charty 0.1.1.dev → 0.1.2.dev
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/README.md +10 -1
- data/binder/Dockerfile +3 -0
- data/examples/iris_dataset.ipynb +702 -0
- data/examples/sample_images/barh_matplot.png +0 -0
- data/examples/sample_matplotlib.ipynb +49 -19
- data/lib/charty/gruff.rb +3 -0
- data/lib/charty/matplot.rb +5 -1
- data/lib/charty/plotter.rb +17 -0
- data/lib/charty/rubyplot.rb +3 -1
- data/lib/charty/version.rb +1 -1
- metadata +6 -3
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 54087a2074b21cdf538ddee1b9d0ccabe9f0db4d1939fd5a0bfc9ccef72b9291
|
4
|
+
data.tar.gz: 395573961358329d157307f8e6aa69c6ee748b1b289a8e373cc99a5c651cbc84
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 77cd8d3e39e7e8101799728941e8267ad12916fd55181623209ba47111be7507048f62a175b4ffa2c86f61bc5e9156ccd46231be91f9c948a4df810a3f988ba6
|
7
|
+
data.tar.gz: db0efb32e5d3fee2f51ea8e3e33348c0202a9657511801de29413123aa9632a21d73e4f673b4058fe5c345604b903c3bc662608c39b958d7118016f74c93d2d0
|
data/README.md
CHANGED
@@ -1,5 +1,7 @@
|
|
1
1
|
# Charty - Visualizing your data in Ruby
|
2
2
|
|
3
|
+
[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/red-data-tools/charty/master?filepath=iris_dataset.ipynb)
|
4
|
+
|
3
5
|
Charty is open-source Ruby library for visualizing your data in a simple way.
|
4
6
|
In Charty, you need to write very few lines of code for representing what you want to do.
|
5
7
|
It lets you focus on your analysis of data, instead of plotting.
|
@@ -8,7 +10,14 @@ It lets you focus on your analysis of data, instead of plotting.
|
|
8
10
|
|
9
11
|
## Installation
|
10
12
|
|
11
|
-
|
13
|
+
### With Matplotlib
|
14
|
+
|
15
|
+
```
|
16
|
+
sudo gem install charty --pre
|
17
|
+
sudo gem install matplotlib
|
18
|
+
sudo apt install python3-pip
|
19
|
+
sudo python3 -m pip install -U pip matplotlib
|
20
|
+
```
|
12
21
|
|
13
22
|
## Usage
|
14
23
|
|
data/binder/Dockerfile
ADDED
@@ -0,0 +1,702 @@
|
|
1
|
+
{
|
2
|
+
"cells": [
|
3
|
+
{
|
4
|
+
"cell_type": "markdown",
|
5
|
+
"metadata": {},
|
6
|
+
"source": [
|
7
|
+
"# Example usage of Charty"
|
8
|
+
]
|
9
|
+
},
|
10
|
+
{
|
11
|
+
"cell_type": "markdown",
|
12
|
+
"metadata": {},
|
13
|
+
"source": [
|
14
|
+
"Read Iris dataset as an `Arrow::Table` object."
|
15
|
+
]
|
16
|
+
},
|
17
|
+
{
|
18
|
+
"cell_type": "code",
|
19
|
+
"execution_count": 1,
|
20
|
+
"metadata": {
|
21
|
+
"scrolled": false
|
22
|
+
},
|
23
|
+
"outputs": [
|
24
|
+
{
|
25
|
+
"data": {
|
26
|
+
"application/javascript": [
|
27
|
+
"if(window['d3'] === undefined ||\n",
|
28
|
+
" window['Nyaplot'] === undefined){\n",
|
29
|
+
" var path = {\"d3\":\"https://cdnjs.cloudflare.com/ajax/libs/d3/3.5.5/d3.min\",\"downloadable\":\"http://cdn.rawgit.com/domitry/d3-downloadable/master/d3-downloadable\"};\n",
|
30
|
+
"\n",
|
31
|
+
"\n",
|
32
|
+
"\n",
|
33
|
+
" var shim = {\"d3\":{\"exports\":\"d3\"},\"downloadable\":{\"exports\":\"downloadable\"}};\n",
|
34
|
+
"\n",
|
35
|
+
" require.config({paths: path, shim:shim});\n",
|
36
|
+
"\n",
|
37
|
+
"\n",
|
38
|
+
"require(['d3'], function(d3){window['d3']=d3;console.log('finished loading d3');require(['downloadable'], function(downloadable){window['downloadable']=downloadable;console.log('finished loading downloadable');\n",
|
39
|
+
"\n",
|
40
|
+
"\tvar script = d3.select(\"head\")\n",
|
41
|
+
"\t .append(\"script\")\n",
|
42
|
+
"\t .attr(\"src\", \"http://cdn.rawgit.com/domitry/Nyaplotjs/master/release/nyaplot.js\")\n",
|
43
|
+
"\t .attr(\"async\", true);\n",
|
44
|
+
"\n",
|
45
|
+
"\tscript[0][0].onload = script[0][0].onreadystatechange = function(){\n",
|
46
|
+
"\n",
|
47
|
+
"\n",
|
48
|
+
"\t var event = document.createEvent(\"HTMLEvents\");\n",
|
49
|
+
"\t event.initEvent(\"load_nyaplot\",false,false);\n",
|
50
|
+
"\t window.dispatchEvent(event);\n",
|
51
|
+
"\t console.log('Finished loading Nyaplotjs');\n",
|
52
|
+
"\n",
|
53
|
+
"\t};\n",
|
54
|
+
"\n",
|
55
|
+
"\n",
|
56
|
+
"});});\n",
|
57
|
+
"}\n"
|
58
|
+
],
|
59
|
+
"text/plain": [
|
60
|
+
"\"if(window['d3'] === undefined ||\\n window['Nyaplot'] === undefined){\\n var path = {\\\"d3\\\":\\\"https://cdnjs.cloudflare.com/ajax/libs/d3/3.5.5/d3.min\\\",\\\"downloadable\\\":\\\"http://cdn.rawgit.com/domitry/d3-downloadable/master/d3-downloadable\\\"};\\n\\n\\n\\n var shim = {\\\"d3\\\":{\\\"exports\\\":\\\"d3\\\"},\\\"downloadable\\\":{\\\"exports\\\":\\\"downloadable\\\"}};\\n\\n require.config({paths: path, shim:shim});\\n\\n\\nrequire(['d3'], function(d3){window['d3']=d3;console.log('finished loading d3');require(['downloadable'], function(downloadable){window['downloadable']=downloadable;console.log('finished loading downloadable');\\n\\n\\tvar script = d3.select(\\\"head\\\")\\n\\t .append(\\\"script\\\")\\n\\t .attr(\\\"src\\\", \\\"http://cdn.rawgit.com/domitry/Nyaplotjs/master/release/nyaplot.js\\\")\\n\\t .attr(\\\"async\\\", true);\\n\\n\\tscript[0][0].onload = script[0][0].onreadystatechange = function(){\\n\\n\\n\\t var event = document.createEvent(\\\"HTMLEvents\\\");\\n\\t event.initEvent(\\\"load_nyaplot\\\",false,false);\\n\\t window.dispatchEvent(event);\\n\\t console.log('Finished loading Nyaplotjs');\\n\\n\\t};\\n\\n\\n});});\\n}\\n\""
|
61
|
+
]
|
62
|
+
},
|
63
|
+
"metadata": {},
|
64
|
+
"output_type": "display_data"
|
65
|
+
},
|
66
|
+
{
|
67
|
+
"data": {
|
68
|
+
"text/html": [
|
69
|
+
"<b> Daru::DataFrame(150x5) </b>\n",
|
70
|
+
"<table>\n",
|
71
|
+
" <thead>\n",
|
72
|
+
" \n",
|
73
|
+
" <tr>\n",
|
74
|
+
" <th></th>\n",
|
75
|
+
" \n",
|
76
|
+
" <th>sepal_length</th>\n",
|
77
|
+
" \n",
|
78
|
+
" <th>sepal_width</th>\n",
|
79
|
+
" \n",
|
80
|
+
" <th>petal_length</th>\n",
|
81
|
+
" \n",
|
82
|
+
" <th>petal_width</th>\n",
|
83
|
+
" \n",
|
84
|
+
" <th>label</th>\n",
|
85
|
+
" \n",
|
86
|
+
" </tr>\n",
|
87
|
+
" \n",
|
88
|
+
"</thead>\n",
|
89
|
+
" <tbody>\n",
|
90
|
+
" \n",
|
91
|
+
" <tr>\n",
|
92
|
+
" <td>0</td>\n",
|
93
|
+
" \n",
|
94
|
+
" <td>5.1</td>\n",
|
95
|
+
" \n",
|
96
|
+
" <td>3.5</td>\n",
|
97
|
+
" \n",
|
98
|
+
" <td>1.4</td>\n",
|
99
|
+
" \n",
|
100
|
+
" <td>0.2</td>\n",
|
101
|
+
" \n",
|
102
|
+
" <td>Iris-setosa</td>\n",
|
103
|
+
" \n",
|
104
|
+
" </tr>\n",
|
105
|
+
" \n",
|
106
|
+
" <tr>\n",
|
107
|
+
" <td>1</td>\n",
|
108
|
+
" \n",
|
109
|
+
" <td>4.9</td>\n",
|
110
|
+
" \n",
|
111
|
+
" <td>3.0</td>\n",
|
112
|
+
" \n",
|
113
|
+
" <td>1.4</td>\n",
|
114
|
+
" \n",
|
115
|
+
" <td>0.2</td>\n",
|
116
|
+
" \n",
|
117
|
+
" <td>Iris-setosa</td>\n",
|
118
|
+
" \n",
|
119
|
+
" </tr>\n",
|
120
|
+
" \n",
|
121
|
+
" <tr>\n",
|
122
|
+
" <td>2</td>\n",
|
123
|
+
" \n",
|
124
|
+
" <td>4.7</td>\n",
|
125
|
+
" \n",
|
126
|
+
" <td>3.2</td>\n",
|
127
|
+
" \n",
|
128
|
+
" <td>1.3</td>\n",
|
129
|
+
" \n",
|
130
|
+
" <td>0.2</td>\n",
|
131
|
+
" \n",
|
132
|
+
" <td>Iris-setosa</td>\n",
|
133
|
+
" \n",
|
134
|
+
" </tr>\n",
|
135
|
+
" \n",
|
136
|
+
" <tr>\n",
|
137
|
+
" <td>3</td>\n",
|
138
|
+
" \n",
|
139
|
+
" <td>4.6</td>\n",
|
140
|
+
" \n",
|
141
|
+
" <td>3.1</td>\n",
|
142
|
+
" \n",
|
143
|
+
" <td>1.5</td>\n",
|
144
|
+
" \n",
|
145
|
+
" <td>0.2</td>\n",
|
146
|
+
" \n",
|
147
|
+
" <td>Iris-setosa</td>\n",
|
148
|
+
" \n",
|
149
|
+
" </tr>\n",
|
150
|
+
" \n",
|
151
|
+
" <tr>\n",
|
152
|
+
" <td>4</td>\n",
|
153
|
+
" \n",
|
154
|
+
" <td>5.0</td>\n",
|
155
|
+
" \n",
|
156
|
+
" <td>3.6</td>\n",
|
157
|
+
" \n",
|
158
|
+
" <td>1.4</td>\n",
|
159
|
+
" \n",
|
160
|
+
" <td>0.2</td>\n",
|
161
|
+
" \n",
|
162
|
+
" <td>Iris-setosa</td>\n",
|
163
|
+
" \n",
|
164
|
+
" </tr>\n",
|
165
|
+
" \n",
|
166
|
+
" <tr>\n",
|
167
|
+
" <td>5</td>\n",
|
168
|
+
" \n",
|
169
|
+
" <td>5.4</td>\n",
|
170
|
+
" \n",
|
171
|
+
" <td>3.9</td>\n",
|
172
|
+
" \n",
|
173
|
+
" <td>1.7</td>\n",
|
174
|
+
" \n",
|
175
|
+
" <td>0.4</td>\n",
|
176
|
+
" \n",
|
177
|
+
" <td>Iris-setosa</td>\n",
|
178
|
+
" \n",
|
179
|
+
" </tr>\n",
|
180
|
+
" \n",
|
181
|
+
" <tr>\n",
|
182
|
+
" <td>6</td>\n",
|
183
|
+
" \n",
|
184
|
+
" <td>4.6</td>\n",
|
185
|
+
" \n",
|
186
|
+
" <td>3.4</td>\n",
|
187
|
+
" \n",
|
188
|
+
" <td>1.4</td>\n",
|
189
|
+
" \n",
|
190
|
+
" <td>0.3</td>\n",
|
191
|
+
" \n",
|
192
|
+
" <td>Iris-setosa</td>\n",
|
193
|
+
" \n",
|
194
|
+
" </tr>\n",
|
195
|
+
" \n",
|
196
|
+
" <tr>\n",
|
197
|
+
" <td>7</td>\n",
|
198
|
+
" \n",
|
199
|
+
" <td>5.0</td>\n",
|
200
|
+
" \n",
|
201
|
+
" <td>3.4</td>\n",
|
202
|
+
" \n",
|
203
|
+
" <td>1.5</td>\n",
|
204
|
+
" \n",
|
205
|
+
" <td>0.2</td>\n",
|
206
|
+
" \n",
|
207
|
+
" <td>Iris-setosa</td>\n",
|
208
|
+
" \n",
|
209
|
+
" </tr>\n",
|
210
|
+
" \n",
|
211
|
+
" <tr>\n",
|
212
|
+
" <td>8</td>\n",
|
213
|
+
" \n",
|
214
|
+
" <td>4.4</td>\n",
|
215
|
+
" \n",
|
216
|
+
" <td>2.9</td>\n",
|
217
|
+
" \n",
|
218
|
+
" <td>1.4</td>\n",
|
219
|
+
" \n",
|
220
|
+
" <td>0.2</td>\n",
|
221
|
+
" \n",
|
222
|
+
" <td>Iris-setosa</td>\n",
|
223
|
+
" \n",
|
224
|
+
" </tr>\n",
|
225
|
+
" \n",
|
226
|
+
" <tr>\n",
|
227
|
+
" <td>9</td>\n",
|
228
|
+
" \n",
|
229
|
+
" <td>4.9</td>\n",
|
230
|
+
" \n",
|
231
|
+
" <td>3.1</td>\n",
|
232
|
+
" \n",
|
233
|
+
" <td>1.5</td>\n",
|
234
|
+
" \n",
|
235
|
+
" <td>0.1</td>\n",
|
236
|
+
" \n",
|
237
|
+
" <td>Iris-setosa</td>\n",
|
238
|
+
" \n",
|
239
|
+
" </tr>\n",
|
240
|
+
" \n",
|
241
|
+
" <tr>\n",
|
242
|
+
" <td>10</td>\n",
|
243
|
+
" \n",
|
244
|
+
" <td>5.4</td>\n",
|
245
|
+
" \n",
|
246
|
+
" <td>3.7</td>\n",
|
247
|
+
" \n",
|
248
|
+
" <td>1.5</td>\n",
|
249
|
+
" \n",
|
250
|
+
" <td>0.2</td>\n",
|
251
|
+
" \n",
|
252
|
+
" <td>Iris-setosa</td>\n",
|
253
|
+
" \n",
|
254
|
+
" </tr>\n",
|
255
|
+
" \n",
|
256
|
+
" <tr>\n",
|
257
|
+
" <td>11</td>\n",
|
258
|
+
" \n",
|
259
|
+
" <td>4.8</td>\n",
|
260
|
+
" \n",
|
261
|
+
" <td>3.4</td>\n",
|
262
|
+
" \n",
|
263
|
+
" <td>1.6</td>\n",
|
264
|
+
" \n",
|
265
|
+
" <td>0.2</td>\n",
|
266
|
+
" \n",
|
267
|
+
" <td>Iris-setosa</td>\n",
|
268
|
+
" \n",
|
269
|
+
" </tr>\n",
|
270
|
+
" \n",
|
271
|
+
" <tr>\n",
|
272
|
+
" <td>12</td>\n",
|
273
|
+
" \n",
|
274
|
+
" <td>4.8</td>\n",
|
275
|
+
" \n",
|
276
|
+
" <td>3.0</td>\n",
|
277
|
+
" \n",
|
278
|
+
" <td>1.4</td>\n",
|
279
|
+
" \n",
|
280
|
+
" <td>0.1</td>\n",
|
281
|
+
" \n",
|
282
|
+
" <td>Iris-setosa</td>\n",
|
283
|
+
" \n",
|
284
|
+
" </tr>\n",
|
285
|
+
" \n",
|
286
|
+
" <tr>\n",
|
287
|
+
" <td>13</td>\n",
|
288
|
+
" \n",
|
289
|
+
" <td>4.3</td>\n",
|
290
|
+
" \n",
|
291
|
+
" <td>3.0</td>\n",
|
292
|
+
" \n",
|
293
|
+
" <td>1.1</td>\n",
|
294
|
+
" \n",
|
295
|
+
" <td>0.1</td>\n",
|
296
|
+
" \n",
|
297
|
+
" <td>Iris-setosa</td>\n",
|
298
|
+
" \n",
|
299
|
+
" </tr>\n",
|
300
|
+
" \n",
|
301
|
+
" <tr>\n",
|
302
|
+
" <td>14</td>\n",
|
303
|
+
" \n",
|
304
|
+
" <td>5.8</td>\n",
|
305
|
+
" \n",
|
306
|
+
" <td>4.0</td>\n",
|
307
|
+
" \n",
|
308
|
+
" <td>1.2</td>\n",
|
309
|
+
" \n",
|
310
|
+
" <td>0.2</td>\n",
|
311
|
+
" \n",
|
312
|
+
" <td>Iris-setosa</td>\n",
|
313
|
+
" \n",
|
314
|
+
" </tr>\n",
|
315
|
+
" \n",
|
316
|
+
" <tr>\n",
|
317
|
+
" <td>15</td>\n",
|
318
|
+
" \n",
|
319
|
+
" <td>5.7</td>\n",
|
320
|
+
" \n",
|
321
|
+
" <td>4.4</td>\n",
|
322
|
+
" \n",
|
323
|
+
" <td>1.5</td>\n",
|
324
|
+
" \n",
|
325
|
+
" <td>0.4</td>\n",
|
326
|
+
" \n",
|
327
|
+
" <td>Iris-setosa</td>\n",
|
328
|
+
" \n",
|
329
|
+
" </tr>\n",
|
330
|
+
" \n",
|
331
|
+
" <tr>\n",
|
332
|
+
" <td>16</td>\n",
|
333
|
+
" \n",
|
334
|
+
" <td>5.4</td>\n",
|
335
|
+
" \n",
|
336
|
+
" <td>3.9</td>\n",
|
337
|
+
" \n",
|
338
|
+
" <td>1.3</td>\n",
|
339
|
+
" \n",
|
340
|
+
" <td>0.4</td>\n",
|
341
|
+
" \n",
|
342
|
+
" <td>Iris-setosa</td>\n",
|
343
|
+
" \n",
|
344
|
+
" </tr>\n",
|
345
|
+
" \n",
|
346
|
+
" <tr>\n",
|
347
|
+
" <td>17</td>\n",
|
348
|
+
" \n",
|
349
|
+
" <td>5.1</td>\n",
|
350
|
+
" \n",
|
351
|
+
" <td>3.5</td>\n",
|
352
|
+
" \n",
|
353
|
+
" <td>1.4</td>\n",
|
354
|
+
" \n",
|
355
|
+
" <td>0.3</td>\n",
|
356
|
+
" \n",
|
357
|
+
" <td>Iris-setosa</td>\n",
|
358
|
+
" \n",
|
359
|
+
" </tr>\n",
|
360
|
+
" \n",
|
361
|
+
" <tr>\n",
|
362
|
+
" <td>18</td>\n",
|
363
|
+
" \n",
|
364
|
+
" <td>5.7</td>\n",
|
365
|
+
" \n",
|
366
|
+
" <td>3.8</td>\n",
|
367
|
+
" \n",
|
368
|
+
" <td>1.7</td>\n",
|
369
|
+
" \n",
|
370
|
+
" <td>0.3</td>\n",
|
371
|
+
" \n",
|
372
|
+
" <td>Iris-setosa</td>\n",
|
373
|
+
" \n",
|
374
|
+
" </tr>\n",
|
375
|
+
" \n",
|
376
|
+
" <tr>\n",
|
377
|
+
" <td>19</td>\n",
|
378
|
+
" \n",
|
379
|
+
" <td>5.1</td>\n",
|
380
|
+
" \n",
|
381
|
+
" <td>3.8</td>\n",
|
382
|
+
" \n",
|
383
|
+
" <td>1.5</td>\n",
|
384
|
+
" \n",
|
385
|
+
" <td>0.3</td>\n",
|
386
|
+
" \n",
|
387
|
+
" <td>Iris-setosa</td>\n",
|
388
|
+
" \n",
|
389
|
+
" </tr>\n",
|
390
|
+
" \n",
|
391
|
+
" <tr>\n",
|
392
|
+
" <td>20</td>\n",
|
393
|
+
" \n",
|
394
|
+
" <td>5.4</td>\n",
|
395
|
+
" \n",
|
396
|
+
" <td>3.4</td>\n",
|
397
|
+
" \n",
|
398
|
+
" <td>1.7</td>\n",
|
399
|
+
" \n",
|
400
|
+
" <td>0.2</td>\n",
|
401
|
+
" \n",
|
402
|
+
" <td>Iris-setosa</td>\n",
|
403
|
+
" \n",
|
404
|
+
" </tr>\n",
|
405
|
+
" \n",
|
406
|
+
" <tr>\n",
|
407
|
+
" <td>21</td>\n",
|
408
|
+
" \n",
|
409
|
+
" <td>5.1</td>\n",
|
410
|
+
" \n",
|
411
|
+
" <td>3.7</td>\n",
|
412
|
+
" \n",
|
413
|
+
" <td>1.5</td>\n",
|
414
|
+
" \n",
|
415
|
+
" <td>0.4</td>\n",
|
416
|
+
" \n",
|
417
|
+
" <td>Iris-setosa</td>\n",
|
418
|
+
" \n",
|
419
|
+
" </tr>\n",
|
420
|
+
" \n",
|
421
|
+
" <tr>\n",
|
422
|
+
" <td>22</td>\n",
|
423
|
+
" \n",
|
424
|
+
" <td>4.6</td>\n",
|
425
|
+
" \n",
|
426
|
+
" <td>3.6</td>\n",
|
427
|
+
" \n",
|
428
|
+
" <td>1.0</td>\n",
|
429
|
+
" \n",
|
430
|
+
" <td>0.2</td>\n",
|
431
|
+
" \n",
|
432
|
+
" <td>Iris-setosa</td>\n",
|
433
|
+
" \n",
|
434
|
+
" </tr>\n",
|
435
|
+
" \n",
|
436
|
+
" <tr>\n",
|
437
|
+
" <td>23</td>\n",
|
438
|
+
" \n",
|
439
|
+
" <td>5.1</td>\n",
|
440
|
+
" \n",
|
441
|
+
" <td>3.3</td>\n",
|
442
|
+
" \n",
|
443
|
+
" <td>1.7</td>\n",
|
444
|
+
" \n",
|
445
|
+
" <td>0.5</td>\n",
|
446
|
+
" \n",
|
447
|
+
" <td>Iris-setosa</td>\n",
|
448
|
+
" \n",
|
449
|
+
" </tr>\n",
|
450
|
+
" \n",
|
451
|
+
" <tr>\n",
|
452
|
+
" <td>24</td>\n",
|
453
|
+
" \n",
|
454
|
+
" <td>4.8</td>\n",
|
455
|
+
" \n",
|
456
|
+
" <td>3.4</td>\n",
|
457
|
+
" \n",
|
458
|
+
" <td>1.9</td>\n",
|
459
|
+
" \n",
|
460
|
+
" <td>0.2</td>\n",
|
461
|
+
" \n",
|
462
|
+
" <td>Iris-setosa</td>\n",
|
463
|
+
" \n",
|
464
|
+
" </tr>\n",
|
465
|
+
" \n",
|
466
|
+
" <tr>\n",
|
467
|
+
" <td>25</td>\n",
|
468
|
+
" \n",
|
469
|
+
" <td>5.0</td>\n",
|
470
|
+
" \n",
|
471
|
+
" <td>3.0</td>\n",
|
472
|
+
" \n",
|
473
|
+
" <td>1.6</td>\n",
|
474
|
+
" \n",
|
475
|
+
" <td>0.2</td>\n",
|
476
|
+
" \n",
|
477
|
+
" <td>Iris-setosa</td>\n",
|
478
|
+
" \n",
|
479
|
+
" </tr>\n",
|
480
|
+
" \n",
|
481
|
+
" <tr>\n",
|
482
|
+
" <td>26</td>\n",
|
483
|
+
" \n",
|
484
|
+
" <td>5.0</td>\n",
|
485
|
+
" \n",
|
486
|
+
" <td>3.4</td>\n",
|
487
|
+
" \n",
|
488
|
+
" <td>1.6</td>\n",
|
489
|
+
" \n",
|
490
|
+
" <td>0.4</td>\n",
|
491
|
+
" \n",
|
492
|
+
" <td>Iris-setosa</td>\n",
|
493
|
+
" \n",
|
494
|
+
" </tr>\n",
|
495
|
+
" \n",
|
496
|
+
" <tr>\n",
|
497
|
+
" <td>27</td>\n",
|
498
|
+
" \n",
|
499
|
+
" <td>5.2</td>\n",
|
500
|
+
" \n",
|
501
|
+
" <td>3.5</td>\n",
|
502
|
+
" \n",
|
503
|
+
" <td>1.5</td>\n",
|
504
|
+
" \n",
|
505
|
+
" <td>0.2</td>\n",
|
506
|
+
" \n",
|
507
|
+
" <td>Iris-setosa</td>\n",
|
508
|
+
" \n",
|
509
|
+
" </tr>\n",
|
510
|
+
" \n",
|
511
|
+
" <tr>\n",
|
512
|
+
" <td>28</td>\n",
|
513
|
+
" \n",
|
514
|
+
" <td>5.2</td>\n",
|
515
|
+
" \n",
|
516
|
+
" <td>3.4</td>\n",
|
517
|
+
" \n",
|
518
|
+
" <td>1.4</td>\n",
|
519
|
+
" \n",
|
520
|
+
" <td>0.2</td>\n",
|
521
|
+
" \n",
|
522
|
+
" <td>Iris-setosa</td>\n",
|
523
|
+
" \n",
|
524
|
+
" </tr>\n",
|
525
|
+
" \n",
|
526
|
+
" <tr>\n",
|
527
|
+
" <td>29</td>\n",
|
528
|
+
" \n",
|
529
|
+
" <td>4.7</td>\n",
|
530
|
+
" \n",
|
531
|
+
" <td>3.2</td>\n",
|
532
|
+
" \n",
|
533
|
+
" <td>1.6</td>\n",
|
534
|
+
" \n",
|
535
|
+
" <td>0.2</td>\n",
|
536
|
+
" \n",
|
537
|
+
" <td>Iris-setosa</td>\n",
|
538
|
+
" \n",
|
539
|
+
" </tr>\n",
|
540
|
+
" \n",
|
541
|
+
"\n",
|
542
|
+
" \n",
|
543
|
+
" <tr>\n",
|
544
|
+
" \n",
|
545
|
+
" <td>...</td>\n",
|
546
|
+
" \n",
|
547
|
+
" <td>...</td>\n",
|
548
|
+
" \n",
|
549
|
+
" <td>...</td>\n",
|
550
|
+
" \n",
|
551
|
+
" <td>...</td>\n",
|
552
|
+
" \n",
|
553
|
+
" <td>...</td>\n",
|
554
|
+
" \n",
|
555
|
+
" <td>...</td>\n",
|
556
|
+
" \n",
|
557
|
+
" </tr>\n",
|
558
|
+
"\n",
|
559
|
+
" \n",
|
560
|
+
"\n",
|
561
|
+
" <tr>\n",
|
562
|
+
" <td>149</td>\n",
|
563
|
+
" \n",
|
564
|
+
" <td>5.9</td>\n",
|
565
|
+
" \n",
|
566
|
+
" <td>3.0</td>\n",
|
567
|
+
" \n",
|
568
|
+
" <td>5.1</td>\n",
|
569
|
+
" \n",
|
570
|
+
" <td>1.8</td>\n",
|
571
|
+
" \n",
|
572
|
+
" <td>Iris-virginica</td>\n",
|
573
|
+
" \n",
|
574
|
+
" </tr>\n",
|
575
|
+
" \n",
|
576
|
+
"</tbody>\n",
|
577
|
+
"</table>"
|
578
|
+
],
|
579
|
+
"text/plain": [
|
580
|
+
"#<Daru::DataFrame(150x5)>\n",
|
581
|
+
" sepal_leng sepal_widt petal_leng petal_widt label\n",
|
582
|
+
" 0 5.1 3.5 1.4 0.2 Iris-setos\n",
|
583
|
+
" 1 4.9 3.0 1.4 0.2 Iris-setos\n",
|
584
|
+
" 2 4.7 3.2 1.3 0.2 Iris-setos\n",
|
585
|
+
" 3 4.6 3.1 1.5 0.2 Iris-setos\n",
|
586
|
+
" 4 5.0 3.6 1.4 0.2 Iris-setos\n",
|
587
|
+
" 5 5.4 3.9 1.7 0.4 Iris-setos\n",
|
588
|
+
" 6 4.6 3.4 1.4 0.3 Iris-setos\n",
|
589
|
+
" 7 5.0 3.4 1.5 0.2 Iris-setos\n",
|
590
|
+
" 8 4.4 2.9 1.4 0.2 Iris-setos\n",
|
591
|
+
" 9 4.9 3.1 1.5 0.1 Iris-setos\n",
|
592
|
+
" 10 5.4 3.7 1.5 0.2 Iris-setos\n",
|
593
|
+
" 11 4.8 3.4 1.6 0.2 Iris-setos\n",
|
594
|
+
" 12 4.8 3.0 1.4 0.1 Iris-setos\n",
|
595
|
+
" 13 4.3 3.0 1.1 0.1 Iris-setos\n",
|
596
|
+
" 14 5.8 4.0 1.2 0.2 Iris-setos\n",
|
597
|
+
" ... ... ... ... ... ..."
|
598
|
+
]
|
599
|
+
},
|
600
|
+
"execution_count": 1,
|
601
|
+
"metadata": {},
|
602
|
+
"output_type": "execute_result"
|
603
|
+
}
|
604
|
+
],
|
605
|
+
"source": [
|
606
|
+
"require \"datasets-daru\"\n",
|
607
|
+
"\n",
|
608
|
+
"iris = Datasets::Iris.new.to_daru"
|
609
|
+
]
|
610
|
+
},
|
611
|
+
{
|
612
|
+
"cell_type": "markdown",
|
613
|
+
"metadata": {},
|
614
|
+
"source": [
|
615
|
+
"Setting up Charty with Matplotlib backend."
|
616
|
+
]
|
617
|
+
},
|
618
|
+
{
|
619
|
+
"cell_type": "code",
|
620
|
+
"execution_count": 2,
|
621
|
+
"metadata": {},
|
622
|
+
"outputs": [
|
623
|
+
{
|
624
|
+
"data": {
|
625
|
+
"text/plain": [
|
626
|
+
"[:inline, \"module://ruby.matplotlib.backend_inline\"]"
|
627
|
+
]
|
628
|
+
},
|
629
|
+
"execution_count": 2,
|
630
|
+
"metadata": {},
|
631
|
+
"output_type": "execute_result"
|
632
|
+
}
|
633
|
+
],
|
634
|
+
"source": [
|
635
|
+
"require 'charty'\n",
|
636
|
+
"\n",
|
637
|
+
"charty = Charty::Plotter.new(:matplot)\n",
|
638
|
+
"Charty::Matplot.activate_iruby_integration"
|
639
|
+
]
|
640
|
+
},
|
641
|
+
{
|
642
|
+
"cell_type": "markdown",
|
643
|
+
"metadata": {},
|
644
|
+
"source": [
|
645
|
+
"Show scatterplot of the relationship between Petal Length and Petal Width."
|
646
|
+
]
|
647
|
+
},
|
648
|
+
{
|
649
|
+
"cell_type": "code",
|
650
|
+
"execution_count": 3,
|
651
|
+
"metadata": {
|
652
|
+
"scrolled": false
|
653
|
+
},
|
654
|
+
"outputs": [
|
655
|
+
{
|
656
|
+
"data": {
|
657
|
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAG0CAYAAAA7Go31AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XtcVHX+P/DXcAcRvORwSRRKpcBMESzMCyRe29LKpPKC2laskZtkmVm/tHLRtdT89g3TbVFzNU2sL5WRtAKa2npFTfCyhkIKkVrgFWQ4vz8mJkbmfubMmTnzej4e86g5l8/5nBPJ23M+5/NSCYIggIiIiEiBPOTuABEREZFUWOgQERGRYrHQISIiIsVioUNERESKxUKHiIiIFIuFDhERESkWCx0iIiJSLBY6REREpFgsdIiIiEixWOgQERGRYrHQISIiIsXykrsDjtbU1IRz586hbdu2UKlUcneHiIiILCAIAi5duoTw8HB4eFh+n8btCp1z584hIiJC7m4QERGRDSorK9G5c2eLt3e7Qqdt27YAtBcqKChI5t4QERGRJerq6hAREaH7PW4ptyt0mh9XBQUFsdAhIiJyMdYOO+FgZCIiIlIsFjpERESkWCx0iIiISLHcboyOpTQaDW7cuCF3N8hFeHt7w9PTU+5uEBHRTVjo3EQQBFRXV+O3336TuyvkYtq1a4fQ0FDOz0RE5ERY6NykuchRq9UICAjgLy0ySxAEXL16FTU1NQCAsLAwmXtERETNWOi0oNFodEVOx44d5e4OuRB/f38AQE1NDdRqNR9jERE5CQ5GbqF5TE5AQIDMPSFX1Pxzw7FdRETOg4WOAXxcRbbgzw0RkfNhoUNERESKxULHjahUKnz++edyd4OIiMhhWOgoxOTJkzFmzBiT21RVVWHkyJEO6pG+uXPnonfv3rIcm4iI3BffupKIpknAnvKLqLl0Heq2fugX1QGeHvKM4WhoaICPjw9CQ0NlOT4RkaNpmjQ4UHMAv1z9BZ0COiFOHQdPD/u8DWmqbSmPS7aR9Y5OVlYWEhIS0LZtW6jVaowZMwbHjx83uU9RURFUKlWrz7FjxxzUa/Pyf6jCgIXb8MTK7/HXT0rwxMrvMWDhNuT/UOWQ4yclJSEjIwOZmZm45ZZbMHToUAD6j64aGhqQkZGBsLAw+Pn5ITIyEllZWUbbNLd9bW0tnnnmGajVagQFBeH+++/HoUOHAACrVq3CvHnzcOjQId1/r1WrVgEAKioqMHr0aAQGBiIoKAjjxo3Dzz//rGv30KFDSE5ORtu2bREUFIS+ffti3759AIALFy7giSeeQOfOnREQEIC77roL69evt+u1JCLX8+2ZbzE8dzimfjMVs3bMwtRvpmJ47nB8e+ZbSduW8rhkO1nv6BQXF+O5555DQkICGhsbMWfOHAwbNgylpaVo06aNyX2PHz+OoKAg3fdOnTpJ3V2L5P9Qhb+sPQDhpuXVtdfxl7UHkD0hDiN6Sj+h3OrVq/GXv/wFO3fuhCDc3Btg2bJlyMvLw8aNG9GlSxdUVlaisrLSaHumthcEAQ888AA6dOiALVu2IDg4GB9++CGGDBmCEydOIDU1FT/88APy8/Px7bfa/+GDg4MhCALGjBmDNm3aoLi4GI2NjZg2bRpSU1NRVFQEABg/fjz69OmD7OxseHp6oqSkBN7e3gCA69evo2/fvpg1axaCgoLw1VdfYeLEibjttttwzz332PmKEpEr+PbMt8gsyoRw05/CNVdrkFmUicVJi5HSNcXubc8ommFwH3scl8SRtdDJz8/X+56TkwO1Wo39+/dj0KBBJvdVq9Vo166dlN2zmqZJwLwvSlsVOQAgAFABmPdFKYbGhEr+GKtbt274+9//bnR9RUUFunfvjgEDBkClUqFr164m2zO1fWFhIY4cOYKamhr4+voCAN555x18/vnn2LRpE5555hkEBgbCy8tL7/FZQUEBDh8+jPLyckRERAAAPv74Y8TGxmLv3r1ISEhARUUFXnrpJdxxxx0AgO7du+v2v/XWWzFz5kzd9+effx75+fn49NNPWegQuSFNkwYL9ixoVYgAgAABKqiwcM9CJEckW/04yVzbxog9LonnVIORa2trAQAdOnQwu22fPn0QFhaGIUOGoLCw0Oh29fX1qKur0/tIZU/5RVTVXje6XgBQVXsde8ovStaHZvHx8SbXT548GSUlJYiOjsb06dOxdetW3br09HQEBgbqPua2379/Py5fvoyOHTvq7VdeXo5Tp04Z7UNZWRkiIiJ0RQ4AxMTEoF27digrKwMAZGZm4s9//jNSUlKwYMECvfY0Gg3mz5+PXr166Y69detWVFRUWHexiEgRDtQcwM9Xfza6XoCA6qvVOFBzwO5tmyLmuCSe0xQ6giAgMzMTAwYMQM+ePY1uFxYWhhUrViA3NxebN29GdHQ0hgwZgu3btxvcPisrC8HBwbpPy1+q9lZzyXiRY8t2Yph79BcXF4fy8nK89dZbuHbtGsaNG4exY8cCAN58802UlJToPua2b2pqQlhYmN4+JSUlOH78OF566SWjfRAEweAkey2Xz507F0ePHsUDDzyAbdu2ISYmBp999hkA4N1338WSJUvw8ssvY9u2bSgpKcHw4cPR0NBg/QUjIpf3y9Vf7Lqd2H2kaIOs5zRvXWVkZODw4cP47rvvTG4XHR2N6Oho3ffExERUVlbinXfeMfi4a/bs2cjMzNR9r6urk6zYUbf1s+t2UgsKCkJqaipSU1MxduxYjBgxAhcvXoRarYZarbZ4+7i4OFRXV8PLywuRkZEGj+Xj4wONRqO3LCYmBhUVFaisrNT9NyktLUVtbS3uvPNO3XY9evRAjx49MGPGDDzxxBPIycnBww8/jB07dmD06NGYMGECAG3BdfLkSb19ich9dAqwbKympduJ3UeKNsh6TnFH5/nnn0deXh4KCwvRuXNnq/e/9957cfLkSYPrfH19ERQUpPeRSr+oDggL9oOx0TcqAGHB2lfN5bZkyRJ88sknOHbsGE6cOIFPP/0UoaGhRsc9mdo+JSUFiYmJGDNmDL755hucPn0au3btwmuvvaZ7QyoyMhLl5eUoKSnB+fPnUV9fj5SUFPTq1Qvjx4/HgQMHsGfPHkyaNAmDBw9GfHw8rl27hoyMDBQVFeHMmTPYuXMn9u7dqytkunXrhoKCAuzatQtlZWV49tlnUV1d7bBrSETOJU4dh5CAEKiM/CmsggqhAaGIU8fZvW1TxByXxJO10BEEARkZGdi8eTO2bduGqKgom9o5ePAgwsKkf5PJHE8PFd54MAYAWv2v0Pz9jQdjZJtPp6XAwEAsXLgQ8fHxSEhIwOnTp7FlyxZ4eBj+kTC1vUqlwpYtWzBo0CBMnToVPXr0wOOPP47Tp08jJCQEAPDoo49ixIgRSE5ORqdOnbB+/Xrd6+7t27fHoEGDkJKSgttuuw0bNmwAAHh6euLChQuYNGkSevTogXHjxmHkyJGYN28eAOD1119HXFwchg8fjqSkJISGhpqdNJGIlMvTwxOv9HsFAFoVJM3fZ/WbZdOAYEvaluK4JJ5KMPTusYNMmzYN69atw//93//pPY4KDg6Gv78/AO2jp7Nnz2LNmjUAgKVLlyIyMhKxsbFoaGjA2rVrsWDBAuTm5uKRRx4xe8y6ujoEBwejtra21d2d69evo7y8HFFRUfDzs/3xUv4PVZj3RanewOSwYD+88WCMQ14tJ3nY6+eHiMT59sy3WLBngd7g4dCAUMzqN0v0K96m2gYg2XHJ9O9vU2Qdo5OdnQ1AO8FdSzk5OZg8eTIAbWxBy7doGhoaMHPmTJw9exb+/v6IjY3FV199hVGjRjmq22aN6BmGoTGhTjMzMhGRO0npmoLkiGRJZig217ZUxyXbyXpHRw6OuKND7ok/P0RE0rH1jo5TDEYmIiIikgILHSIiIlIsp5lHh4iInI+zpnE3NDZgw4kNqKyrRERQBFJ7pMLHy0fubpETYqFDREQGGXrDKCQgBK/0e0XWt4gW71uM1aWr0SQ06Za9s+8dpMWkITM+08Se5I746IqIiFppTuq+Od+pOY372zPfytKvxfsWI+dojl6RAwBNQhNyjuZg8b7FsvSLnBcLHSIi0mNJUvfCPQuhadK0Wi+lhsYGrC5dbXKb1aWr0dDIvDv6AwsdIiLSI2UKuBgbTmxodSfnZk1CEzac2OCgHpErYKHjRpojF1zJ3Llz0bt3b6dtj0iJpEwBF6OyrtKu25F7YKGjEJMnTzab81RVVYWRI0c6qEf2MXPmTPz73/+WuxtEbkXKFHAxIoIi7LoduQcWOlJp0gDlO4Ajm7T/dPCz7JYaGrTPq0NDQ+Hr6ytbP26m0WjQ1GT6NnRgYCA6duzooB5Z5saNG3J3gUhSUqaAi5HaIxUeKtO/tjxUHkjtkeqgHpErYKEjhdI8YGlPYPWfgNyntP9c2lO73AGSkpKQkZGBzMxM3HLLLRg6dCgA/UdXDQ0NyMjIQFhYGPz8/BAZGYmsrCyjbSYmJuKVV17RW/bLL7/A29sbhYWFujZffvll3HrrrWjTpg3uueceFBUV6bZftWoV2rVrhy+//BIxMTHw9fXFmTNnUFRUhH79+qFNmzZo164d7rvvPpw5cwaA4UdN//znPxEbGwtfX1+EhYUhIyNDt66iogKjR49GYGAggoKCMG7cOPz8s/GxBk1NTXjzzTfRuXNn+Pr6onfv3sjPz9etP336NFQqFTZu3IikpCT4+flh7dq1pi4/kcuTMgVcDB8vH6TFpJncJi0mjfPpkB4WOvZWmgdsnATUndNfXlelXe6gYmf16tXw8vLCzp078eGHH7Zav2zZMuTl5WHjxo04fvw41q5di8jISKPtjR8/HuvXr0fLaLQNGzYgJCQEgwcPBgBMmTIFO3fuxCeffILDhw/jsccew4gRI3Dy5EndPlevXkVWVhb+8Y9/4OjRo+jQoQPGjBmDwYMH4/Dhw9i9ezeeeeYZqFSG/yaZnZ2N5557Ds888wyOHDmCvLw8dOvWDQAgCALGjBmDixcvori4GAUFBTh16hRSU43/7e69997Du+++i3feeQeHDx/G8OHD8dBDD+n1GQBmzZqF6dOno6ysDMOHDzfaHpFSpHRNweKkxVAHqPWWhwSEYHHSYtnm0cmMz8SU2Cmt7ux4qDwwJXYK59Gh1gQ3U1tbKwAQamtrW627du2aUFpaKly7ds22xjWNgvDuHYLwRpCRT7AgvHundjs7S0tLE0aPHi0IgiAMHjxY6N27d6ttAAifffaZIAiC8Pzzzwv333+/0NTUZFH7NTU1gpeXl7B9+3bdssTEROGll14SBEEQ/vvf/woqlUo4e/as3n5DhgwRZs+eLQiCIOTk5AgAhJKSEt36CxcuCACEoqIig8d94403hLvvvlv3PTw8XJgzZ47Bbbdu3Sp4enoKFRUVumVHjx4VAAh79uwx2t78+fP12klISBCmTZsmCIIglJeXCwCEpUuXGrkyfxD980PkhBo1jcKeqj3CV6e+EvZU7REaJfjzyxb1N+qFNUfXCPN3zxfWHF0j1N+ol7tLJDFTv79N4czI9nRmV+s7OXoEoO6sdruogZJ2JT4+3uT6yZMnY+jQoYiOjsaIESPwpz/9CcOGDQMApKen6z2euXz5Mjp16oShQ4fiX//6FwYOHIjy8nLs3r0b2dnZAIADBw5AEAT06NFD7zj19fV6Y2x8fHzQq1cv3fcOHTpg8uTJGD58OIYOHYqUlBSMGzcOYWFhrfpcU1ODc+fOYciQIQbPqaysDBEREYiI+GMgYkxMDNq1a4eysjIkJCTobV9XV4dz587hvvvu01t+33334dChQ3rLzF1PIqXy9PBEQmiC+Q0dzMfLBxNjJsrdDXIBfHRlT5eNjwWxaTsR2rRpY3J9XFwcysvL8dZbb+HatWsYN24cxo4dCwB48803UVJSovs0Gz9+PDZt2oQbN25g3bp1iI2Nxd133w1AO9bF09MT+/fv19u3rKwM7733nq4Nf3//Vo+lcnJysHv3bvTv3x8bNmxAjx498P3337fqs7+/v8lzEgTB4CMvY8ub3bzO0PbmricRETkn3tGxp8AQ+24nsaCgIKSmpiI1NRVjx47FiBEjcPHiRajVaqjV6lbbjxkzBs8++yzy8/Oxbt06TJz4x9+m+vTpA41Gg5qaGgwcaP3dqj59+qBPnz6YPXs2EhMTsW7dOtx7771627Rt2xaRkZH497//jeTk5FZtxMTEoKKiApWVlbq7OqWlpaitrcWdd95p8PzDw8Px3XffYdCgQbrlu3btQr9+/aw+ByIlMhfqKWa9lIGhYtqWa19X5eznzELHnrr2B4LCtQOPDUydDqi067v2d3TPWlmyZAnCwsLQu3dveHh44NNPP0VoaCjatWtndJ82bdpg9OjReP3111FWVoYnn3xSt65Hjx4YP348Jk2ahHfffRd9+vTB+fPnsW3bNtx1110YNWqUwTbLy8uxYsUKPPTQQwgPD8fx48dx4sQJTJo0yeD2c+fORXp6OtRqNUaOHIlLly5h586deP7555GSkoJevXph/PjxWLp0KRobGzFt2jQMHjzY6KOnl156CW+88QZuv/129O7dGzk5OSgpKcG//vUvK64mkTKZC/UUsx6AZIGhYsJI5drXVbnCOfPRlT15eAIjFv7+5eZHJb9/H7FAu53MAgMDsXDhQsTHxyMhIQGnT5/Gli1b4OFh+kdi/PjxOHToEAYOHIguXbrorcvJycGkSZPw4osvIjo6Gg899BD+85//6I2ZuVlAQACOHTuGRx99FD169MAzzzyDjIwMPPvsswa3T0tLw9KlS/HBBx8gNjYWf/rTn3RvSDW/Pt++fXsMGjQIKSkpuO2227Bhg/Hp4KdPn44XX3wRL774Iu666y7k5+cjLy8P3bt3N3kdiJTOXKjn4n2LbV4/o2gGZhTNkCQwVEwYqVz7uipXOWeVIAiGbj0oVl1dHYKDg1FbW4ugoCC9ddevX0d5eTmioqLg5+dn+0FK84D8WfoDk4Nu1RY5MQ/Z3i45Nbv9/BDJTNOkwfDc4SbzrjxUHkZzp1RQQaVSmc2lMrZvSEAI8h/Nt/rxh7l+m2pbrn1dlRznbOr3tym8oyOFmIeAF34A0r4EHv1I+88XjrDIISKXYC7UE4DJIkaAYFOR07yvrYGhYsJI5drXVbnSOXOMjlQ8PCV/hZyISAqODuu0Vx/EhJHKta+rcqVz5h0dIiLS4+iwTnv1QUwYqVz7uipXOmcWOkREpMdcqCegHaNjKvTTXPimMWICQ8WEkcq1r6typXNmoUNERHrMhXqqoNKFaxoL/UyLSdNta2i9qX1tDQwVE0Yq176uypXOmYUOERG1Yi7UMzM+0+b1S5KWYEnSEkkCQ8WEkcq1r6tylXPm6+Ut8PVgEoM/P6REnBmZMyOb46hztvX1chY6LfAXFYnBnx8iIulwHh0iIiKim7DQcSPNEQlSiYyMxNKlS0W3s2rVKpOZW4YkJSXhhRdeEH1sIiJSFk4YqBCTJ0/Gb7/9ZrKQqaqqQvv27SXrw969e9GmTRvR7aSmphoNATVm8+bN8Pb2Fn1sInINYseFuONYGlOUfD1Y6EjEmX5oGhoa4OPjg9DQUEmP06mT6Ymhbty4YVEx4u/vD39/f6uO3aFDB6u2JyLXJTYx2xUStx1J6deDj64k8O2ZbzE8dzimfjMVs3bMwtRvpmJ47nCHJbkmJSUhIyMDmZmZuOWWWzB06FAA+o+uGhoakJGRgbCwMPj5+SEyMhJZWVlG20xMTMQrr7yit+yXX36Bt7c3CgsLAbR+dKVSqbB8+XKMHj0abdq0wdtvvw0AunRwf39/JCcnY/Xq1VCpVPjtt98AtH50NXfuXPTu3Rsff/wxIiMjERwcjMcffxyXLl3SO+eWj67q6+vx8ssvIyIiAr6+vujevTs++ugjAIBGo8FTTz2FqKgo+Pv7Izo6Gu+99571F5qIHE5sYrarJG47ijtcDxY6duYsPzSrV6+Gl5cXdu7ciQ8//LDV+mXLliEvLw8bN27E8ePHsXbtWkRGRhptb/z48Vi/fj1avqS3YcMGhISEYPDgwUb3e+ONNzB69GgcOXIEU6dOxenTpzF27FiMGTMGJSUlePbZZzFnzhyz53Pq1Cl8/vnn+PLLL/Hll1+iuLgYCxYsMLr9pEmT8Mknn2DZsmUoKyvD8uXLERgYCABoampC586dsXHjRpSWluL//b//h1dffRUbN2402w8iko+mSYMFexZAQOuXhZuXLdyzEJomjST7K427XA8+urIjcz80KqiwcM9CJEckS/4Yq1u3bvj73/9udH1FRQW6d++OAQMGQKVSoWvXribbS01NxYwZM/Ddd99h4EBtWOm6devw5JNPwsPDeL385JNPYurUqbrvr7zyCqKjo7Fo0SIAQHR0NH744QfMnz/f5PGbmpqwatUqtG3bFgAwceJE/Pvf/za434kTJ7Bx40YUFBQgJUV72/W2227Trff29sa8efN036OiorBr1y5s3LgR48aNM9kPIpKPNYnZCaEJdt9fadzlevCOjh05U2x9fHy8yfWTJ09GSUkJoqOjMX36dGzdulW3Lj09HYGBgboPoB1/M3ToUPzrX/8CAJSXl2P37t0YP368Vf04fvw4EhL0/4fp16+f2fOJjIzUFTkAEBYWhpqaGoPblpSUwNPT0+SdpuXLlyM+Ph6dOnVCYGAgVq5ciYqKCrP9ICL5iE3MdqXEbUdwl+vBQseOnOmHxtzbT3FxcSgvL8dbb72Fa9euYdy4cRg7diwA4M0330RJSYnu02z8+PHYtGkTbty4gXXr1iE2NhZ33323Vf0QBAEqlarVMnNuHsSsUqnQ1NRkcFtzA5k3btyIGTNmYOrUqdi6dStKSkowZcoUNDQ0mO0HEclHbGK2KyVuO4K7XA8WOnbkaj80QUFBSE1NxcqVK7Fhwwbk5ubi4sWLUKvV6Natm+7TbMyYMbh+/Try8/Oxbt06TJgwwepj3nHHHdi7d6/esn379ok+l5buuusuNDU1obi42OD6HTt2oH///pg2bRr69OmDbt264dSpU3btAxHZn9jEbFdK3HYEd7keLHTsyJV+aJYsWYJPPvkEx44dw4kTJ/Dpp58iNDTU5ER9bdq0wejRo/H666+jrKwMTz75pNXHffbZZ3Hs2DHMmjVLN5Zm1apVANDqTo+tIiMjkZaWhqlTp+Lzzz9HeXk5ioqKdIONu3Xrhn379uGbb77BiRMn8Prrr7cqvojI+YhNzHalxG1HcJfrwULHjlzphyYwMBALFy5EfHw8EhIScPr0aWzZssXkwGJA+/jq0KFDGDhwILp06WL1caOiorBp0yZs3rwZvXr1QnZ2tu6tK19fX5vOxZDs7GyMHTsW06ZNwx133IGnn34aV65cAaAdg/TII48gNTUV99xzDy5cuIBp06bZ7dhEJB2xidmukrjtKO5wPRjq2YK9QhkNTb4UGhCKWf1mKeKHxt7mz5+P5cuXo7KyUu6uiMJQTyLH4czI9uUK18PWUE++Xi6BlK4pSI5IdvofGrl88MEHSEhIQMeOHbFz504sWrQIGRkZcneLiFyIp4enqFeexe6vNEq+Hix0JKLkHxqxTp48ibfffhsXL15Ely5d8OKLL2L27Nlyd4uIiBSIhQ453JIlS7BkyRK5u0FERG6AhQ4REcnC3LgQU+vF7Cu2X65IiedkKRY6BrjZ+GyyE/7cEFnOXGK2qfUAbN7X3AshSkzyVuI5WYNvXbWg0Whw4sQJqNVqdOzYUaYekqu6cOECampq0KNHD3h6usfflIhs0Rx+fHMuYPM0HJNjJ2PV0VUG1xvKErR0XwAmX5k21y9XfN1aSedk61tXLHRuUlVVhd9++w1qtRoBAQF2m8SOlEsQBFy9ehU1NTVo164dwsLC5O4SkdPSNGkwPHe40VxAFVTaiBfBcMSLKeb2VUGFkIAQ5D+a3+qxjSX9Mravs1LaOfH1cjsJDQ0FAKOBkUTGtGvXTvfzQ0SGWRJ+bOvfv83tayqNW4lJ3ko8J1uw0LmJSqVCWFgY1Go1bty4IXd3yEV4e3vzcRWRBZwhCdtQH5wplNlelHhOtmChY4Snpyd/cRER2ZkzhBob6oOrhTJbQonnZAtmXRERkcNYEn7sobLtV5O5fU0FK7tSKLOllHhOtmChQ0REDmNJ+HFaTJp2YLGR9WL2NRas7EqhzJZS4jnZgoUOERE5lLnE7Mz4TKPrlyQtwZKkJTbta+5VaiUmeSvxnKzF18uJiEgWnBnZcZRwTpxHx0IsdIiIiFyPrb+/+eiKiIiIFIuFDhERESkW59EhIlI4Zx0LQ9aR8lor+b+jrIVOVlYWNm/ejGPHjsHf3x/9+/fHwoULER0dbXK/4uJiZGZm4ujRowgPD8fLL7+M9PR0B/WaiMh1OGtKOFlHymut9P+Osg5GHjFiBB5//HEkJCSgsbERc+bMwZEjR1BaWoo2bdoY3Ke8vBw9e/bE008/jWeffRY7d+7EtGnTsH79ejz66KNmj8nByETkLpw1JZysI2UCuSulmyviratffvkFarUaxcXFGDRokMFtZs2ahby8PJSVlemWpaen49ChQ9i9e7fZY7DQISJ3IGVKOAB4qDxsSgkn60iZQO5q6eaKeOuqtrYWANChQwej2+zevRvDhg3TWzZ8+HDs27fPYAhnfX096urq9D5EREpnSXK1rUUOAJP7tkzFJnGsSSB3pradidMUOoIgIDMzEwMGDEDPnj2NblddXY2QkBC9ZSEhIWhsbMT58+dbbZ+VlYXg4GDdJyIiwu59JyJyNs6QSO0MfXB1UiaQu0u6udMUOhkZGTh8+DDWr19vdluVSj+zo/np283LAWD27Nmora3VfSorK+3TYSIiJ+YMidTO0AdXJ2UCubukmztFofP8888jLy8PhYWF6Ny5s8ltQ0NDUV1drbespqYGXl5e6NixY6vtfX19ERQUpPchIlI6KVPCAe0YHXdPxXYEKRPI3SXdXNZCRxAEZGRkYPPmzdi2bRuioqLM7pOYmIiCggK9ZVu3bkV8fDy8vb2l6ioRkUuRMiVcBRXSYtJMtu0Oqdi/7DksAAAgAElEQVSOIGUCubukm8ta6Dz33HNYu3Yt1q1bh7Zt26K6uhrV1dW4du2abpvZs2dj0qRJuu/p6ek4c+YMMjMzUVZWhn/+85/46KOPMHPmTDlOgYjIaTlrSjhZR8oEcndIN5f19XJDY2oAICcnB5MnTwYATJ48GadPn0ZRUZFufXFxMWbMmKGbMHDWrFkWTxjI18uJyN1wZmRlcPeZkRUxj44jsNAhIiJyPYqYR4eIiIjInljoEBERkWIxvZyIyM2ZGp/R0NiADSc2oLKuEhFBEUjtkQofLx+7tK1E7na+roCFDhGRGzOVXH34l8NYXbpaL+7hnX3vIC0mDZnxmaLaVsLbPDdzt/N1FRyMTETkpkwlVxtLL282JXaKyWLHlVKx7cHdzlcOHIxMREQW0zRpsGDPAoMFjbkiBwBWl65GQ2ODzW0v3LMQmiaNlb12Tu52vq6GhQ4RkRsyl1xtTpPQhA0nNtjUtlJSsZu52/m6GhY6RERuyB6J1JV1hkOS3SUVu5m7na+rYaFDROSG7JFIHREUIaptV0/FbuZu5+tqWOgQEbkhc8nV5nioPJDaI9WmtpWSit3M3c7X1bDQISJyQ5YkV5uSFpNmdD4dd0nFbuZu5+tqWOgQEbkpU8nVS5KWYErsFHio9H9NeKg8zL5abq5tJb5q7W7n60o4jw4RkZvjzMj2427n60hML7cQCx0iIiLXwwkDiYiIiG7CQoeIiIgUi6GeREQK0NBwDRv+sxCVdRWICOqC1HtmwcfHX7tOxDgbOcecmOq32H6J2V+qa8LxPdLgGB0iIhe3OH8aVldvR5Pqj1ebPQQBaaGDgFu6tUog91B5WJRALmca9+J9i432u1enXqL6Jea8pLomTD43j4ORLcRCh4iUZHH+NORUb9d+aVHooPmPdpXxOXFMvSYuZxr34n2LkXM0x6p9LO2XmPOS6pow+dwyHIxMRORmGhquYbWhIqfldxN/lzWWQC5nGndDYwNWl662ej9L+iXmvKS6Jkw+lx4LHSIiF7XhPwu1j6uM3bUxtQ7GE8jlTOPecGKD3uMqa5jrl5jzkuqaMPlceix0iIhcVGVdhR3aaJ1ALmcat7FEdGsY65eY85LqmjD5XHosdIiIXFREUBc7tNE6gVzONG5jiejWMNYvMecl1TVh8rn0WOgQEbmo1HtmwUMQjI/DMbUOxhPI5UzjTu2R2ipfy1Lm+iXmvKS6Jkw+lx4LHSIiF+Xj4699hRxoXdBY8NaVsQRyOdO4fbx8kBaTZnY7W/ol5rykuiZMPpceCx0iIheWOeIDTAkd1OoPcw8AU0IH2ZxALmcad2Z8psl+L0laYnO/xJyXVNeEyefS4jw6REQKwJmROTOy0nHCQAux0CEiInI9nDCQiIiI6CYM9SQichCnfTTRpAHO7AIu/wwEhgBd+wPO0C8iO2ChQ0TkAE4b2liaB+TPAurO/bEsKBwYsRCIeUi+fhHZCR9dERFJrDm08eap/muu1iCzKBPfnvlWno6V5gEbJ+kXOQBQV6VdXponT7+I7IiFDhGRhJw2tLFJo72TY6BfumX5r2i3I3JhLHSIiCTktKGNZ3a1vpOjRwDqzmq3I3JhLHSIiCTktKGNl40XXzZtR+SkWOgQEUnIaUMbA0Psux2Rk2KhQ0QkIacNbezaX/t2lZF+ASog6FbtdkQujIUOEZGEnDa00cNT+wr57z3R9/v3EQs4nw65PBY6REQSc9rQxpiHgHFrgKAw/eVB4drlnEeHFIBZV0REDsKZkYlsZ+vvb86MTETkIJ4enkgITZC7G615eAJRA+XuBZEk+OiKiIiIFIuFDhERESkWH10RETmKmLEwco2jUej4HacdL0V2x0KHiMgRxKSEy5UwrtBkc6dNkidJ8NEVEZHUxKSEy5UwrtBkc6dNkifJsNAhIpKSmJRwuRLGFZps7rRJ8iQpFjpERFISkxIuV8K4QpPNnTZJniTFQoeISEpiUsLlShhXaLK50ybJk6RY6BARSUlMSrhcCeMKTTZ32iR5khQLHSIiKYlJCZcrYVyhyeZOmyRPkrK60Pn5558xceJEhIeHw8vLC56ennofIiJqQUxKuFwJ4wpNNnfaJHmSlNWhniNHjkRFRQUyMjIQFhYGlUr/h2X06NF27aC9MdSTiGRhcE6aW7UFg03z6Fi4rxhyHVdihubRCQ0Ixax+sziPjhOz9fe31YVO27ZtsWPHDvTu3dvqTjoDFjpEJBvOjOw0ODOy63FYenlERASsrI2IiAgQlxIuV8K4QpPNnTZJnuzO6jE6S5cuxSuvvILTp09L0B0iIiIi+7Hojk779u31xuJcuXIFt99+OwICAuDt7a237cWLF+3bQyIiIiIbWVToLF26VOp+EBE5BynHpFytBdY/BtT+BAR3Bp74FAgItuzYYvrV2ADsXQn8ehpoHwkkPA14+ehWmxqvwrEs5OqsHoxsT9u3b8eiRYuwf/9+VFVV4bPPPsOYMWOMbl9UVITk5ORWy8vKynDHHXdYdEwORiYio6RM636vN/Breevl7aOAv5aYPjZge7+2vg7sfh8Qmv5YpvIAEjOAYW+ZTPIGwJRvchoOe+vK09MTVVVVUKvVessvXLgAtVoNjcbyMLSvv/4aO3fuRFxcHB599FGLC53jx4/rnWSnTp0snsOHhQ4RGdSc1t0q8PH3x/bj1the7Bgrcpq1UQNXfjFybGN/RFvQr62vA7uWGT3st33GIvO3va1CLlVQGQy+bF4HAIuTFrPYIYdy2FtXxuqi+vp6+Pj4GFxnzMiRIzFy5EhruwC1Wo127dpZvR8RkUFm07pV2rTuOx6w/jHW1VrTRQ4AXKkxssLU30PN9KuxQXsnxwgNgAXnd0Hwav1rwFiR07xOBRUW7lmI5IhkPsYip2dxobNsmfZvBSqVCv/4xz8QGBioW6fRaLB9+3aLHx+J1adPH1y/fh0xMTF47bXXDD7OalZfX4/6+nrd97q6Okd0kYhciTVp3da+ar3+MVFdM81Ev/au1H9cdZMDfr742UCRY9lR/0j55iva5Ows/ilfsmQJAO0dneXLl+s9KvLx8UFkZCSWL19u/x62EBYWhhUrVqBv376or6/Hxx9/jCFDhqCoqAiDBg0yuE9WVhbmzZsnab+IyMVJmdZd+5P1+1jLUL9+PW1yl1/sENnDlG9yBRYXOuXl2luvycnJ2Lx5M9q3by9Zp4yJjo5GdHS07ntiYiIqKyvxzjvvGC10Zs+ejczMTN33uro6RERESN5XInIhUqZ1B3fW3nWRkqF+tY80uUsnK8ZTGm2DKd/kAqyeMLCwsFCWIseYe++9FydPnjS63tfXF0FBQXofIiI9UqZ1P/GpmJ6ZYaJfCU9r364yIu56PUIaG42esemjMuWbXIdFd3Ra3hExZ/HixTZ3xhYHDx5EWFiYQ49JRArTnNa9cRJav+kkMq07IFj7CrlFb13BwLEFA/9uQb+8fLSvkBt568oTwCu39Efmb3t/b/mPtlu+dXXzG1hM+SZXY1Ghc/DgQb3v+/fvh0aj0T1GOnHiBDw9PdG3b1+rDn758mX897//1X0vLy9HSUkJOnTogC5dumD27Nk4e/Ys1qxZA0A7cWFkZCRiY2PR0NCAtWvXIjc3F7m5uVYdl4iolZiHtK9qG5yvRmRa919LRMyjs0D777b0a9hb2n+2mkfHE0h8DinD3sJiI/PozOo3C4DheXSY8k2uxOp5dBYvXoyioiKsXr1a9wjr119/xZQpUzBw4EC8+OKLFrdlbALAtLQ0rFq1CpMnT8bp06dRVFQEAPj73/+OFStW4OzZs/D390dsbCxmz56NUaNGWXxMzqNDRCZxZmTOjExOyWETBt56663YunUrYmNj9Zb/8MMPGDZsGM6dM/WKpvxY6BAREbkeW39/Wz0Yua6uDj//3PpVxpqaGly6dMna5oiIiIgkY3Wh8/DDD2PKlCnYtGkTfvrpJ/z000/YtGkTnnrqKTzyyCNS9JGIiIjIJlZPi7l8+XLMnDkTEyZMwI0bN7SNeHnhqaeewqJFi+zeQSKiVqQcRyOGmbEwZpk6L3NtO+s1kQjHDpGlbE4vv3LlCk6dOgVBENCtWze0adPG3n2TBMfoELk4KRPGxTCTEm6WqfP6aa/ptp31mkjEVOI63wZTLocNRnZ1LHSIXJiUCeNimEkJR//pposdk+dl5o/o6FHA8a+N7Av5rolEvj3zLTKLMg0mrgNMVVcySQudRx55BKtWrUJQUJDZcTibN2+2+OByYKFD5KKaNMDSnibCN1XauxgvHHHsI5vGBmB+iMkATag8gTnVhh9jmT0vMWS6JhLRNGkwPHe43p2cllRQISQgBPmP5vMxlgJJ+tZVcHAwVCqV7t9NfYiIJGFNwrgjmUkJBwAIGu12hpg9LzFkuiYSOVBzwGiRA+inqhM1s2gwck5OjsF/JyJyGCkTxsUwkxJudjtH9NfR10QilqalM1WdWrL49fLXXnsN27Ztw/Xr16XsDxGRYVImjIthJiXc7HaO6K+jr4lELE1LZ6o6tWRxobN+/XqkpKSgXbt2GDx4MObOnYvt27ejoaFByv4REWlJmTAuhpmUcADaMToJTxteZ/a8LOFk10Qiceo4hASE6AYe34yp6mSIxYXOqVOnUFlZiZUrV6Jbt274+OOPkZSUhPbt2yMlJQXz58/Hrl3KeA5MRE6oOWEcQOtf7CITxsVoTgk3JfE54/PpWHJepkQ3Z/050TWRiKeHJ17p9woAtCp2mKpOxoh6vbyyshKFhYUoKipCbm4urly5gsbGRnv2z+741hWRizM4Z8yt4hPGxTI4j442Jdz2eXR+Py+D8+i0aNtZr4lEDM2jExoQylR1hXP4PDqnTp1CUVERtm3bhqKiItTW1iIxMREFBQW2NOcwLHSIFMBZZwHmzMgOw5mR3Y/khU55eTkKCwt1d3Bqa2tx3333YfDgwRg8eDASEhLg5WV1ooTDsdAhIiJyPbb+/ra4Mrn99tvRpUsXTJs2DdOnT0dcXBw8PVk9ExERkfOyeDDyY489hvr6emRlZeGtt97C0qVLceDAAbhZggQRERG5EKvH6Bw7dkz3+Kq4uBjXr1/HgAEDMHjwYCQlJSEhIUGqvtoFH10ROZBc40YargEFrwEXfwQ63AYMfRvw8f9jvanxLubGwphab+58xa4ncmOyhXqWlpZi3bp1+J//+R++dUVEf5ArUXv9E8DxLa2XR48CnlhvOmUcMJ0Sbmrfzgmmz9fc9XCzBHIiazm00Pn5559RVFSEoqIiFBYW4sSJE/D19cW9996LwsJCa5tzKBY6RA4gV8q4sSKnWfso4Ndy29oOjwPOWZuh9Pv59n8e2PU/MHo9zK1XWAI5kS0kL3Q+/fRT3SOr48ePw8vLC/369UNycjKSk5PRv39/+Pr62nwCjsJCh0hicqWMN1wD/hZqv/bsRgWoVGbSzT1MrFdWAjmRrSR/62r8+PGIj4/Hww8/jOTkZNx3333w9/c3vyMRuRdrUsajBtrvuAWv2a8tuxIAc3+fNJl+LtH1InITFhc6v/76K9q0aSNlX4hICeRKGb/4o33bczYKSSAncjSLXy9nkUNEFpErZbzDbfZtz9koJIGcyNEsLnSIiCwiV8r40Lft257dqCxIN/eAuySQEzkaCx0isi+5UsZ9/FskeRvRPsr29sPjLNjIyPkmZvz+74bWq1qknys/gZzI0VjoEJH9xTykfSU6KEx/eVC4tK9KP7HeeLETPQr4awnQf3rrOywqT+1yU+ueKTS9ftzHxs932Fumr4e59Xy1nMhmoicMdDV8vZzIgTgzMmdGJrITSefReeSRRyxucPPmzRZvKwcWOkRERK5H0nl0goODbe4YERERkVwsKnRycnKk7gcRkeWkfAQk175ytk2kYBZPGEhE5BSkDMeUa19zGPhJZDObBiNv2rQJGzduREVFBRoaGvTWHThgbeidY3GMDpELMxcWKiYcU0wQqZQhpnIFpBI5GVt/f1v9evmyZcswZcoUqNVqHDx4EP369UPHjh3x448/YuTIkdY2R0RkmSaN9q5Gq1/4+H2ZAOx+38R6APmvaNuxum2J9jVHyraJ3ITVhc4HH3yAFStW4P3334ePjw9efvllFBQUYPr06aitrZWij0REFoSFwvJwTKvblmhfc6Rsm8hNWF3oVFRUoH9/7VTk/v7+uHTpEgBg4sSJWL9+vX17R0TUzF6hlobaERNEKmWIqVwBqUQKYnWhExoaigsXLgAAunbtiu+//x4AUF5eDjebe5CIHMleoZaG2hETRCpliKlcAalECmJ1oXP//ffjiy++AAA89dRTmDFjBoYOHYrU1FQ8/PDDdu8gEREAC8JCYXs4ppggUilDTOUKSCVSEKsLnRUrVmDOnDkAgPT0dKxatQp33nkn5s2bh+zsbLt3kIgIgAVhoSLCMcUEkUoZYipXQCqRglj9enlFRQUiIiKgUun/TycIAiorK9GlSxe7dtDe+Ho5kYszOKfMrdpf+Ebn0WmxXkzbUu1rjpRtE7kISbOuWvL09ERVVRXUarXe8gsXLkCtVkOjce7XHFnoECkAZ0bmzMjkdiTNumpJEIRWd3MA4PLly/Dz87O2OSIi63l4AlEDbV8vpm2p9pWzbSIFs7jQyczMBACoVCq8/vrrCAgI0K3TaDT4z3/+g969e9u/h0REREQ2srjQOXjwIADtHZ0jR47Ax8dHt87Hxwd33303Zs6caf8eEhEREdnI4kKnsLAQADBlyhS89957HN9C5EjuOD7D1Dm74/UgIptYPUYnJycHAPDf//4Xp06dwqBBg+Dv72907A4RieSOydWmzhlwv+tBRDaz+q2rixcv4rHHHkNhYSFUKhVOnjyJ2267DU899RTatWuHd999V6q+2gXfuiKX4o7J1SbP2dgfVwq+HkQEwIHp5S+88AK8vb1RUVGhNyA5NTUV+fn51jZHRMa4Y3K1JedskEKvBxGJZnWhs3XrVixcuBCdO3fWW969e3ecOXPGbh0jcnvumFxtSUK5UQq8HkQkmtWFzpUrV/Tu5DQ7f/48fH197dIpIoJ7Jlfb41yUdD2ISDSrC51BgwZhzZo1uu8qlQpNTU1YtGgRkpOT7do5IrfmjsnV9jgXJV0PIhLN6reuFi1ahKSkJOzbtw8NDQ14+eWXcfToUVy8eBE7d+6Uoo9E7qk5ubquCobHp6i065WUXG32nE1R4PUgItGsvqMTExODQ4cOISEhAUOHDsWVK1fwyCOP4ODBg7j99tul6CORe3LH5GpLztnUOqVdDyISzerXy10dXy8nl+OOydWmzhlwv+tBRNKnl1+9ehUvvfQSPv/8c9y4cQMpKSlYtmwZbrnlFps7LQcWOuSS3HEmYM6MTEQtSF7ovPTSS/jggw8wfvx4+Pn5Yf369UhKSsKnn35qc6flwEKHiIjI9dj6+9viwcibN2/GRx99hMcffxwAMGHCBNx3333QaDTw9OTfpIiIiMj5WDwYubKyEgMHDtR979evH7y8vHDunK2TexERERFJy+I7OhqNBj4+Pvo7e3mhsbHR7p0iIgdqbAD2rgR+PQ20jwQSnga8fMztJX5fKcfZmGubY3yI3IbFY3Q8PDwwcuRIvdmPv/jiC9x///1o06aNbtnmzZstPvj27duxaNEi7N+/H1VVVfjss88wZswYk/sUFxcjMzMTR48eRXh4OF5++WWkp6dbfEyO0SFqYevrwO73AaHpj2UqDyAxAxj2lnT7SpnIbq5td0yDJ1IAyUM909LSoFarERwcrPtMmDAB4eHhesusceXKFdx99914//33Ldq+vLwco0aNwsCBA3Hw4EG8+uqrmD59OnJzc606LhFBW6jsWqZfqADa77uWaddLsW9zOvnNmVZ1VdrlpXnWnYc1bW99XbpjE5FTcpp5dFQqldk7OrNmzUJeXh7Kysp0y9LT03Ho0CHs3r3bouPwjg4RtI+c5oe0LlRaUnkCc6pbP4oSs2+TBlja00Rw5++zG79wxPpHSWbbhvaOk9F+izg2EUlO8js6zmD37t0YNmyY3rLhw4dj3759uHHjhsF96uvrUVdXp/chcnt7V5ouVABA0Gi3s+e+UiayW5J8brLfTD8nUiKXKnSqq6sREqIf2BcSEoLGxkacP3/e4D5ZWVl6j9YiIiIc0VUi5/bradu3E7OvlIns9kotZ/o5kaK4VKEDaB9xtdT85O3m5c1mz56N2tpa3aeyslLyPhI5vfaRtm8nZl8pE9ntlVrO9HMiRXGpQic0NBTV1dV6y2pqauDl5YWOHTsa3MfX1xdBQUF6HyK3l/C0dryKKSpP7Xb23Lc5nbxVKKduR21ulS0J5Gbbxu/9luDYROS0XKrQSUxMREFBgd6yrVu3Ij4+Ht7e3jL1isgFefloXwM3JfE5w3PiiNlXykR2s22rWvSb6edE7kLWQufy5csoKSlBSUkJAO3r4yUlJaioqACgfew0adIk3fbp6ek4c+YMMjMzUVZWhn/+85/46KOPMHPmTFn6T+TShr0F9J/e+u6MylO73NRcOGL2jXkIGLcGCArTXx4Url0uZi4bc20Pe0u6YxORU5L19fKioiIkJye3Wp6WloZVq1Zh8uTJOH36NIqKinTriouLMWPGDN2EgbNmzeKEgURicGZkzoxM5AIkTy9XChY6RERErsct5tEhIiIisgYLHSIiIlIsFjpERESkWCx0iIiISLFY6BAREZFisdAhIiIixWKhQ0RERIrFQoeIiIgUi4UOERERKRYLHSIiIlIsFjpERESkWCx0iIiISLFY6BAREZFisdAhIiIixWKhQ0RERIrFQoeIiIgUi4UOERERKRYLHSIiIlIsFjpERESkWCx0iIiISLFY6BAREZFisdAhIiIixWKhQ0RERIrFQoeIiIgUi4UOERERKRYLHSIiIlIsFjpERESkWCx0iIiISLFY6BAREZFisdAhIiIixWKhQ0RERIrFQoeIiIgUi4UOERERKRYLHSIiIlIsFjpERESkWCx0iIiISLFY6BAREZFisdAhIiIixWKhQ0RERIrFQoeIiIgUi4UOERERKRYLHSIiIlIsFjpERESkWF5yd4DkpWkSsKf8ImouXYe6rR/6RXWAp4dK7m4RERHZBQsdN5b/QxXmfVGKqtrrumVhwX5448EYjOgZJmPPiIiI7IOPrtxU/g9V+MvaA3pFDgBU117HX9YeQP4PVTL1jIiIyH5Y6LghTZOAeV+UQjCwrnnZvC9KoWkytAUREZHrYKHjhvaUX2x1J6clAUBV7XXsKb/ouE4RERFJgIWOG6q5ZLzIsWU7IiIiZ8VCxw2p2/rZdTsiIiJnxULHDfWL6oCwYD8Ye4lcBe3bV/2iOjiyW0RERHbHQscNeXqo8MaDMQDQqthp/v7GgzGcT4eIiFweCx03NaJnGLInxCE0WP/xVGiwH7InxHEeHSIiUgROGOjGRvQMw9CYUM6MTEREisVCx815eqiQeHtHubtBREQkCT66IiIiIsVioUNERESKxUdXZBLTzYmIyJXJfkfngw8+QFRUFPz8/NC3b1/s2LHD6LZFRUVQqVStPseOHXNgj91H/g9VGLBwG55Y+T3++kkJnlj5PQYs3MbATyIichmyFjobNmzACy+8gDlz5uDgwYMYOHAgRo4ciYqKCpP7HT9+HFVVVbpP9+7dHdRj98F0cyIiUgJZC53Fixfjqaeewp///GfceeedWLp0KSIiIpCdnW1yP7VajdDQUN3H09PTQT12D0w3JyIipZCt0GloaMD+/fsxbNgwveXDhg3Drl27TO7bp08fhIWFYciQISgsLDS5bX19Perq6vQ+ZBrTzYmISClkK3TOnz8PjUaDkJAQveUhISGorq42uE9YWBhWrFiB3NxcbN68GdHR0RgyZAi2b99u9DhZWVkIDg7WfSIiIux6HkrEdHMiIlIK2d+6Uqn03+ARBKHVsmbR0dGIjo7WfU9MTERlZSXeeecdDBo0yOA+s2fPRmZmpu57XV0dix0zmG5ORERKIdsdnVtuuQWenp6t7t7U1NS0ustjyr333ouTJ08aXe/r64ugoCC9D5nGdHMiIlIK2QodHx8f9O3bFwUFBXrLCwoK0L9/f4vbOXjwIMLCGEBpT0w3JyIipZD10VVmZiYmTpyI+Ph4JCYmYsWKFaioqEB6ejoA7WOns2fPYs2aNQCApUuXIjIyErGxsWhoaMDatWuRm5uL3NxcOU9DkZrTzed9Uao3MDk02A9vPBjDdHMiInIJshY6qampuHDhAt58801UVVWhZ8+e2LJlC7p27QoAqKqq0ptTp6GhATNnzsTZs2fh7++P2NhYfPXVVxg1apRcp6BoTDcnIiJXpxIEwa0mQ6mrq0NwcDBqa2s5XoeIiMhF2Pr7W/YICCIiIiKpsNAhIiIixZJ9Hh0yT0yC+LUGDf62pRSnL1xFZMcAvDoqBv4+f0RmmGtbzLGZfE5ERHJjoePk8n+oavXmU5iFbz49vWYvCkprdN93nAQ+/r4CQ2PUWDkpwWzbYo4tZl8iIiJ74WBkJ9acIH7zf6DmeyLZE+KMFg03Fzk369U5CEd+qjPa9jODorBie7lNxxbTbyIiIkM4GFlhxCSIX2vQmCxyAOCwgSKnZdsrd7Quciw5NpPPiYjImbDQcVJiEsT/tqVU1LEFAKbqEFPHZvI5ERE5ExY6TkpMgvjpC1ft3R2Lj83kcyIiciYsdJyUmATxyI4B9u6Oxcdm8jkRETkTFjpOSkyC+KujYkQdWwXA1Fvgpo7N5HMiInImLHSclJgEcX8fTwyNUZtsv1fnIKhMtP30wCiT640dm8nnRETkTFjoOLHmBPHQYP3HPKHBfmZf0V45KcFosTM0Ro28jIEm2549KsbmY4vpNxERkT1xHh0XwJmRiYjI3dn6+5uFDhERETk9ThhIREREdBMWOkRERKRYDIm72VYAABMTSURBVPV0AQ2NTfh492mcuXgVXTsEYGJiJHy8/qhRTY3DETtOhuNsiIjIlXGMjpPL2lKKlTvK9SIZPFTa179nj4oxGt45NEaNR+M6i0oQZwI5ERE5Cw5GtpArFTpZW0rx4fZyo+u7dvTHmQvXrGrT0gRxJpATEZEz4WBkhWlobMLKHcaLHABWFzmAZQniTCAnIiKlYKHjpD7efdpkgrgY5hLEmUBORERKwULHSZ25KH0CubEEcSaQExGRUrDQcVJdO0ifQG4sQZwJ5EREpBQsdJzUxMRIkwniYphLEGcCORERKQULHSfl4+WBpwdGmdyma0d/s+3YkiDOBHIiIlIKFjpObPaoGDw7KKrVnR0PFfDsoCgUv3S/yYTy5SISxJlATkRESsB5dFwAZ0YmIiJ3xwkDLeSKhQ4REZG744SBRERERDdhoUNERESKxfRyOxIznsXUOJzL1xsxY8NBVPx6DV3a+2NJah8E+v3xn676t+v40/9sR931RgT5eeHL5wchtJ12EPHFyw14fMUu1FxqgLqtDz55pj86BPro9q29egNTV+3BudrrCA/2wz8n90NwgLddzonje4iISG4co2MnYpK+TSWU7/7xAg7/VNdqn16dg5CXMRB3vv41rt1oarXe39sDgb5e+OVyQ6t1nQJ9sPe1oRi8aJvBvKyuHf1R/NL9os6JyedERGRPHIxsISkKHTFJ3+YSyk1RAQaDNy3hoYLJLK1OgT44f7nBpnNi8jkREdkbByPLREzStyUJ5aaIqVDNBYb+YqDIaXlMY+fE5HMiInImLHREEpP0LWVCuZRMnROTz4mIyJmw0BFJTNK3IxLKpWTonJh8TkREzoSFjkhikr4dkVAuJUPnxORzIiJyJix0RBKT9C1lQrmUTJ0Tk8+JiMiZsNARSUzStyUJ5aaIqZHMFVidAn2gMnAMc+fE5HMiInImLHTsQEzSt7mE8l6dDb9C16tzEMoXPAB/b8P/Cf29PdCpxcSALXUK9MGPWQ+ga0d/g+u7dvTH3teG2nxOTD4nIiJnwXl07IgzI9vvehAREbXECQMtxPRyIiIi18MJA4mIiIhuwlBPB5HyMY6pts099iIiIlIy/sZzACkDLk21/UHRf/UCQY9XX0LPud/oAkGJiIiUjmN0JCZlwKWpts39R2WxQ0REroRjdJyQlAGXlrRtyuGf6nD5eqPVxyUiInIlLHQkJGXApbm2LTFjw0FR+xMRETk7FjoSkjLg0h6hmBW/XhPdBhERkTNjoSMhKQMu7RGK2aW94ZmRiYiIlIKFjoSkDLg017YllqT2EbE3ERGR82OhIyEpAy4taduUXp2DOJ8OEREpHgsdiUkZcGmq7eUT4kwGgvLVciIicgecR8dBODMyERGR7RjqaSGGehIREbkeThhIREREdBMWOkRERKRYLHSIiIhIsWQvdD744ANERUXBz88Pffv2xY4dO0xuX1xcjL59+8LPzw+33XYbli9f7qCeEhERkauRtdDZsGEDXnjhBcyZMwcHDx7EwIEDMXLkSFRUVBjcvry8HKNGjcLAgQNx8OBBvPrqq5g+fTpyc3Md3HMiIiJyBbK+dXXPPfcgLi4O2dnZumV33nknxowZg6ysrFbbz5o1C3l5eSgrK9MtS09Px6FDh7B7926Ljsm3roiIiFyPy7111dDQgP3792PYsGF6y4cNG4Zdu3YZ3Gf37t2tth8+fDj27duHGzduGNynvr4edXV1eh8iIiJyD7IVOufPn4dGo0FISIje8pCQEFRXVxvcp7q62uD2jY2NOH/+vMF9srKyEBwcrPtERETY5wSIiIjI6ck+GFml0p8dWBCEVsvMbW9oebPZs2ejtrZW96msrBTZYyIiInIVsmUB3HLLLfD09Gx196ampqbVXZtmoaGhBrf38vJCx44dDe7j6+sLX19f+3SaiIiIXIpsd3R8fHzQt29fFBQU6C0vKChA//79De6TmJjYavutW7ciPj4e3t7ekvWViIiIXJOs6Y6ZmZmYOHEi4uPjkZiYiBUrVqCiogLp6ekAtI+dzp49izVr1gDQvmH1/vvvIzMzE08//TR2796Njz76COvXr7f4mM2PujgomYiIyHU0/962+mVxQWb/+7//K3Tt2lXw8fER4uLihOLiYt26tLQ0YfDgwXrbFxUVCX369BF8fHyEyMhIITs726rjVVZWCgD44Ycffvjhhx8X/FRWVlr1e9/t0submppw7tw5tG3b1uSgZ1vV1dUhIiIClZWVnKfHDF4r6/B6WYfXyzq8Xtbh9bKOPa6XIAi4dOkSwsPD4eFh+cgbWR9dycHDwwOdO3eW/DhBQUH84bcQr5V1eL2sw+tlHV4v6/B6WUfs9QoODrZ6H9lfLyciIiKSCgsdIiIiUizPuXPnzpW7E0rj6emJpKQkeHm53ZNBq/FaWYfXyzq8Xtbh9bIOr5d15LpebjcYmYiIiNwHH10RERGRYrHQISIiIsVioUNERESKxUKHiIiIFIuFjp1s374dDz74IMLDw6FSqfD555/L3SWnlZWVhYSEBLRt2xZqtRpjxozB8ePH5e6W08rOzkavXr10E20lJibi66+/lrtbLiErKwsqlQovvPCC3F1xWnPnzoVKpdL7hIaGyt0tp3X27FlMmDABHTt2REBAAHr37o39+/fL3S2nFBkZ2epnS6VS4bnnnnNoP1jo2MmVK1dw99134/3335e7K06vuLgYzz33HL7//nsUFBSgsbERw4YNw5UrV+TumlPq3LkzFixYgH379mHfvn24//77MXr0aBw9elTurjm1vXv3YsWKFejVq5fcXXF6sbGxqKqq0n2OHDkid5ec0q+//or77rsP3t7e+Prrr1FaWop3330X7dq1k7trTmnv3r16P1cFBQUAgMcee8yh/eDL/3YycuRIjBw5Uu5uuIT8/Hy97zk5OVCr1di/fz8GDRokU6+c14MPPqj3ff78+cjOzsb333+P2NhYmXrl3C5fvozx48dj5cqVePvtt+XujtPz8vLiXRwLLFy4EBEREcjJydEti4yMlK9DTq5Tp0563xcsWIDbb78dgwcPdmg/eEeHZFdbWwsA6NChg8w9cX4ajQaffPIJrly5gsTERLm747See+45PPDAA0hJSZG7Ky7h5MmTCA8PR1RUFB5//HH8+OOPcnfJKeXl5SE+Ph6PPfYY1Go1+vTpg5UrV8rdLZfQ0NCAtWvXYurUqZIEapvCQodkJQgCMjMzMWDAAPTs2VPu7jitI0eOIDAwEL6+vkhPT8dnn32GmJgYubvllD755BMcOHAAWVlZcnfFJdxzzz1Ys2YNvvnmG6xcuRLV1dXo378/Lly4IHfXnM6PP/6I7OxsdO/eHd988w3S09Mxffp0rFmzRu6uOb3PP/8cv/32GyZPnuzwY/PRFckqIyMDhw8fxnfffSd3V5xadHQ0SkpK8NtvvyE3NxdpaWkoLi5msXOTyspK/PWvf8XWrVvh5+cnd3dcQstH7nfddRcSExNx++23Y/Xq1cjMzJSxZ86nqakJ8fHx+Nvf/gYA6NOnD44ePYrs7GxMmjRJ5t45t48++ggjR45EeHi4w4/NOzokm+effx55eXkoLCxE586d5e6OU/Px8UG3bt3+f3v3GhLV1ocB/JnjLR3nGJaY5uSFsrEs7UKhkiZSeUFKhRGT0FJBFDPLCOxmlEZUggUZKqgFJkJ3QY1IRSQ0BSvULpqaHyy7kkqYl3U+REPzqi9jzHn3OO/zgwH3Wnuv/Sw/yN+1956NjRs34uzZs/Dy8kJ+fr7UsQxOW1sbhoaGsGHDBpiamsLU1BQNDQ24dOkSTE1NMTk5KXVEgyeXy7FmzRq8fv1a6igGx8HBYdo/Fx4eHnj79q1EieaH/v5+PHz4EImJiZKcnys69D8nhEBaWhpu376N+vp6uLq6Sh1p3hFCYGxsTOoYBicoKGjaE0N79+6FSqXCkSNHYGJiIlGy+WNsbAxdXV3YsmWL1FEMjp+f37Svwnj16hWcnZ0lSjQ//HrgJCwsTJLzs9DRk5GREXR3d2u2e3t70d7eDltbWyxbtkzCZIYnNTUV5eXluHv3LhQKBd69ewcAsLGxgaWlpcTpDE9WVhZCQkKgVCoxPDyMiooK1NfXT3t6jQCFQjHtXi+5XI5FixbxHrBZZGZmIjw8HMuWLcPQ0BDOnDmDb9++IS4uTupoBicjIwO+vr7Izc2FWq1GS0sLCgsLUVhYKHU0gzU1NYWSkhLExcVJ95Z3QXpRV1cnAEz7xMXFSR3N4Mz0ewIgSkpKpI5mkPbt2yecnZ2Fubm5sLOzE0FBQeLBgwdSx5o3AgICRHp6utQxDFZ0dLRwcHAQZmZmwtHRUURGRoqOjg6pYxms+/fvC09PT2FhYSFUKpUoLCyUOpJBq62tFQDEy5cvJcsgE0IIaUosIiIion8Xb0YmIiIio8VCh4iIiIwWCx0iIiIyWix0iIiIyGix0CEiIiKjxUKHiIiIjBYLHSIiIjJaLHSIyODFx8dj165dUsf4YzKZDHfu3JE6BtH/JRY6RKST+Ph4yGQyyGQymJmZwc3NDZmZmRgdHdV5jK1bt+LAgQN6z1ZfXw+ZTIavX7/qfey5yM7Ohre3t6QZiEgb33VFRDoLDg5GSUkJxsfH0djYiMTERIyOjqKgoEDqaEREM+KKDhHpzMLCAkuWLIFSqcTu3bsRGxurdUmms7MToaGhsLa2hr29Pfbs2YOPHz8C+Lki1NDQgPz8fM3KUF9fHyYnJ5GQkABXV1dYWlpi5cqVyM/P13v2kpISeHh4YMGCBVCpVLhy5Yqmr6+vDzKZDLdu3UJgYCCsrKzg5eWFx48fa41RVFQEpVIJKysrREREIC8vDwsXLgQAlJaW4tSpU3j69KlmfqWlpZpjP378iIiICFhZWWHFihW4d++e3udIRNOx0CGiP2ZpaYnx8XEAwODgIAICAuDt7Y3W1lbU1NTg/fv3UKvVAID8/Hz4+PggKSkJg4ODGBwchFKpxNTUFJycnFBZWYnOzk6cOHECWVlZqKys1FvOoqIiHD16FDk5Oejq6kJubi6OHz+OsrIyrf2OHj2KzMxMtLe3w93dHTExMZiYmAAANDU1ITk5Genp6Whvb8e2bduQk5OjOTY6OhqHDh3C6tWrNfOLjo7W9J86dQpqtRrPnj1DaGgoYmNj8fnzZ73NkYhmIdnrRIloXomLixM7d+7UbDc3N4tFixYJtVothBDi+PHjYvv27VrHDAwMaL25WNc3iaekpIioqKhZz/2f6urqBADx5cuXGfuVSqUoLy/Xajt9+rTw8fERQgjR29srAIji4mJNf0dHhwAgurq6hBA/3/IdFhamNUZsbKywsbHRbJ88eVJ4eXlNOz8AcezYMc32yMiIkMlkorq6etY5EZF+8B4dItJZVVUVrK2tMTExgfHxcezcuROXL18GALS1taGurg7W1tbTjuvp6YG7u/us4169ehXFxcXo7+/H9+/f8ePHD73d1PvhwwcMDAwgISEBSUlJmvaJiQnY2Nho7bt27VrNzw4ODgCAoaEhqFQqvHz5EhEREVr7b9q0CVVVVTrl+H1suVwOhUKBoaGhOc+HiOaGhQ4R6SwwMBAFBQUwMzODo6MjzMzMNH1TU1MIDw/HuXPnph33q2iYSWVlJTIyMnDx4kX4+PhAoVDg/PnzaG5u1kvmqakpAD8vX23evFmrz8TERGv79/nIZDKt44UQmrZfhBA65/h97F/j/xqbiP49LHSISGdyuRzLly+fsW/9+vW4efMmXFxcYGo6858Wc3NzTE5OarU1NjbC19cXKSkpmraenh69Zba3t8fSpUvx5s0bxMbG/vE4KpUKLS0tWm2tra1a2zPNj4ikxUKHiPQiNTUVRUVFiImJweHDh7F48WJ0d3ejoqICRUVFMDExgYuLC5qbm9HX1wdra2vY2tpi+fLluHbtGmpra+Hq6orr16/jyZMncHV1nXOG58+fQ6FQaLV5e3sjOzsb+/fvx99//42QkBCMjY2htbUVX758wcGDB3UaOy0tDf7+/sjLy0N4eDgePXqE6upqrVUeFxcX9Pb2or29HU5OTlAoFLCwsJjzPIhIf/jUFRHphaOjI5qamjA5OYkdO3bA09MT6enpsLGxwV9//fxTk5mZCRMTE6xatQp2dnZ4+/YtkpOTERkZiejoaGzevBmfPn3SWt2ZC39/f6xbt07rAwCJiYkoLi5GaWkp1qxZg4CAAJSWls6pmPLz88PVq1eRl5cHLy8v1NTUICMjAwsWLNDsExUVheDgYAQGBsLOzg43btz4o3kQkf7IxFwuMhMRkUZSUhJevHiBxsZGqaMQ0Sx46YqISEcXLlzAtm3bIJfLUV1djbKyMq0vHiQiw8MVHSIiHanVatTX12N4eBhubm5IS0tDcnKy1LGI6L9goUNERERGizcjExERkdFioUNERERGi4UOERERGS0WOkRERGS0WOgQERGR0WKhQ0REREaLhQ4REREZLRY6REREZLRY6BAREZHR+gd2/2VQVddi+wAAAABJRU5ErkJggg==",
|
658
|
+
"text/plain": [
|
659
|
+
"<Figure size 640x480 with 1 Axes>"
|
660
|
+
]
|
661
|
+
},
|
662
|
+
"execution_count": 3,
|
663
|
+
"metadata": {},
|
664
|
+
"output_type": "execute_result"
|
665
|
+
}
|
666
|
+
],
|
667
|
+
"source": [
|
668
|
+
"plot = charty.scatter do\n",
|
669
|
+
" iris.group_by(:label).groups.each do |label, index|\n",
|
670
|
+
" records = iris.row[*index]\n",
|
671
|
+
" series records[:petal_length].to_a, records[:petal_width].to_a, label: label[0]\n",
|
672
|
+
" end\n",
|
673
|
+
" xlabel \"Petal Length\"\n",
|
674
|
+
" ylabel \"Petal Width\"\n",
|
675
|
+
"end\n",
|
676
|
+
"plot.render"
|
677
|
+
]
|
678
|
+
},
|
679
|
+
{
|
680
|
+
"cell_type": "markdown",
|
681
|
+
"metadata": {},
|
682
|
+
"source": [
|
683
|
+
"You can find the other examples in [here](./)."
|
684
|
+
]
|
685
|
+
}
|
686
|
+
],
|
687
|
+
"metadata": {
|
688
|
+
"kernelspec": {
|
689
|
+
"display_name": "Ruby 2.6.2",
|
690
|
+
"language": "ruby",
|
691
|
+
"name": "ruby"
|
692
|
+
},
|
693
|
+
"language_info": {
|
694
|
+
"file_extension": ".rb",
|
695
|
+
"mimetype": "application/x-ruby",
|
696
|
+
"name": "ruby",
|
697
|
+
"version": "2.6.2"
|
698
|
+
}
|
699
|
+
},
|
700
|
+
"nbformat": 4,
|
701
|
+
"nbformat_minor": 2
|
702
|
+
}
|