bonito 0.1.0 → 0.2.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 41888e2e81cc5c6f383b6fe3526984cd0d85bb874853509af626b880c824e669
4
- data.tar.gz: ae72f04e929420aaa6698f0b89fb3ffb4dabc3827ab248d84f3b400ec5c72a95
3
+ metadata.gz: 599d257d6b113cc345ae71a20bb2a00be5bfba1639f647b597a0c98d6cf37df5
4
+ data.tar.gz: ee359e2a42753140a5b23a864764fe798110f3761a492335d64d2d24b4b8fad5
5
5
  SHA512:
6
- metadata.gz: 769052dccffcd20cd2fd281217e872c5455c6bc2b26a9dc3b10945a8992767b06dcd91e736dfe723eba49c6d2e007e8fc550197da1e2b8ecb2dc4343338418a4
7
- data.tar.gz: 606bfa014aa8ef709f8069a173529f91ef06328dd182242259983c8eaa74ab938be4fc87ffa7e59fc4f461e62e2f9dd3f2dae2167f2d1abd25c033f26c57a886
6
+ metadata.gz: 9b560ad80a6bc02d69e14a171be711ba6d5599c774b9e85f920d8b9ecc760128f9732227e22ba2c17d01eb69c04e5667a92934a37847777a3605e2675c74e512
7
+ data.tar.gz: 43ca1a80a0d874de18060eff0ef45dd06c009ded65f6305fa61560ac6715288927f4c8e459ef1717ee561ac3503368fa55a97f7d883da1c8af59872fc15cb50c
@@ -1,6 +1,6 @@
1
1
  env:
2
2
  global:
3
- - CC_TEST_REPORTER_ID=7288d4a38203cc17d30f9fb4e9d46399d6e7b6f017572bc833d8da3f38fea48b
3
+ - CC_TEST_REPORTER_ID=cd7c4f8ecc524c18ae8a60a1cebf50f64816123ec1040385c367ddff5cdefa0a
4
4
  language: ruby
5
5
  rvm:
6
6
  - 2.5.1
data/README.md CHANGED
@@ -1,118 +1,90 @@
1
1
  # Bonito
2
2
 
3
- ![build](https://travis-ci.org/TomFinill/bonito.svg?branch=master) [![Maintainability](https://api.codeclimate.com/v1/badges/42198ebf17bf127e0da6/maintainability)](https://codeclimate.com/github/TomFinill/bonito/maintainability) [![Test Coverage](https://api.codeclimate.com/v1/badges/42198ebf17bf127e0da6/test_coverage)](https://codeclimate.com/github/TomFinill/bonito/test_coverage)
3
+ _Data, in a can_
4
4
 
5
- ## TL;DR
6
-
7
- **Bonito** is a ruby DSL for generating canned data. It can simulate, by
8
- _freezing time_, sequences of events happening in series and parallel in
9
- order to approximate any kind of live data.
5
+ ![build](https://travis-ci.org/TomFinill/bonito.svg?branch=master) [![Maintainability](https://api.codeclimate.com/v1/badges/15ad4524ca0d4c0cdff4/maintainability)](https://codeclimate.com/github/tmfnll/bonito/maintainability) [![Test Coverage](https://api.codeclimate.com/v1/badges/15ad4524ca0d4c0cdff4/test_coverage)](https://codeclimate.com/github/tmfnll/bonito/test_coverage)
10
6
 
11
- `Bonito` uses [Timecop](https://github.com/travisjeffery/timecop) in order to
12
- perform this _freezing_.
7
+ ## TL;DR
13
8
 
14
- ![bonito](https://live.staticflickr.com/3363/3278938654_a9991fa129_z.jpg)
9
+ _`Bonito` is a ruby DSL for generating canned data where timing is important._
15
10
 
16
- ### An example is worth a thousand theorems
11
+ `Bonito` uses [Timecop](https://github.com/travisjeffery/timecop) to simulate
12
+ the flow of time as it generates data.
17
13
 
18
- #### Timeline Definition
14
+ ## Introduction
19
15
 
20
- Suppose you work for a small media startup and you wish to create a set of data
21
- that can be loaded into a demo environment in order to then be used by the sales
22
- department when presenting to potential customers.
16
+ At the core of `Bonito` is the concept of a _timeline_. A timeline is a sort
17
+ of schema that defines in what time period each of a sequence of actions can
18
+ occur.
23
19
 
24
- This data could consist of models representing `Author`s and the `Article`s they
25
- write, as well as readers (or `User`s) and `Comment`s they leave on the
26
- aforementioned `Article`s.
20
+ An action in `Bonito` is called a `Moment` and is considered to have a duration
21
+ of `0` itself.
27
22
 
28
- Obviously, each `Article` should be created by an `Author` and the simulated
29
- creation time of each `Comment` should be _after_ that of its associated
30
- `Article`. In fact, we can consider the data to consist of a collection of
31
- _timelines_ where each timeline includes the creation of an `Article` by an
32
- `Author` with this being followed afterwards by a series of `Comment`s on the
33
- `Article` being created by `User`s.
34
-
35
- `Bonito` offers a `Window` object to model such timelines.
23
+ #### `Bonito` can generate data in series:
36
24
 
37
- Each `Window` has a duration in which events occur. These events are referred
38
- to in `Bonito` as `Moment`s.
25
+ Suppose we wish to simulate an online content creator's data, where _author_s
26
+ write _articles_ and _users_ _comment_ on these articles.
39
27
 
40
- For example, a `Window` representing the timeline described above could be
41
- created as follows:
28
+ We could use `Bonito` to define a `serial timeline`:
42
29
 
43
30
  ```ruby
44
- example_window = Bonito.over 1.week do
45
- please do
46
- author = authors.sample
31
+ # First we create data structures to store out data and keep track of them in
32
+ # a `Scope` object:
33
+ scope = Bonito::Scope.new.tap do |scope|
34
+ scope.authors = []
35
+ scope.articles = []
36
+ scope.users = []
37
+ scope.comments = []
38
+ scope.users_and_authors = []
39
+ end
40
+
41
+ # Next we define out serial timeline:
42
+ serial = Bonito.over 1.week do
43
+ please do |scope| # The `please` method denotes the definition of an action
44
+ author = scope.authors.sample
47
45
  title = Faker::Company.bs
48
- self.article = Article.new(title, author)
49
- articles << article
46
+ scope.article = Article.new(title, author)
47
+ scope.articles << article
50
48
  end
51
49
 
52
50
  repeat times: rand(10), over: 5.days do
53
- please do
54
- user = users.sample
51
+ please do |scope|
52
+ user = scope.users.sample
55
53
  content = Faker::Lorem.sentence
56
- comments << Comment.new(content, article, user)
54
+ scope.comments << Comment.new(content, scope.article, user)
57
55
  end
58
56
  end
59
57
  end
60
58
  ```
61
59
 
62
- Here, via the `over` method on the `Bonito` module, a `Window` is defined. Within
63
- this window a series of `Moment`s are defined. Firstly, the `Window#please` method
64
- is invoked to define the event. In this case the event consists of creating an
65
- `Article`.
66
-
67
- After this, we wish to define `Moment`s in which many `Comment`s are created for
68
- the `Article`.
60
+ This _timeline_ specifies the creation of an instance of `Article` _followed by_
61
+ the creation of _up to_ 10 `Comment` belonging to that `Article`.
62
+ The `created_at` time on the `Article` will be before that of each of the
63
+ `Comment`s. The total elapsed time between the creation of the `Article` and
64
+ the creation of the final `Comment` will not be more than `1.week`.
69
65
 
70
- To do this we use the `Window#repeat` method. This method accepts a block along
71
- with a `times` parameter and an `over` parameter and inserts a new, child `Window`
72
- into the current, parent window. The contents of the child window will be
73
- that defined by the block repeated `times` times.
74
66
 
75
- This means that the child `Window` defines up to 9 (`rand(10)`) `Moment`s
76
- where each such `Moment` creates a `Comment` belonging to the previously
77
- created `Article`.
67
+ #### `Bonito` can generate data in parallel:
78
68
 
79
- _Now_, suppose we intend to simulate the creation of multiple `Article`s and
80
- their associated `Comment`s. One way to achieve this would be to repeat the
81
- previously defined `Window` via the `repeat` command:
69
+ Consider the timeline `serial` we defined above. We might realistically want
70
+ to generate data that represents many authors working _simultaneously_ on
71
+ articles with users then commenting on these once they have been published.
82
72
 
83
- ```ruby
84
- serial_window = Bonito.over 10.weeks do
85
- repeat times: 5 do
86
- use example_window
87
- end
88
- end
89
- ```
90
-
91
- However this approach has a serious drawback: all events will occur _in series_.
92
- The second `Article` will not be created until all the `Comment`s on the first
93
- `Article` have been created and similarly the third `Article` will be preceded by
94
- all `Comment`s on the second.
95
-
96
- Ideally what we want is for `Articles` and `Comment`s to be _interleaved_.
97
-
98
- We can achieve this using the `Window#simultaneously`
99
- method to create a `Container` object, used to define parallel timelines. We
100
- then fill that container with the same, `Window` five times, using the
101
- `Container#use` method.
73
+ This can be done as follows:
102
74
 
103
75
  ```ruby
104
- parallel_window = Bonito.over 2.weeks do
76
+ parallel = Bonito.over 2.weeks do
105
77
  simultaneously do
106
78
  repeat times: 5 do
107
- use example_window
79
+ use serial
108
80
  end
109
81
  end
110
82
  end
111
83
  ```
112
84
 
113
- The above will create 5 `Article`s, each having up to 9 `Comment`s where the
114
- moment at which `Article` is created is independent of any other `Article` or
115
- `Comment`. The times at which the `Comment`s are created, meanwhile, are
85
+ The above will create 5 `Article`s, each having up to 9 `Comment`s where the
86
+ moment at which `Article` is created is independent of any other `Article` or
87
+ `Comment`. The times at which the `Comment`s are created, meanwhile, are
116
88
  dependent _only_ on the `Article` to which they belong.
117
89
 
118
90
  #### Execution
@@ -120,40 +92,168 @@ dependent _only_ on the `Article` to which they belong.
120
92
  Now we have defined the _shape_ of the data we wish to create, it remains
121
93
  to actually create it.
122
94
 
123
- This is achieved via a `Runner` object that takes a `Window` and uses it to
124
- evaluate `Moment`s.
95
+ This is achieved via a `Runner` object that takes a timeline and uses it to
96
+ evaluate the individual actions. It distributes these actions randomly yet
97
+ within the confines of the schedule defined by the timeline.
125
98
 
126
99
  ```ruby
127
- Bonito.run parallel_window, starting: 8.weeks_ago
100
+ Bonito.run parallel_window, scope: scope, starting: 8.weeks_ago
128
101
  ```
129
102
 
130
103
  This will take the `Window` object `parallel_window` and distribute the `Moment`s
131
- it contains according to its configuration, mapping each `Moment` to a point
104
+ it contains according to its configuration, mapping each `Moment` to a point
132
105
  in time relative to the start time given by the `starting` parameter.
133
106
 
134
- _However_, a typical use case may require different data set sizes for
107
+ ## Scaling
108
+
109
+ A typical use case may require different data set sizes for
135
110
  different applications: For example, a large dataset to live in a staging
136
111
  environment in order to sanity check releases and a small, easy to load dataset
137
112
  that can be used locally while developing.
138
113
 
139
- Suppose we have certain events that we wish to occur only once,
140
- (using the above example, this may be the creation of some `Organisation` object
141
- representing the news company for which articles are being written) as well
114
+ Suppose we have certain events that we wish to occur only once,
115
+ (using the above example, this may be the creation of some `Publication` object
116
+ representing the newspaper for which articles are being written) as well
142
117
  as events that we wish to be able to scale, such as the creation of `Article`
143
118
  objects and their associated `Comment`s.
144
119
 
145
- Using `Bonito`, we could define two windows: a `singleton_window` that is run once per
146
- dataset and generates our `Organisation` model, as well as a `scalable_window`
120
+ Using `Bonito`, we could define two timelines: a `singleton_timeline`
121
+ that is run once per dataset and generates our
122
+ `Organisation` model, as well as a `scalable_timeline`
147
123
  that results in different sizes of data according to some size parameter.
148
124
 
149
- These windows can then be combined as follows, where the size paramter `factor`
125
+ These timelines can then be combined as follows, where the size parameter `n`
150
126
  can be provided dynamically as, say, an argument provided to a `Rake` task.
151
127
 
152
128
  ```ruby
153
- scaled_window = singleton_window + (scalable_window * factor)
129
+ scaled = singleton_timeline + (scalable_timeline ** n)
154
130
  ```
155
131
 
156
- The `scaled_window`, when run, will run the `scalable_window` `factor` times
132
+ The `scaled_timeline`, when run, will run the `scalable_timeline` `n` times
157
133
  in parallel.
158
134
 
135
+ ## Scoping
136
+
137
+ Data can be shared amongst `Moments` via a `Scope` object.
138
+ Attributes on a `Scope` object are available within the **current** serial
139
+ timeline and in all **child** serial timelines.
140
+
141
+ Consider the following example:
142
+
143
+ ```ruby
144
+ Bonito.over 1.week do
145
+ please do |scope|
146
+ scope.foo = 'bar'
147
+ end
148
+
149
+ over 2.days do
150
+ please do |scope|
151
+ puts scope.foo # prints 'bar'
152
+ end
153
+
154
+ please do |scope|
155
+ scope.foo = 'baz'
156
+ end
157
+
158
+ please do |scope|
159
+ puts scope.foo # now prints 'baz'
160
+ end
161
+ end
162
+
163
+ please do |scope|
164
+ puts scope.foo # still prints 'bar'
165
+ end
166
+ end
167
+ ```
168
+
169
+ ## An Example
170
+
171
+ Consider the following:
172
+
173
+ ```ruby
174
+ # Initialise the data store, in practice a database would probably be used for
175
+ # this. Defined this way, these variables are available globally.
176
+
177
+ scope = Bonito::Scope.new.tap do |scope|
178
+ scope.publications = []
179
+ scope.authors = []
180
+ scope.articles = []
181
+ scope.users = []
182
+ scope.comments = []
183
+ scope.users_and_authors = []
184
+ end
185
+
186
+ # We only ever want to create publication, regardless of how we scale, so we
187
+ # create a setup timeline to handle this
188
+ singleton_timeline = Bonito.over 1.day do
189
+ please do |scope|
190
+ scope.publications << Publication.new
191
+ end
192
+ end
193
+
194
+
195
+ scalable_timeline = Bonito.over 1.week do
196
+ # Make the publication available to the current timeline.
197
+ please do |scope|
198
+ scope.publication = scope.publications.first
199
+ end
200
+ # Simultaneously create authors and users, interweaving the two.
201
+ simultaneously do
202
+ over 1.day do
203
+ # Create 5 authors over the course of a day
204
+ repeat times: 5, over: 1.day do
205
+ please do |scope|
206
+ name = Faker::Name.name
207
+ author = Author.new(name)
208
+ scope.authors << author
209
+ scope.users_and_authors << author
210
+ end
211
+ end
212
+ end
213
+
214
+ # Create 10 users, also over one day, waiting at least 2 hours before
215
+ # creating the first.
216
+ also over: 1.day, after: 2.hours do
217
+ repeat times: 10, over: 1.day do
218
+ please do |scope|
219
+ name = Faker::Name.name
220
+ email = Faker::Internet.safe_email(name)
221
+ user = User.new(name, email)
222
+ scope.users << user
223
+ scope.users_and_authors << user
224
+ end
225
+ end
226
+ end
227
+ end
228
+
229
+ # Repeat the following sequence of events 5 times over 5 days
230
+ repeat times: 5, over: 5.days do
231
+ # Choose one of the existing authors and create an article belonging to that
232
+ # author.
233
+ please do |scope|
234
+ author = scope.authors.sample
235
+ title = Faker::Company.bs
236
+ scope.article = Article.new(title, author, scope.publication)
237
+ scope.articles << scope.article
238
+ end
239
+
240
+ # Choose one of the existing users and have them leave a comment on the
241
+ # article that was just created.
242
+ repeat times: rand(10), over: 5.hours do
243
+ please do |scope|
244
+ user = scope.users.sample
245
+ content = Faker::Lorem.sentence
246
+ scope.comments << Comment.new(content, scope.article, user)
247
+ end
248
+ end
249
+ end
250
+ end
251
+
252
+ # Finally, we run the timeline to generate our data
253
+ scale = 5
254
+ scaled_timeline = singleton_timeline + (scalable_timeline ** scale)
255
+
256
+ Bonito.run scaled_timeline, scope: scope, starting: 8.weeks_ago
257
+ ```
258
+
159
259
 
@@ -12,7 +12,7 @@ Gem::Specification.new do |spec|
12
12
 
13
13
  spec.summary = 'A simple tool to create demo data'
14
14
  spec.description = 'Create realistic demo data by simulating events occurring over some time period'
15
- spec.homepage = 'https://github.com/TomFinill/bonito'
15
+ spec.homepage = 'https://github.com/tmfnll/bonito'
16
16
  spec.license = 'MIT'
17
17
 
18
18
  # Specify which files should be added to the gem when it is released.
@@ -34,8 +34,8 @@ Gem::Specification.new do |spec|
34
34
  spec.add_development_dependency 'activesupport'
35
35
  spec.add_development_dependency 'bundler', '~> 2.0'
36
36
  spec.add_development_dependency 'factory_bot'
37
- spec.add_development_dependency 'faker', '~> 1.9.1'
38
- spec.add_development_dependency 'rake', '~> 12.3'
37
+ spec.add_development_dependency 'faker', '~> 2.10.1'
38
+ spec.add_development_dependency 'rake', '~> 13'
39
39
  spec.add_development_dependency 'rdoc'
40
40
  spec.add_development_dependency 'reek'
41
41
  spec.add_development_dependency 'rspec', '~> 3.0'
@@ -1,6 +1,8 @@
1
1
  # frozen_string_literal: true
2
2
 
3
+ require 'logger'
3
4
  require 'ruby-progressbar'
5
+
4
6
  module Bonito
5
7
  module ProgressCounter # :nodoc:
6
8
  attr_reader :total
@@ -67,7 +67,7 @@ module Bonito
67
67
  end
68
68
 
69
69
  def evaluate
70
- freeze { @scope.instance_eval(&self) }
70
+ freeze { to_proc.call(@scope) }
71
71
  end
72
72
 
73
73
  private
@@ -1,5 +1,5 @@
1
1
  # frozen_string_literal: true
2
2
 
3
3
  module Bonito
4
- VERSION = '0.1.0'
4
+ VERSION = '0.2.0'.freeze
5
5
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: bonito
3
3
  version: !ruby/object:Gem::Version
4
- version: 0.1.0
4
+ version: 0.2.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Tom Finill
8
8
  autorequire:
9
9
  bindir: exe
10
10
  cert_chain: []
11
- date: 2019-07-08 00:00:00.000000000 Z
11
+ date: 2020-03-15 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: algorithms
@@ -100,28 +100,28 @@ dependencies:
100
100
  requirements:
101
101
  - - "~>"
102
102
  - !ruby/object:Gem::Version
103
- version: 1.9.1
103
+ version: 2.10.1
104
104
  type: :development
105
105
  prerelease: false
106
106
  version_requirements: !ruby/object:Gem::Requirement
107
107
  requirements:
108
108
  - - "~>"
109
109
  - !ruby/object:Gem::Version
110
- version: 1.9.1
110
+ version: 2.10.1
111
111
  - !ruby/object:Gem::Dependency
112
112
  name: rake
113
113
  requirement: !ruby/object:Gem::Requirement
114
114
  requirements:
115
115
  - - "~>"
116
116
  - !ruby/object:Gem::Version
117
- version: '12.3'
117
+ version: '13'
118
118
  type: :development
119
119
  prerelease: false
120
120
  version_requirements: !ruby/object:Gem::Requirement
121
121
  requirements:
122
122
  - - "~>"
123
123
  - !ruby/object:Gem::Version
124
- version: '12.3'
124
+ version: '13'
125
125
  - !ruby/object:Gem::Dependency
126
126
  name: rdoc
127
127
  requirement: !ruby/object:Gem::Requirement
@@ -225,7 +225,7 @@ files:
225
225
  - lib/bonito/serial_timeline.rb
226
226
  - lib/bonito/timeline.rb
227
227
  - lib/bonito/version.rb
228
- homepage: https://github.com/TomFinill/bonito
228
+ homepage: https://github.com/tmfnll/bonito
229
229
  licenses:
230
230
  - MIT
231
231
  metadata: {}
@@ -244,7 +244,7 @@ required_rubygems_version: !ruby/object:Gem::Requirement
244
244
  - !ruby/object:Gem::Version
245
245
  version: '0'
246
246
  requirements: []
247
- rubygems_version: 3.0.4
247
+ rubygems_version: 3.0.6
248
248
  signing_key:
249
249
  specification_version: 4
250
250
  summary: A simple tool to create demo data