classifier-reborn 2.1.0 → 2.2.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/LICENSE +74 -1
- data/README.markdown +57 -227
- data/data/stopwords/ar +104 -0
- data/data/stopwords/bn +362 -0
- data/data/stopwords/hi +97 -0
- data/data/stopwords/ja +43 -0
- data/data/stopwords/ru +420 -0
- data/data/stopwords/tr +199 -30
- data/data/stopwords/vi +647 -0
- data/data/stopwords/zh +125 -0
- data/lib/classifier-reborn.rb +9 -0
- data/lib/classifier-reborn/backends/bayes_memory_backend.rb +75 -0
- data/lib/classifier-reborn/backends/bayes_redis_backend.rb +107 -0
- data/lib/classifier-reborn/backends/no_redis_error.rb +12 -0
- data/lib/classifier-reborn/bayes.rb +98 -38
- data/lib/classifier-reborn/category_namer.rb +0 -1
- data/lib/classifier-reborn/extensions/hasher.rb +1 -1
- data/lib/classifier-reborn/lsi.rb +5 -1
- data/lib/classifier-reborn/lsi/word_list.rb +2 -4
- data/lib/classifier-reborn/validators/classifier_validator.rb +169 -0
- data/lib/classifier-reborn/version.rb +1 -1
- metadata +30 -8
- data/bin/bayes.rb +0 -36
- data/bin/summarize.rb +0 -16
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA1:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: e626667dbd70c34cda4604852500af1bd9cc8f9f
|
4
|
+
data.tar.gz: 36dad105dca4770c1a5b708257c66721522d235e
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: aa08b0c7ad09138ac9efb0f55daa3d24a43b1c1388cef4ad2a71a9375620ce1794db66d3eca470c7772a80e4eac8e3c7a6811b20a3b65e2e93cfced86922554b
|
7
|
+
data.tar.gz: c137296ec3661043828e99abd11814b44a1d7e7ab6ca3d6f36ae54eaba1044d426847a9782bd106e082a6f7bacc22d72910eb51e6a37516017886a4c7df38a57
|
data/LICENSE
CHANGED
@@ -426,4 +426,77 @@ the Free Software Foundation.
|
|
426
426
|
14. If you wish to incorporate parts of the Library into other free
|
427
427
|
programs whose distribution conditions are incompatible with these,
|
428
428
|
write to the author to ask for permission. For software which is
|
429
|
-
copyrighted by
|
429
|
+
copyrighted by the Free Software Foundation, write to the Free
|
430
|
+
Software Foundation; we sometimes make exceptions for this. Our
|
431
|
+
decision will be guided by the two goals of preserving the free status
|
432
|
+
of all derivatives of our free software and of promoting the sharing
|
433
|
+
and reuse of software generally.
|
434
|
+
|
435
|
+
NO WARRANTY
|
436
|
+
|
437
|
+
15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
|
438
|
+
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
|
439
|
+
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
|
440
|
+
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
|
441
|
+
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
|
442
|
+
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
443
|
+
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
|
444
|
+
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
|
445
|
+
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
446
|
+
|
447
|
+
16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
|
448
|
+
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
|
449
|
+
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
|
450
|
+
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
|
451
|
+
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
|
452
|
+
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
|
453
|
+
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
|
454
|
+
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
|
455
|
+
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
|
456
|
+
DAMAGES.
|
457
|
+
|
458
|
+
END OF TERMS AND CONDITIONS
|
459
|
+
|
460
|
+
How to Apply These Terms to Your New Libraries
|
461
|
+
|
462
|
+
If you develop a new library, and you want it to be of the greatest
|
463
|
+
possible use to the public, we recommend making it free software that
|
464
|
+
everyone can redistribute and change. You can do so by permitting
|
465
|
+
redistribution under these terms (or, alternatively, under the terms of the
|
466
|
+
ordinary General Public License).
|
467
|
+
|
468
|
+
To apply these terms, attach the following notices to the library. It is
|
469
|
+
safest to attach them to the start of each source file to most effectively
|
470
|
+
convey the exclusion of warranty; and each file should have at least the
|
471
|
+
"copyright" line and a pointer to where the full notice is found.
|
472
|
+
|
473
|
+
<one line to give the library's name and a brief idea of what it does.>
|
474
|
+
Copyright (C) <year> <name of author>
|
475
|
+
|
476
|
+
This library is free software; you can redistribute it and/or
|
477
|
+
modify it under the terms of the GNU Lesser General Public
|
478
|
+
License as published by the Free Software Foundation; either
|
479
|
+
version 2.1 of the License, or (at your option) any later version.
|
480
|
+
|
481
|
+
This library is distributed in the hope that it will be useful,
|
482
|
+
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
483
|
+
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
484
|
+
Lesser General Public License for more details.
|
485
|
+
|
486
|
+
You should have received a copy of the GNU Lesser General Public
|
487
|
+
License along with this library; if not, write to the Free Software
|
488
|
+
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
489
|
+
|
490
|
+
Also add information on how to contact you by electronic and paper mail.
|
491
|
+
|
492
|
+
You should also get your employer (if you work as a programmer) or your
|
493
|
+
school, if any, to sign a "copyright disclaimer" for the library, if
|
494
|
+
necessary. Here is a sample; alter the names:
|
495
|
+
|
496
|
+
Yoyodyne, Inc., hereby disclaims all copyright interest in the
|
497
|
+
library `Frob' (a library for tweaking knobs) written by James Random Hacker.
|
498
|
+
|
499
|
+
<signature of Ty Coon>, 1 April 1990
|
500
|
+
Ty Coon, President of Vice
|
501
|
+
|
502
|
+
That's all there is to it!
|
data/README.markdown
CHANGED
@@ -1,252 +1,82 @@
|
|
1
|
-
|
1
|
+
# Classifier Reborn
|
2
2
|
|
3
|
-
[![Gem Version](https://
|
4
|
-
[![Build Status](https://img.shields.io/travis/jekyll/classifier-reborn/master.svg)]
|
5
|
-
[![Dependency Status](https://img.shields.io/gemnasium/jekyll/classifier-reborn.svg)]
|
6
|
-
[ruby-gems]: https://rubygems.org/gems/jekyll/classifier-reborn
|
7
|
-
[gemnasium]: https://gemnasium.com/jekyll/classifier-reborn
|
8
|
-
[travis]: https://travis-ci.org/jekyll/classifier-reborn
|
3
|
+
[![Gem Version](https://badge.fury.io/rb/classifier-reborn.svg)](https://rubygems.org/gems/classifier-reborn)
|
4
|
+
[![Build Status](https://img.shields.io/travis/jekyll/classifier-reborn/master.svg)](https://travis-ci.org/jekyll/classifier-reborn)
|
5
|
+
[![Dependency Status](https://img.shields.io/gemnasium/jekyll/classifier-reborn.svg)](https://gemnasium.com/jekyll/classifier-reborn)
|
9
6
|
|
10
|
-
|
7
|
+
---
|
11
8
|
|
12
|
-
|
9
|
+
## [Read the Docs](http://www.classifier-reborn.com/)
|
13
10
|
|
14
|
-
##
|
11
|
+
## Getting Started
|
15
12
|
|
16
|
-
|
13
|
+
Classifier Reborn is a general classifier module to allow Bayesian and other types of classifications.
|
14
|
+
It is a fork of [cardmagic/classifier](https://github.com/cardmagic/classifier) under more active development.
|
15
|
+
Currently, it has [Bayesian Classifier](https://en.wikipedia.org/wiki/Naive_Bayes_classifier) and [Latent Semantic Indexer (LSI)](https://en.wikipedia.org/wiki/Latent_semantic_analysis) implemented.
|
17
16
|
|
18
|
-
|
17
|
+
Here is a quick illustration of the Bayesian classifier.
|
19
18
|
|
20
|
-
|
21
|
-
|
22
|
-
|
23
|
-
|
24
|
-
|
25
|
-
|
26
|
-
|
27
|
-
|
28
|
-
|
29
|
-
|
30
|
-
The only runtime dependency you'll need to install is Roman Shterenzon's fast-stemmer gem:
|
31
|
-
|
32
|
-
gem install fast-stemmer
|
33
|
-
|
34
|
-
This should install automatically with RubyGems.
|
35
|
-
|
36
|
-
If you would like to speed up LSI classification by at least 10x, please install the following libraries:
|
37
|
-
|
38
|
-
* [GNU GSL](http://www.gnu.org/software/gsl)
|
39
|
-
* [rb-gsl](https://rubygems.org/gems/rb-gsl)
|
40
|
-
|
41
|
-
Notice that LSI will work without these libraries, but as soon as they are installed, Classifier will make use of them. No configuration changes are needed, we like to keep things ridiculously easy for you.
|
42
|
-
|
43
|
-
## Bayes
|
44
|
-
|
45
|
-
A Bayesian classifier by Lucas Carlson. Bayesian Classifiers are accurate, fast, and have modest memory requirements.
|
46
|
-
|
47
|
-
*Note: Classifier only supports UTF-8 characters.*
|
48
|
-
|
49
|
-
### Usage
|
50
|
-
|
51
|
-
```ruby
|
52
|
-
require 'classifier-reborn'
|
53
|
-
classifier = ClassifierReborn::Bayes.new 'Interesting', 'Uninteresting'
|
54
|
-
classifier.train_interesting "here are some good words. I hope you love them"
|
55
|
-
classifier.train_uninteresting "here are some bad words, I hate you"
|
56
|
-
classifier.classify "I hate bad words and you" # returns 'Uninteresting'
|
57
|
-
|
58
|
-
classifier_snapshot = Marshal.dump classifier
|
59
|
-
# This is a string of bytes, you can persist it anywhere you like
|
60
|
-
|
61
|
-
File.open("classifier.dat", "w") {|f| f.write(classifier_snapshot) }
|
62
|
-
# Or Redis.current.save "classifier", classifier_snapshot
|
63
|
-
|
64
|
-
# This is now saved to a file, and you can safely restart the application
|
65
|
-
data = File.read("classifier.dat")
|
66
|
-
# Or data = Redis.current.get "classifier"
|
67
|
-
trained_classifier = Marshal.load data
|
68
|
-
trained_classifier.classify "I love" # returns 'Interesting'
|
19
|
+
```bash
|
20
|
+
$ gem install classifier-reborn
|
21
|
+
$ irb
|
22
|
+
irb(main):001:0> require 'classifier-reborn'
|
23
|
+
irb(main):002:0> classifier = ClassifierReborn::Bayes.new 'Ham', 'Spam'
|
24
|
+
irb(main):003:0> classifier.train "Ham", "Sunday is a holiday. Say no to work on Sunday!"
|
25
|
+
irb(main):004:0> classifier.train "Spam", "You are the lucky winner! Claim your holiday prize."
|
26
|
+
irb(main):005:0> classifier.classify "What's the plan for Sunday?"
|
27
|
+
#=> "Ham"
|
69
28
|
```
|
70
29
|
|
71
|
-
|
72
|
-
|
73
|
-
|
74
|
-
|
75
|
-
|
76
|
-
|
77
|
-
|
78
|
-
|
79
|
-
|
80
|
-
|
81
|
-
|
82
|
-
|
83
|
-
|
84
|
-
# pass :auto_categorize option to allow feeding previously unknown categories
|
85
|
-
classifier = ClassifierReborn::Bayes.new categories, auto_categorize: true
|
86
|
-
|
87
|
-
training_set.each do |a_line|
|
88
|
-
next if a_line.empty? || '#' == a_line.strip[0]
|
89
|
-
parts = a_line.strip.split(':')
|
90
|
-
classifier.train(parts.first, parts.last)
|
91
|
-
end
|
92
|
-
|
93
|
-
puts classifier.classify "I hate bad words and you" #=> 'Uninteresting'
|
94
|
-
puts classifier.classify "I hate javascript" #=> 'Uninteresting'
|
95
|
-
puts classifier.classify "javascript is bad" #=> 'Uninteresting'
|
96
|
-
|
97
|
-
puts classifier.classify "all you need is ruby" #=> 'Interesting'
|
98
|
-
puts classifier.classify "i love ruby" #=> 'Interesting'
|
99
|
-
|
100
|
-
puts classifier.classify "which is better dogs or cats" #=> 'dog'
|
101
|
-
puts classifier.classify "what do I need to kill rats and mice" #=> 'cat'
|
102
|
-
|
103
|
-
__END__
|
104
|
-
Interesting, Uninteresting
|
105
|
-
interesting: here are some good words. I hope you love them
|
106
|
-
interesting: all you need is love
|
107
|
-
interesting: the love boat, soon we will be taking another ride
|
108
|
-
interesting: ruby don't take your love to town
|
109
|
-
|
110
|
-
uninteresting: here are some bad words, I hate you
|
111
|
-
uninteresting: bad bad leroy brown badest man in the darn town
|
112
|
-
uninteresting: the good the bad and the ugly
|
113
|
-
uninteresting: java, javascript, css front-end html
|
114
|
-
#
|
115
|
-
# train categories that were not pre-described
|
116
|
-
#
|
117
|
-
dog: dog days of summer
|
118
|
-
dog: a man's best friend is his dog
|
119
|
-
dog: a good hunting dog is a fine thing
|
120
|
-
dog: man my dogs are tired
|
121
|
-
dog: dogs are better than cats in soooo many ways
|
122
|
-
|
123
|
-
cat: the fuzz ball spilt the milk
|
124
|
-
cat: got rats or mice get a cat to kill them
|
125
|
-
cat: cats never come when you call them
|
126
|
-
cat: That dang cat keeps scratching the furniture
|
30
|
+
Now, let's build an LSI, classify some text, and find a cluster of related documents.
|
31
|
+
|
32
|
+
```bash
|
33
|
+
irb(main):006:0> lsi = ClassifierReborn::LSI.new
|
34
|
+
irb(main):007:0> lsi.add_item "This text deals with dogs. Dogs.", :dog
|
35
|
+
irb(main):008:0> lsi.add_item "This text involves dogs too. Dogs!", :dog
|
36
|
+
irb(main):009:0> lsi.add_item "This text revolves around cats. Cats.", :cat
|
37
|
+
irb(main):010:0> lsi.add_item "This text also involves cats. Cats!", :cat
|
38
|
+
irb(main):011:0> lsi.add_item "This text involves birds. Birds.", :bird
|
39
|
+
irb(main):012:0> lsi.classify "This text is about dogs!"
|
40
|
+
#=> :dog
|
41
|
+
irb(main):013:0> lsi.find_related("This text is around cats!", 2)
|
42
|
+
#=> ["This text revolves around cats. Cats.", "This text also involves cats. Cats!"]
|
127
43
|
```
|
128
44
|
|
129
|
-
|
130
|
-
|
131
|
-
When you ask a bayesian classifier to classify text against a set of trained categories it does so by generating a score (as a Float) for each possible category. The higher the score the closer the fit your text has with that category. The category with the highest score is returned as the best matching category.
|
132
|
-
|
133
|
-
In *ClassifierReborn* the methods *classifications* and *classify_with_score* give you access to the calculated scores. The method *classify* only returns the best matching category.
|
134
|
-
|
135
|
-
Knowing the score allows you to do some interesting things. For example if your application is to generate tags for a blog post you could use the *classifications* method to get a hash of the categories and their scores. You would sort on score and take only the top 3 or 4 categories as your tags for the blog post.
|
136
|
-
|
137
|
-
You could within your application establish the smallest acceptable score and only use those categories whose score is greater than or equal to your smallest acceptable score as your tags for the blog post.
|
138
|
-
|
139
|
-
But what if you only use the *classify* method? It does not show you the score of the best category. How do you know that the best category is really any good?
|
45
|
+
There is much more that can be done using Bayes and LSI beyond these quick examples.
|
46
|
+
For more information read the following documentation topics.
|
140
47
|
|
141
|
-
|
48
|
+
* [Installation and Dependencies](http://www.classifier-reborn.com/)
|
49
|
+
* [Bayesian Classifier](http://www.classifier-reborn.com/bayes)
|
50
|
+
* [Latent Semantic Indexer (LSI)](http://www.classifier-reborn.com/lsi)
|
51
|
+
* [Classifier Validation](http://www.classifier-reborn.com/validation)
|
52
|
+
* [Development and Contributions](http://www.classifier-reborn.com/development) (*Optional Docker instructions included*)
|
142
53
|
|
143
|
-
|
144
|
-
|
145
|
-
Some applications can have only one category. The application wants to know if the text being classified is of that category or not. For example consider a list of normal free text responses to some question or maybe a URL string coming to your web application. You know what a normal response looks like; but, you have no idea how people might mis-use the response. So what you want to do is create a bayesian classifier that just has one category, for example 'Good' and you want to know wither your text is classified as Good or Not Good.
|
146
|
-
|
147
|
-
Or suppose you just want the ability to have multiple categories and a 'None of the Above' as a possibility.
|
148
|
-
|
149
|
-
##### Threshold
|
150
|
-
|
151
|
-
When you initialize the *ClassifierReborn::Bayes* classifier there are several options which can be set that control threshold processing.
|
152
|
-
|
153
|
-
```ruby
|
154
|
-
b = ClassifierReborn::Bayes.new(
|
155
|
-
'good', # one or more categories
|
156
|
-
enable_threshold: true, # default: false
|
157
|
-
threshold: -10.0 # default: 0.0
|
158
|
-
)
|
159
|
-
b.train_good 'good stuff from Dobie Gillis'
|
160
|
-
# ...
|
161
|
-
text = 'bad junk from Maynard G. Krebs'
|
162
|
-
result = b.classify text
|
163
|
-
if result.nil?
|
164
|
-
STDERR.puts "ALERT: This is not good: #{text}"
|
165
|
-
let_loose_the_dogs_of_war! # method definition left to the reader
|
166
|
-
end
|
167
|
-
|
168
|
-
```
|
169
|
-
|
170
|
-
In the *classify* method when the best category for the text has a score that is either less than the established threshold or is Float::INIFINITY, a nil category is returned. When you see a nil value returned from the *classify* method it means that none of the trained categories (regardless or how many categories were trained) has a score that is above or equal to the established threshold.
|
171
|
-
|
172
|
-
#### Other Threshold-related Convience Methods
|
173
|
-
|
174
|
-
```ruby
|
175
|
-
b.threshold # get the current threshold
|
176
|
-
b.threshold = -10.0 # set the threshold
|
177
|
-
b.threshold_enabled? # Boolean: is the threshold enabled?
|
178
|
-
b.threshold_disabled? # Boolean: is the threshold disabled?
|
179
|
-
b.enable_threshold # enables threshold processing
|
180
|
-
b.disable_threshold # disables threshold processing
|
181
|
-
```
|
182
|
-
|
183
|
-
Using these convience methods your applications can dynamically adjust threshold processing as required.
|
184
|
-
|
185
|
-
### Bayesian Classification
|
186
|
-
|
187
|
-
* https://en.wikipedia.org/wiki/Naive_Bayes_classifier
|
188
|
-
* http://www.process.com/precisemail/bayesian_filtering.htm
|
189
|
-
* http://en.wikipedia.org/wiki/Bayesian_filtering
|
190
|
-
* http://www.paulgraham.com/spam.html
|
191
|
-
|
192
|
-
## LSI
|
193
|
-
|
194
|
-
A Latent Semantic Indexer by David Fayram. Latent Semantic Indexing engines
|
195
|
-
are not as fast or as small as Bayesian classifiers, but are more flexible, providing
|
196
|
-
fast search and clustering detection as well as semantic analysis of the text that
|
197
|
-
theoretically simulates human learning.
|
198
|
-
|
199
|
-
### Usage
|
54
|
+
### Notes on JRuby support
|
200
55
|
|
201
56
|
```ruby
|
202
|
-
|
203
|
-
lsi = ClassifierReborn::LSI.new
|
204
|
-
strings = [ ["This text deals with dogs. Dogs.", :dog],
|
205
|
-
["This text involves dogs too. Dogs! ", :dog],
|
206
|
-
["This text revolves around cats. Cats.", :cat],
|
207
|
-
["This text also involves cats. Cats!", :cat],
|
208
|
-
["This text involves birds. Birds.",:bird ]]
|
209
|
-
strings.each {|x| lsi.add_item x.first, x.last}
|
210
|
-
|
211
|
-
lsi.search("dog", 3)
|
212
|
-
# returns => ["This text deals with dogs. Dogs.", "This text involves dogs too. Dogs! ",
|
213
|
-
# "This text also involves cats. Cats!"]
|
214
|
-
|
215
|
-
lsi.find_related(strings[2], 2)
|
216
|
-
# returns => ["This text revolves around cats. Cats.", "This text also involves cats. Cats!"]
|
217
|
-
|
218
|
-
lsi.classify "This text is also about dogs!"
|
219
|
-
# returns => :dog
|
57
|
+
gem 'classifier-reborn-jruby', platforms: :java
|
220
58
|
```
|
221
59
|
|
222
|
-
|
223
|
-
with more than just simple strings.
|
224
|
-
|
225
|
-
### Latent Semantic Indexing
|
226
|
-
|
227
|
-
* http://www.c2.com/cgi/wiki?LatentSemanticIndexing
|
228
|
-
* http://www.chadfowler.com/index.cgi/Computing/LatentSemanticIndexing.rdoc
|
229
|
-
* http://en.wikipedia.org/wiki/Latent_semantic_analysis
|
60
|
+
While experimental, this gem should work on JRuby without any kind of additional changes. Unfortunately, you will **not** be able to use C bindings to GNU/GSL or similar performance-enhancing native code. Additionally, we do not use `fast_stemmer`, but rather [an implementation](https://tartarus.org/martin/PorterStemmer/java.txt) of the [Porter Stemming](https://tartarus.org/martin/PorterStemmer/) algorithm. Stemming will differ between MRI and JRuby, however you may choose to [disable stemming](https://tartarus.org/martin/PorterStemmer/) and do your own manual preprocessing (or use some other [popular Java library](https://opennlp.apache.org/)).
|
230
61
|
|
62
|
+
If you encounter a problem, please submit your issue with `[JRuby]` in the title.
|
231
63
|
|
232
64
|
## Code of Conduct
|
233
65
|
|
234
|
-
In order to have a more open and welcoming community, Classifier
|
235
|
-
[code of conduct](https://github.com/jekyll/jekyll/blob/master/
|
236
|
-
conduct.
|
237
|
-
|
238
|
-
Please adhere to this code of conduct in any interactions you have in the
|
239
|
-
Classifier community. If you encounter someone violating
|
240
|
-
these terms, please let [@chase](https://github.com/Ch4s3) know and we will address it as soon as possible.
|
66
|
+
In order to have a more open and welcoming community, `Classifier Reborn` adheres to the `Jekyll`
|
67
|
+
[code of conduct](https://github.com/jekyll/jekyll/blob/master/CODE_OF_CONDUCT.markdown) adapted from the `Ruby on Rails` code of conduct.
|
241
68
|
|
69
|
+
Please adhere to this code of conduct in any interactions you have in the `Classifier` community.
|
70
|
+
If you encounter someone violating these terms, please let [Chase Gilliam](https://github.com/Ch4s3) know and we will address it as soon as possible.
|
242
71
|
|
243
|
-
## Authors
|
72
|
+
## Authors and Contributors
|
244
73
|
|
245
|
-
* Lucas Carlson
|
246
|
-
* David Fayram II
|
247
|
-
* Cameron McBride
|
248
|
-
* Ivan Acosta-Rubio
|
249
|
-
* Parker Moore
|
250
|
-
* Chase Gilliam
|
74
|
+
* [Lucas Carlson](mailto:lucas@rufy.com)
|
75
|
+
* [David Fayram II](mailto:dfayram@gmail.com)
|
76
|
+
* [Cameron McBride](mailto:cameron.mcbride@gmail.com)
|
77
|
+
* [Ivan Acosta-Rubio](mailto:ivan@softwarecriollo.com)
|
78
|
+
* [Parker Moore](mailto:email@byparker.com)
|
79
|
+
* [Chase Gilliam](mailto:chase.gilliam@gmail.com)
|
80
|
+
* and [many more](https://github.com/jekyll/classifier-reborn/graphs/contributors)...
|
251
81
|
|
252
|
-
|
82
|
+
The Classifier Reborn library is released under the terms of the [GNU LGPL-2.1](https://github.com/jekyll/classifier-reborn/blob/master/LICENSE).
|
data/data/stopwords/ar
ADDED
@@ -0,0 +1,104 @@
|
|
1
|
+
|
2
|
+
فى
|
3
|
+
في
|
4
|
+
كل
|
5
|
+
لم
|
6
|
+
لن
|
7
|
+
له
|
8
|
+
من
|
9
|
+
هو
|
10
|
+
هي
|
11
|
+
قوة
|
12
|
+
كما
|
13
|
+
لها
|
14
|
+
منذ
|
15
|
+
وقد
|
16
|
+
ولا
|
17
|
+
لقاء
|
18
|
+
مقابل
|
19
|
+
هناك
|
20
|
+
وقال
|
21
|
+
وكان
|
22
|
+
وقالت
|
23
|
+
وكانت
|
24
|
+
فيه
|
25
|
+
لكن
|
26
|
+
وفي
|
27
|
+
ولم
|
28
|
+
ومن
|
29
|
+
وهو
|
30
|
+
وهي
|
31
|
+
يوم
|
32
|
+
فيها
|
33
|
+
منها
|
34
|
+
يكون
|
35
|
+
يمكن حيث
|
36
|
+
االا
|
37
|
+
اما
|
38
|
+
االتى
|
39
|
+
التي
|
40
|
+
اكثر
|
41
|
+
ايضا
|
42
|
+
الذى
|
43
|
+
الذي
|
44
|
+
الان
|
45
|
+
الذين
|
46
|
+
ابين
|
47
|
+
ذلك
|
48
|
+
دون
|
49
|
+
حول
|
50
|
+
حين
|
51
|
+
الى
|
52
|
+
انه
|
53
|
+
اول
|
54
|
+
انها
|
55
|
+
ف
|
56
|
+
و
|
57
|
+
و6
|
58
|
+
قد
|
59
|
+
لا
|
60
|
+
ما
|
61
|
+
مع
|
62
|
+
هذا
|
63
|
+
واحد
|
64
|
+
واضاف
|
65
|
+
واضافت
|
66
|
+
فان
|
67
|
+
قبل
|
68
|
+
قال
|
69
|
+
كان
|
70
|
+
لدى
|
71
|
+
نحو
|
72
|
+
هذه
|
73
|
+
وان
|
74
|
+
واكد
|
75
|
+
كانت
|
76
|
+
واوضح
|
77
|
+
ب
|
78
|
+
ا
|
79
|
+
أ
|
80
|
+
،
|
81
|
+
عن
|
82
|
+
عند
|
83
|
+
عندما
|
84
|
+
على
|
85
|
+
عليه
|
86
|
+
عليها
|
87
|
+
تم
|
88
|
+
ضد
|
89
|
+
بعد
|
90
|
+
بعض
|
91
|
+
حتى
|
92
|
+
اذا
|
93
|
+
احد
|
94
|
+
بان
|
95
|
+
اجل
|
96
|
+
غير
|
97
|
+
بن
|
98
|
+
به
|
99
|
+
ثم
|
100
|
+
اف
|
101
|
+
ان
|
102
|
+
او
|
103
|
+
اي
|
104
|
+
بها
|