data_mining 0.0.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/lib/data_mining/dbscan.rb +105 -0
- data/lib/data_mining/point.rb +35 -0
- data/lib/data_mining.rb +4 -0
- metadata +46 -0
checksums.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
1
|
+
---
|
2
|
+
SHA1:
|
3
|
+
metadata.gz: 5da253c99db083a7e8a8694ef479299269b95c87
|
4
|
+
data.tar.gz: 873c011a2e26d9c1c11165a7ce9aa401d0d50250
|
5
|
+
SHA512:
|
6
|
+
metadata.gz: 6f2f01babec563518f49ddd12ac23a55865245ab6b1c9862b88836d5544eb2be6ca49574f8261ed6f0d215e5880c14804dc5f54ae1757220b1bc41a71eeb780f
|
7
|
+
data.tar.gz: 027e465483ca27939f8b43167ae9aacfd3cd709545e9bfb38c3a5cc31c0d39d5f2e1b23ec74d4c3319e01c5b4552c2f9ec41f15140ae5cb34e4b6ea73185be32
|
@@ -0,0 +1,105 @@
|
|
1
|
+
module DataMining
|
2
|
+
# Density-Based clustering / Outlier-Detection Algorithu
|
3
|
+
class DBScan
|
4
|
+
# Find clusters and outliers
|
5
|
+
#
|
6
|
+
# Example:
|
7
|
+
# >> input = [[:p1, 1], [:p2, 2], [:p3, 10]]
|
8
|
+
# >> radius = 3
|
9
|
+
# >> min_points = 2
|
10
|
+
# >> dbscan = DataMining::DBScan.cluster(input, radius, min_points)
|
11
|
+
# >> dbscan.build!
|
12
|
+
# >>
|
13
|
+
# >> dbscan.clusters # gives array of clusters found (:p1, :p2)
|
14
|
+
# >>
|
15
|
+
# >> dbscan.outliers # gives array of outliers found (:p3)
|
16
|
+
#
|
17
|
+
# Arguments:
|
18
|
+
# data: (array of arrays, like [[:id, value], [:id2, value2]]
|
19
|
+
# radius: (integer)
|
20
|
+
# min_points: (integer)
|
21
|
+
|
22
|
+
def self.cluster(data, radius, min_points)
|
23
|
+
DBScan.new(data, radius, min_points)
|
24
|
+
end
|
25
|
+
|
26
|
+
def initialize(data, radius, min_points)
|
27
|
+
@data = data.map { |i, v| DataMining::Point.new(i, v) }
|
28
|
+
@radius = radius
|
29
|
+
@min_points = min_points
|
30
|
+
@current_cluster_id = 0
|
31
|
+
@clusters = {}
|
32
|
+
@unvisited_points = @data.shuffle
|
33
|
+
end
|
34
|
+
|
35
|
+
def build!
|
36
|
+
dbscan
|
37
|
+
clusters
|
38
|
+
end
|
39
|
+
|
40
|
+
def outliers
|
41
|
+
@data.select { |p| !p.assigned_to_cluster? }
|
42
|
+
end
|
43
|
+
|
44
|
+
def clusters
|
45
|
+
@clusters.map { |cluster, points| { cluster => points.each(&:id) } }
|
46
|
+
end
|
47
|
+
|
48
|
+
private
|
49
|
+
|
50
|
+
def dbscan
|
51
|
+
until unvisited_points.empty?
|
52
|
+
p = unvisited_points.pop
|
53
|
+
p.visit!
|
54
|
+
|
55
|
+
neighborhood = get_neighborhood(p)
|
56
|
+
create_cluster(p, neighborhood) if core_object?(neighborhood)
|
57
|
+
end
|
58
|
+
end
|
59
|
+
|
60
|
+
def unvisited_points
|
61
|
+
@unvisited_points.select! { |p| !p.visited? }
|
62
|
+
@unvisited_points
|
63
|
+
end
|
64
|
+
|
65
|
+
def create_cluster(point, neighborhood)
|
66
|
+
@current_cluster_id += 1
|
67
|
+
point.assign_to_cluster!
|
68
|
+
(@clusters[@current_cluster_id] ||= []) << point
|
69
|
+
fill_current_cluster(neighborhood)
|
70
|
+
end
|
71
|
+
|
72
|
+
def fill_current_cluster(neighborhood)
|
73
|
+
neighborhood.each do |neighbor|
|
74
|
+
elaborate(neighbor) unless neighbor.visited?
|
75
|
+
neighbor.assign_to_cluster!
|
76
|
+
end
|
77
|
+
end
|
78
|
+
|
79
|
+
def elaborate(point)
|
80
|
+
point.visit!
|
81
|
+
@clusters[@current_cluster_id] << point unless point.assigned_to_cluster?
|
82
|
+
neighborhood = get_neighborhood(point)
|
83
|
+
fill_current_cluster(neighborhood) if core_object?(neighborhood)
|
84
|
+
end
|
85
|
+
|
86
|
+
# use map instead of each?
|
87
|
+
def get_neighborhood(point)
|
88
|
+
neighborhood = []
|
89
|
+
@data.each { |p| neighborhood << p if neighbors?(p, point) }
|
90
|
+
neighborhood
|
91
|
+
end
|
92
|
+
|
93
|
+
def core_object?(neighborhood)
|
94
|
+
return true if neighborhood.size >= (@min_points - 1)
|
95
|
+
false
|
96
|
+
end
|
97
|
+
|
98
|
+
def neighbors?(p1, p2)
|
99
|
+
return true if (p1.value - p2.value).abs <= @radius && p1 != p2
|
100
|
+
false
|
101
|
+
end
|
102
|
+
end
|
103
|
+
end
|
104
|
+
|
105
|
+
require 'data_mining/point'
|
@@ -0,0 +1,35 @@
|
|
1
|
+
module DataMining
|
2
|
+
# Point class
|
3
|
+
class Point
|
4
|
+
attr_reader :id, :value
|
5
|
+
|
6
|
+
# Represents a Point for the DBScan Algorithm
|
7
|
+
#
|
8
|
+
# Arguments:
|
9
|
+
# id: (symbol)
|
10
|
+
# value: (integer)
|
11
|
+
|
12
|
+
def initialize(id, value)
|
13
|
+
@id = id
|
14
|
+
@value = value
|
15
|
+
@visited = false
|
16
|
+
@in_a_cluster = false
|
17
|
+
end
|
18
|
+
|
19
|
+
def assigned_to_cluster?
|
20
|
+
@in_a_cluster
|
21
|
+
end
|
22
|
+
|
23
|
+
def assign_to_cluster!
|
24
|
+
@in_a_cluster = true
|
25
|
+
end
|
26
|
+
|
27
|
+
def visited?
|
28
|
+
@visited
|
29
|
+
end
|
30
|
+
|
31
|
+
def visit!
|
32
|
+
@visited = true
|
33
|
+
end
|
34
|
+
end
|
35
|
+
end
|
data/lib/data_mining.rb
ADDED
metadata
ADDED
@@ -0,0 +1,46 @@
|
|
1
|
+
--- !ruby/object:Gem::Specification
|
2
|
+
name: data_mining
|
3
|
+
version: !ruby/object:Gem::Version
|
4
|
+
version: 0.0.1
|
5
|
+
platform: ruby
|
6
|
+
authors:
|
7
|
+
- Manuel Stuefer
|
8
|
+
autorequire:
|
9
|
+
bindir: bin
|
10
|
+
cert_chain: []
|
11
|
+
date: 2015-06-23 00:00:00.000000000 Z
|
12
|
+
dependencies: []
|
13
|
+
description: A collection of data mining algorithms
|
14
|
+
email: mstuefer@gmail.com
|
15
|
+
executables: []
|
16
|
+
extensions: []
|
17
|
+
extra_rdoc_files: []
|
18
|
+
files:
|
19
|
+
- lib/data_mining.rb
|
20
|
+
- lib/data_mining/dbscan.rb
|
21
|
+
- lib/data_mining/point.rb
|
22
|
+
homepage: http://rubygems.org/gems/data_mining
|
23
|
+
licenses:
|
24
|
+
- MIT
|
25
|
+
metadata: {}
|
26
|
+
post_install_message:
|
27
|
+
rdoc_options: []
|
28
|
+
require_paths:
|
29
|
+
- lib
|
30
|
+
required_ruby_version: !ruby/object:Gem::Requirement
|
31
|
+
requirements:
|
32
|
+
- - ">="
|
33
|
+
- !ruby/object:Gem::Version
|
34
|
+
version: '0'
|
35
|
+
required_rubygems_version: !ruby/object:Gem::Requirement
|
36
|
+
requirements:
|
37
|
+
- - ">="
|
38
|
+
- !ruby/object:Gem::Version
|
39
|
+
version: '0'
|
40
|
+
requirements: []
|
41
|
+
rubyforge_project:
|
42
|
+
rubygems_version: 2.4.6
|
43
|
+
signing_key:
|
44
|
+
specification_version: 4
|
45
|
+
summary: Data-Mining-Algorithms
|
46
|
+
test_files: []
|