backprop 0.0.0.1 → 0.0.1.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/README.md +7 -5
- data/VERSION +1 -1
- data/demo/loss.rb +1 -1
- data/lib/backprop.rb +35 -4
- data/lib/perceptron.rb +6 -11
- metadata +1 -1
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 2c263e60c633a0cad1e917d5bc3754e9c642c7389de1b3aded81dc120bedf163
|
4
|
+
data.tar.gz: 3a1ebc7367aa0ba51ba30b8a88bfdcc71bb24726123c49091b43e9465a93c44a
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 16fb1e7ae73410ac405934c103606f723677eaa481e9d993b98caaad14de99fc1cbc4cbc1f3b21c64fd630c9b3cba608b8005fd120f2410e5fd2a0e81cd1bdde
|
7
|
+
data.tar.gz: 02600d7f6ef729f60285b94d033c875aa1c067df52ffff7350ffbe253ebaa35f5bee08efecfba46d57d85eb3012b21c76f995212e4e478466ad30da3d6d03a9a
|
data/README.md
CHANGED
@@ -1,3 +1,5 @@
|
|
1
|
+
[![Tests](https://github.com/rickhull/backprop/actions/workflows/test.yaml/badge.svg)](https://github.com/rickhull/backprop/actions/workflows/test.yaml)
|
2
|
+
|
1
3
|
# Backward Propagation
|
2
4
|
|
3
5
|
This is a reimplementation of Andrej Karpathy's
|
@@ -202,12 +204,12 @@ puts output
|
|
202
204
|
|
203
205
|
Loop:
|
204
206
|
|
205
|
-
1.
|
207
|
+
1. Run the network forward to generate a new output.
|
208
|
+
2. Determine the loss; it should be smaller over time
|
209
|
+
3. Backward propagate the gradients
|
206
210
|
(derivatives for each value with respect to the output value)
|
207
|
-
|
208
|
-
|
209
|
-
The loss should be smaller.
|
210
|
-
The new output should be closer to the desired output.
|
211
|
+
4. Adjust all weights slightly, according to their gradients.
|
212
|
+
|
211
213
|
|
212
214
|
## Further Reading
|
213
215
|
|
data/VERSION
CHANGED
@@ -1 +1 @@
|
|
1
|
-
0.0.
|
1
|
+
0.0.1.1
|
data/demo/loss.rb
CHANGED
data/lib/backprop.rb
CHANGED
@@ -46,8 +46,17 @@ module BackProp
|
|
46
46
|
def +(other)
|
47
47
|
other = Value.wrap(other)
|
48
48
|
val = Value.new(@value + other.value, children: [self, other], op: :+)
|
49
|
+
|
50
|
+
# What we're about to do here is pretty twisted. We're going to refer
|
51
|
+
# to this execution context in the definition of a lambda, but we'll
|
52
|
+
# evaluate it later.
|
53
|
+
# Backstep is a lambda attached to val, which will be the return value
|
54
|
+
# here. When val.backstep is called later, it will update the gradients
|
55
|
+
# on both self and other.
|
49
56
|
val.backstep = -> {
|
50
|
-
# gradients accumulate
|
57
|
+
# gradients accumulate for handling a term used more than once
|
58
|
+
# chain rule says to multiply val's gradient and the op's derivative
|
59
|
+
# derivative of addition is 1.0; pass val's gradient to children
|
51
60
|
self.gradient += val.gradient
|
52
61
|
other.gradient += val.gradient
|
53
62
|
}
|
@@ -58,6 +67,7 @@ module BackProp
|
|
58
67
|
other = Value.wrap(other)
|
59
68
|
val = Value.new(@value * other.value, children: [self, other], op: :*)
|
60
69
|
val.backstep = -> {
|
70
|
+
# derivative of multiplication is the opposite term
|
61
71
|
self.gradient += val.gradient * other.value
|
62
72
|
other.gradient += val.gradient * self.value
|
63
73
|
}
|
@@ -65,15 +75,19 @@ module BackProp
|
|
65
75
|
end
|
66
76
|
|
67
77
|
# Mostly we are squaring(2) or dividing(-1)
|
78
|
+
# We don't support expressions, so Value is not supported for other
|
79
|
+
# This will look like a unary op in the tree
|
68
80
|
def **(other)
|
69
81
|
raise("Value is not supported") if other.is_a? Value
|
70
82
|
val = Value.new(@value ** other, children: [self], op: :**)
|
71
83
|
val.backstep = -> {
|
84
|
+
# accumulate, chain rule, derivative; as before
|
72
85
|
self.gradient += val.gradient * (other * self.value ** (other - 1))
|
73
86
|
}
|
74
87
|
val
|
75
88
|
end
|
76
89
|
|
90
|
+
# e^x - unary operation
|
77
91
|
def exp
|
78
92
|
val = Value.new(Math.exp(@value), children: [self], op: :exp)
|
79
93
|
val.backstep = -> {
|
@@ -84,6 +98,7 @@ module BackProp
|
|
84
98
|
|
85
99
|
#
|
86
100
|
# Secondary operations defined in terms of primary
|
101
|
+
# These return differentiable Values but with more steps
|
87
102
|
#
|
88
103
|
|
89
104
|
def -(other)
|
@@ -96,6 +111,7 @@ module BackProp
|
|
96
111
|
|
97
112
|
#
|
98
113
|
# Activation functions
|
114
|
+
# Unary operations
|
99
115
|
#
|
100
116
|
|
101
117
|
def tanh
|
@@ -125,22 +141,37 @@ module BackProp
|
|
125
141
|
# Backward propagation
|
126
142
|
#
|
127
143
|
|
144
|
+
# Generally, this is called on the final output, say of a loss function
|
145
|
+
# It will initialize the gradients and then update the gradients on
|
146
|
+
# all dependent Values via back propagation
|
128
147
|
def backward
|
129
|
-
self.reset_gradient
|
130
|
-
@gradient = 1.0
|
131
|
-
self.backprop
|
148
|
+
self.reset_gradient # set gradient to zero on all descendants
|
149
|
+
@gradient = 1.0 # this node's gradient is 1.0
|
150
|
+
self.backprop # call backstep on all descendants
|
132
151
|
end
|
133
152
|
|
153
|
+
# recursive call; visits all descendants; sets gradient to zero
|
134
154
|
def reset_gradient
|
135
155
|
@gradient = 0.0
|
136
156
|
@children.each(&:reset_gradient)
|
137
157
|
self
|
138
158
|
end
|
139
159
|
|
160
|
+
# recursive call; visits all descendants; updates gradients via backstep
|
140
161
|
def backprop
|
141
162
|
self.backstep.call
|
142
163
|
@children.each(&:backprop)
|
143
164
|
self
|
144
165
|
end
|
166
|
+
|
167
|
+
def descend(step_size = 0.1)
|
168
|
+
@value += -1 * step_size * @gradient
|
169
|
+
end
|
170
|
+
|
171
|
+
def descend_recursive(step_size = 0.1)
|
172
|
+
self.descend(step_size)
|
173
|
+
@children.each { |c| c.descend_recursive(step_size) }
|
174
|
+
self
|
175
|
+
end
|
145
176
|
end
|
146
177
|
end
|
data/lib/perceptron.rb
CHANGED
@@ -25,11 +25,8 @@ module BackProp
|
|
25
25
|
sum.send(@activation)
|
26
26
|
end
|
27
27
|
|
28
|
-
def
|
29
|
-
|
30
|
-
p.value += (-1 * step_size * p.gradient)
|
31
|
-
}
|
32
|
-
self
|
28
|
+
def parameters
|
29
|
+
@weights + [@bias]
|
33
30
|
end
|
34
31
|
|
35
32
|
def to_s
|
@@ -56,9 +53,8 @@ module BackProp
|
|
56
53
|
@neurons.map { |n| n.apply(x) }
|
57
54
|
end
|
58
55
|
|
59
|
-
def
|
60
|
-
@neurons.
|
61
|
-
self
|
56
|
+
def parameters
|
57
|
+
@neurons.map { |n| n.parameters }.flatten
|
62
58
|
end
|
63
59
|
|
64
60
|
def to_s
|
@@ -87,9 +83,8 @@ module BackProp
|
|
87
83
|
x
|
88
84
|
end
|
89
85
|
|
90
|
-
def
|
91
|
-
@layers.
|
92
|
-
self
|
86
|
+
def parameters
|
87
|
+
@layers.map { |l| l.parameters }.flatten
|
93
88
|
end
|
94
89
|
|
95
90
|
def to_s
|