = %q{deepbeige}
         | 
| 8 | 
            -
              s.version = "0.2. | 
| 8 | 
            +
              s.version = "0.2.1"
         | 
| 9 9 |  | 
| 10 10 | 
             
              s.required_rubygems_version = Gem::Requirement.new(">= 0") if s.respond_to? :required_rubygems_version=
         | 
| 11 11 | 
             
              s.authors = ["David Bochenski"]
         | 
| 12 | 
            -
              s.date = %q{2010-09- | 
| 12 | 
            +
              s.date = %q{2010-09-05}
         | 
| 13 13 | 
             
              s.description = %q{An AI learning program that plays board games}
         | 
| 14 14 | 
             
              s.email = %q{david@bochenski.co.uk}
         | 
| 15 15 | 
             
              s.extra_rdoc_files = [
         | 
    
        data/main.rb
    CHANGED
    
    | @@ -27,7 +27,11 @@ def player_vs_deepbeige db, game | |
| 27 27 | 
             
              #ok so now I'm interested in playing my best creation
         | 
| 28 28 | 
             
              db.start_game game.name
         | 
| 29 29 | 
             
              me = Human.new game
         | 
| 30 | 
            -
               | 
| 30 | 
            +
              if which_player == "1"
         | 
| 31 | 
            +
                play_game game, me, db, []
         | 
| 32 | 
            +
              else
         | 
| 33 | 
            +
                play_game game, db, me, []
         | 
| 34 | 
            +
              end
         | 
| 31 35 | 
             
            end
         | 
| 32 36 |  | 
| 33 37 | 
             
            def player_vs_player game
         | 
| @@ -36,6 +40,12 @@ def player_vs_player game | |
| 36 40 | 
             
              play_game game, p1,p2, []
         | 
| 37 41 | 
             
            end
         | 
| 38 42 |  | 
| 43 | 
            +
            def which_player
         | 
| 44 | 
            +
              puts
         | 
| 45 | 
            +
              puts "Would you like to be player 1 or 2?"
         | 
| 46 | 
            +
              gets.chop
         | 
| 47 | 
            +
            end
         | 
| 48 | 
            +
             | 
| 39 49 | 
             
            def options
         | 
| 40 50 | 
             
              puts
         | 
| 41 51 | 
             
              puts "What would you like to do?"
         | 
    
        data/neural_net.rb
    CHANGED
    
    | @@ -9,6 +9,7 @@ class NeuralNet | |
| 9 9 | 
             
              def initialize
         | 
| 10 10 | 
             
                @id = UUID.new.to_s.split(':')[1].chop
         | 
| 11 11 | 
             
                @network = []
         | 
| 12 | 
            +
                @sigma = 0.05
         | 
| 12 13 | 
             
              end
         | 
| 13 14 |  | 
| 14 15 | 
             
              def evaluate 
         | 
| @@ -46,7 +47,7 @@ class NeuralNet | |
| 46 47 | 
             
                @network = []
         | 
| 47 48 | 
             
                input_nodes = []
         | 
| 48 49 | 
             
                inputs.times do 
         | 
| 49 | 
            -
                  input_nodes << Node.new
         | 
| 50 | 
            +
                  input_nodes << Node.new(@sigma)
         | 
| 50 51 | 
             
                end
         | 
| 51 52 | 
             
                if input_nodes.count > 0
         | 
| 52 53 | 
             
                  @network << input_nodes
         | 
| @@ -54,31 +55,34 @@ class NeuralNet | |
| 54 55 | 
             
                (tiers - 2).times do
         | 
| 55 56 | 
             
                  tier = []
         | 
| 56 57 | 
             
                  10.times do
         | 
| 57 | 
            -
                    tier << Node.new | 
| 58 | 
            +
                    tier << Node.new(@sigma)
         | 
| 58 59 | 
             
                  end
         | 
| 59 60 | 
             
                  @network << tier
         | 
| 60 61 | 
             
                end
         | 
| 61 62 |  | 
| 62 63 | 
             
                output_nodes = []
         | 
| 63 64 | 
             
                outputs.times do
         | 
| 64 | 
            -
                  output_nodes << Node.new
         | 
| 65 | 
            +
                  output_nodes << Node.new(@sigma)
         | 
| 65 66 | 
             
                end
         | 
| 66 67 | 
             
                if output_nodes.count >0
         | 
| 67 68 | 
             
                  @network << output_nodes
         | 
| 68 69 | 
             
                end
         | 
| 69 70 | 
             
                link_tiers
         | 
| 71 | 
            +
                recalculate_tau
         | 
| 70 72 | 
             
              end
         | 
| 71 73 |  | 
| 72 74 | 
             
              def fingerprint
         | 
| 73 75 | 
             
                topline = ""
         | 
| 74 76 | 
             
                fingerprint = ""
         | 
| 77 | 
            +
                sigma = ""
         | 
| 78 | 
            +
                tau = ""
         | 
| 75 79 | 
             
                @network.each do |tier|
         | 
| 76 80 | 
             
                  topline << "#{tier.count},"
         | 
| 77 81 | 
             
                  tier.each do |node| 
         | 
| 78 82 | 
             
                    fingerprint << node.fingerprint
         | 
| 79 83 | 
             
                  end
         | 
| 80 84 | 
             
                end  
         | 
| 81 | 
            -
                topline.chop + "\n" + fingerprint
         | 
| 85 | 
            +
                topline.chop + "\n" + @sigma.to_s + "\n" + @tau.to_s + "\n" + fingerprint
         | 
| 82 86 | 
             
              end
         | 
| 83 87 |  | 
| 84 88 | 
             
              def reload fingerprint
         | 
| @@ -86,6 +90,10 @@ class NeuralNet | |
| 86 90 | 
             
                i = 0
         | 
| 87 91 | 
             
                tiers = fingerprint[i].split(',').to_a
         | 
| 88 92 | 
             
                i += 1
         | 
| 93 | 
            +
                @sigma = fingerprint[i].to_f
         | 
| 94 | 
            +
                i += 1
         | 
| 95 | 
            +
                @tau = fingerprint[i].to_f
         | 
| 96 | 
            +
                i += 1
         | 
| 89 97 |  | 
| 90 98 | 
             
                @network = []
         | 
| 91 99 | 
             
                tiers.each do |tier|
         | 
| @@ -93,7 +101,7 @@ class NeuralNet | |
| 93 101 | 
             
                  tier.to_i.times do
         | 
| 94 102 | 
             
                    node_fingerprint = fingerprint[i]
         | 
| 95 103 | 
             
                    i += 1
         | 
| 96 | 
            -
                    node = Node.new
         | 
| 104 | 
            +
                    node = Node.new(@sigma)
         | 
| 97 105 | 
             
                    node.reload node_fingerprint
         | 
| 98 106 | 
             
                    nodes << node
         | 
| 99 107 | 
             
                  end
         | 
| @@ -110,8 +118,12 @@ class NeuralNet | |
| 110 118 | 
             
                #the ability to mutate the number of
         | 
| 111 119 | 
             
                #nodes and their configuration
         | 
| 112 120 | 
             
                #focussing instead on simple node weight mutation
         | 
| 121 | 
            +
                
         | 
| 122 | 
            +
                #first we mutate sigma
         | 
| 123 | 
            +
                @sigma = @sigma * Math.exp(@tau * gaussian_random)
         | 
| 113 124 | 
             
                @network.each do |tier|
         | 
| 114 125 | 
             
                  tier.each do |node|
         | 
| 126 | 
            +
                    node.sigma = @sigma
         | 
| 115 127 | 
             
                    node.mutate
         | 
| 116 128 | 
             
                  end
         | 
| 117 129 | 
             
                end
         | 
| @@ -120,6 +132,8 @@ class NeuralNet | |
| 120 132 |  | 
| 121 133 | 
             
              def clone
         | 
| 122 134 | 
             
                clone = NeuralNet.new
         | 
| 135 | 
            +
                clone.sigma = self.sigma
         | 
| 136 | 
            +
                clone.tau = self.tau
         | 
| 123 137 | 
             
                #iterate in through each tier
         | 
| 124 138 | 
             
                @network.each do |tier|
         | 
| 125 139 | 
             
                  nodes = []
         | 
| @@ -155,6 +169,8 @@ class NeuralNet | |
| 155 169 | 
             
              end
         | 
| 156 170 |  | 
| 157 171 | 
             
            protected
         | 
| 172 | 
            +
              attr_accessor :sigma, :tau
         | 
| 173 | 
            +
              
         | 
| 158 174 | 
             
              def link_tiers
         | 
| 159 175 | 
             
                #first cut lets link every node on a tier to each node on the subsequent tier
         | 
| 160 176 | 
             
                i = 1
         | 
| @@ -171,4 +187,31 @@ protected | |
| 171 187 | 
             
                  i +=1
         | 
| 172 188 | 
             
                end
         | 
| 173 189 | 
             
              end
         | 
| 190 | 
            +
              
         | 
| 191 | 
            +
            private
         | 
| 192 | 
            +
              #This is a constant related to the size of our network
         | 
| 193 | 
            +
              #and the number of connections it contains
         | 
| 194 | 
            +
              def recalculate_tau
         | 
| 195 | 
            +
                number_of_variables = 0
         | 
| 196 | 
            +
                @network.each do |tier|
         | 
| 197 | 
            +
                  tier.each do |node|
         | 
| 198 | 
            +
                    number_of_variables += 1 + node.weights.count
         | 
| 199 | 
            +
                  end
         | 
| 200 | 
            +
                end
         | 
| 201 | 
            +
                @tau = 1 / (Math.sqrt(2 * Math.sqrt(number_of_variables)))
         | 
| 202 | 
            +
              end
         | 
| 203 | 
            +
              
         | 
| 204 | 
            +
              def gaussian_random
         | 
| 205 | 
            +
                 u1 = u2 = w = g1 = g2 = 0  # declare
         | 
| 206 | 
            +
                 begin
         | 
| 207 | 
            +
                   u1 = 2 * rand - 1
         | 
| 208 | 
            +
                   u2 = 2 * rand - 1
         | 
| 209 | 
            +
                   w = u1 * u1 + u2 * u2
         | 
| 210 | 
            +
                 end while w >= 1
         | 
| 211 | 
            +
                  
         | 
| 212 | 
            +
                 w = Math::sqrt( ( -2 * Math::log(w)) / w )
         | 
| 213 | 
            +
                 g2 = u1 * w;
         | 
| 214 | 
            +
                 g1 = u2 * w;
         | 
| 215 | 
            +
                 # g1 is returned  
         | 
| 216 | 
            +
              end
         | 
| 174 217 | 
             
            end
         | 
    
        data/node.rb
    CHANGED
    
    | @@ -1,16 +1,18 @@ | |
| 1 1 | 
             
            class Node
         | 
| 2 2 | 
             
              attr_reader :forward_nodes, :output_value
         | 
| 3 | 
            -
              attr_accessor :input_value, : | 
| 4 | 
            -
              def initialize
         | 
| 3 | 
            +
              attr_accessor :input_value, :sigma, :weights, :bias
         | 
| 4 | 
            +
              def initialize sigma
         | 
| 5 | 
            +
                @input_value = 0
         | 
| 5 6 | 
             
                @forward_nodes = {}
         | 
| 6 7 | 
             
                @weights =[]
         | 
| 7 | 
            -
                @ | 
| 8 | 
            -
                @ | 
| 8 | 
            +
                @bias = 0
         | 
| 9 | 
            +
                @sigma = sigma
         | 
| 9 10 | 
             
              end
         | 
| 10 | 
            -
              #take our input value | 
| 11 | 
            -
               | 
| 11 | 
            +
              #take our input value (sum of weighted outputs of backward connected nodes)
         | 
| 12 | 
            +
              #, subtract the bias and pass the result through our sigmoid function (tanh)
         | 
| 13 | 
            +
              # finally then pass on our output value to each of our forward nodes
         | 
| 12 14 | 
             
              def evaluate
         | 
| 13 | 
            -
                @output_value = Math.tanh(@input_value)
         | 
| 15 | 
            +
                @output_value = Math.tanh(@input_value - @bias)
         | 
| 14 16 | 
             
                #p "output value #{@output_value}"
         | 
| 15 17 | 
             
                @forward_nodes.each do |node, weight|
         | 
| 16 18 | 
             
                  #p "weight #{weight} old input #{node.input_value}"
         | 
| @@ -22,7 +24,7 @@ class Node | |
| 22 24 |  | 
| 23 25 | 
             
              def attach_forward_node node, sequence
         | 
| 24 26 | 
             
                if @weights.count <= sequence
         | 
| 25 | 
            -
                  @weights << rand
         | 
| 27 | 
            +
                  @weights << ((rand * 0.4 ) - 0.2) #sampled from a uniform distribution in range ± 0.2
         | 
| 26 28 | 
             
                end
         | 
| 27 29 |  | 
| 28 30 | 
             
                @forward_nodes[node] = @weights[sequence]
         | 
| @@ -35,7 +37,7 @@ class Node | |
| 35 37 | 
             
              def mutate
         | 
| 36 38 | 
             
                new_weights = []
         | 
| 37 39 | 
             
                @weights.each do |weight|
         | 
| 38 | 
            -
                  new_weights <<  | 
| 40 | 
            +
                  new_weights << weight + @sigma * gaussian_random # new_random_number = average + standard_deviation  * gaussian_rand
         | 
| 39 41 | 
             
                end
         | 
| 40 42 | 
             
                @weights = new_weights
         | 
| 41 43 | 
             
                if @forward_values
         | 
| @@ -46,17 +48,18 @@ class Node | |
| 46 48 | 
             
                  end
         | 
| 47 49 | 
             
                end
         | 
| 48 50 |  | 
| 49 | 
            -
                # | 
| 50 | 
            -
                @ | 
| 51 | 
            -
             | 
| 52 | 
            -
             | 
| 53 | 
            -
              def breed
         | 
| 51 | 
            +
                #mutate the bias
         | 
| 52 | 
            +
                @bias = @bias + gaussian_random * @sigma
         | 
| 53 | 
            +
             | 
| 54 | 
            +
                self
         | 
| 54 55 | 
             
              end
         | 
| 55 | 
            -
             | 
| 56 | 
            +
                
         | 
| 56 57 | 
             
              def clone
         | 
| 57 | 
            -
                clone = Node.new
         | 
| 58 | 
            +
                clone = Node.new(self.sigma)
         | 
| 59 | 
            +
                
         | 
| 60 | 
            +
                clone.sigma = self.sigma
         | 
| 61 | 
            +
                clone.bias = self.bias
         | 
| 58 62 |  | 
| 59 | 
            -
                clone.deviation = self.deviation
         | 
| 60 63 | 
             
                @weights.each do |weight|
         | 
| 61 64 | 
             
                  clone.weights << weight
         | 
| 62 65 | 
             
                end
         | 
| @@ -71,7 +74,7 @@ class Node | |
| 71 74 | 
             
              end
         | 
| 72 75 |  | 
| 73 76 | 
             
              def fingerprint
         | 
| 74 | 
            -
                fingerprint = "#{@ | 
| 77 | 
            +
                fingerprint = "#{@sigma.to_s}:#{@bias.to_s}:"
         | 
| 75 78 | 
             
                @weights.each do |weight|
         | 
| 76 79 | 
             
                  fingerprint += "#{weight.to_s},"
         | 
| 77 80 | 
             
                end
         | 
| @@ -81,9 +84,10 @@ class Node | |
| 81 84 | 
             
              def reload fingerprint
         | 
| 82 85 | 
             
                self.detatch_all_forward_nodes
         | 
| 83 86 | 
             
                @weights = []
         | 
| 84 | 
            -
                self. | 
| 85 | 
            -
                 | 
| 86 | 
            -
             | 
| 87 | 
            +
                self.sigma = fingerprint.split(':')[0].to_f
         | 
| 88 | 
            +
                self.bias = fingerprint.split(':')[1].to_f
         | 
| 89 | 
            +
                if fingerprint.split(":").count == 3
         | 
| 90 | 
            +
                  fingerprint.split(":")[2].split(',').each do |weight|
         | 
| 87 91 | 
             
                    @weights << weight.to_f
         | 
| 88 92 | 
             
                  end
         | 
| 89 93 | 
             
                end
         | 
    
        metadata
    CHANGED
    
    | @@ -5,8 +5,8 @@ version: !ruby/object:Gem::Version | |
| 5 5 | 
             
              segments: 
         | 
| 6 6 | 
             
              - 0
         | 
| 7 7 | 
             
              - 2
         | 
| 8 | 
            -
              -  | 
| 9 | 
            -
              version: 0.2. | 
| 8 | 
            +
              - 1
         | 
| 9 | 
            +
              version: 0.2.1
         | 
| 10 10 | 
             
            platform: ruby
         | 
| 11 11 | 
             
            authors: 
         | 
| 12 12 | 
             
            - David Bochenski
         | 
| @@ -14,7 +14,7 @@ autorequire: | |
| 14 14 | 
             
            bindir: bin
         | 
| 15 15 | 
             
            cert_chain: []
         | 
| 16 16 |  | 
| 17 | 
            -
            date: 2010-09- | 
| 17 | 
            +
            date: 2010-09-05 00:00:00 +01:00
         | 
| 18 18 | 
             
            default_executable: 
         | 
| 19 19 | 
             
            dependencies: 
         | 
| 20 20 | 
             
            - !ruby/object:Gem::Dependency 
         |