clag 0.0.4 → 0.0.5
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/README.md +9 -0
- data/lib/clag/version.rb +1 -1
- data/vendor/gems/sublayer/lib/sublayer/capabilities/llm_assistance.rb +50 -0
- metadata +1 -1
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 7567d9817e4d7abc1c6da5ab57e36b99945fe64d3cb9d361d86c2c712e5e41af
|
4
|
+
data.tar.gz: 5425fc8a75d9267aaf341e4b13d82f76dc7dea19549fd2686d84bc667653f5f8
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 8b629c28ad455cc20af1fe172c9dd774f88a980335c5f127fe7ebe6a624688f1ff004103261baedd252a7832beea01be378a2f1995e8c3c55cae7c1522355eb6
|
7
|
+
data.tar.gz: e2327b5d9f0625b0ddf0d084f40372e677d2952becd2ba7f0271ccbc8e234a0dd1e35a0231d2223c31ebdca881409c4d46cad8d72cc05b7dd23e1b0aea76e202
|
data/README.md
CHANGED
@@ -47,6 +47,15 @@ command with the help of an LLM!
|
|
47
47
|
|
48
48
|
* Select Groq as your preferred LLM by setting CLAG\_LLM=groq in your environment
|
49
49
|
|
50
|
+
### Using a Local Model
|
51
|
+
|
52
|
+
* Have a model locally from either Ollama or Llamafile with an OpenAI compatible
|
53
|
+
API
|
54
|
+
|
55
|
+
* Have the API server running on port 8080
|
56
|
+
|
57
|
+
* Select local as your preferred LLM by setting CLAG\_LLM=local in your environment
|
58
|
+
|
50
59
|
## Usage
|
51
60
|
|
52
61
|
Currently support one command: "g".
|
data/lib/clag/version.rb
CHANGED
@@ -25,6 +25,8 @@ module Sublayer
|
|
25
25
|
generate_with_claude
|
26
26
|
when "groq"
|
27
27
|
generate_with_groq
|
28
|
+
when "local"
|
29
|
+
generate_with_local_model
|
28
30
|
else
|
29
31
|
generate_with_openai
|
30
32
|
end
|
@@ -32,6 +34,54 @@ module Sublayer
|
|
32
34
|
|
33
35
|
private
|
34
36
|
|
37
|
+
def generate_with_local_model
|
38
|
+
system_prompt = <<-PROMPT
|
39
|
+
In this environment you have access to a set of tools you can use to answer the user's question.
|
40
|
+
|
41
|
+
You may call them like this:
|
42
|
+
<function_calls>
|
43
|
+
<invoke>
|
44
|
+
<tool_name>$TOOL_NAME</tool_name>
|
45
|
+
<parameters>
|
46
|
+
<command>value</command>
|
47
|
+
...
|
48
|
+
</parameters>
|
49
|
+
</invoke>
|
50
|
+
</function_calls>
|
51
|
+
|
52
|
+
Here are the tools available:
|
53
|
+
<tools>
|
54
|
+
#{self.class::OUTPUT_FUNCTION.to_xml}
|
55
|
+
</tools>
|
56
|
+
|
57
|
+
Respond only with valid xml.
|
58
|
+
The entire response should be wrapped in a <response> tag.
|
59
|
+
Any additional information not inside a tool call should go in a <scratch> tag.
|
60
|
+
PROMPT
|
61
|
+
|
62
|
+
response = HTTParty.post(
|
63
|
+
"http://localhost:8080/v1/chat/completions",
|
64
|
+
headers: {
|
65
|
+
"Authorization": "Bearer no-key",
|
66
|
+
"Content-Type": "application/json"
|
67
|
+
},
|
68
|
+
body: {
|
69
|
+
"model": "LLaMA_CPP",
|
70
|
+
"messages": [
|
71
|
+
{ "role": "system", "content": system_prompt },
|
72
|
+
{ "role": "user", "content": prompt }
|
73
|
+
]
|
74
|
+
}.to_json
|
75
|
+
)
|
76
|
+
|
77
|
+
text_containing_xml = JSON.parse(response.body).dig("choices", 0, "message", "content")
|
78
|
+
xml = text_containing_xml.match(/\<response\>(.*?)\<\/response\>/m).to_s
|
79
|
+
response_xml = Nokogiri::XML(xml)
|
80
|
+
function_output = response_xml.at_xpath("//parameters/command").children.to_s
|
81
|
+
|
82
|
+
return function_output
|
83
|
+
end
|
84
|
+
|
35
85
|
def generate_with_groq
|
36
86
|
system_prompt = <<-PROMPT
|
37
87
|
In this environment you have access to a set of tools you can use to answer the user's question.
|