aws-sdk-sagemaker 1.8.0 → 1.9.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA1:
3
- metadata.gz: 8ad9be1b29f0f5dc29d0dbd9250b1168e155a0a5
4
- data.tar.gz: 1887551b57d6aa95516cbd0680af9fd33a2eb439
3
+ metadata.gz: e09e0703f83088e0e2786a3b3d85c9eef5ef2178
4
+ data.tar.gz: 7826516a35e3b855c68b2a63ac7eab75784363d9
5
5
  SHA512:
6
- metadata.gz: 8193d8cab265584cdadfe2bbbb871d8543902c8524c0ad3cb899bafbaab42988930888be55962365f7776faa48712e61f42a1c10fa64af0fa31c60c2398f37ef
7
- data.tar.gz: 723f595bafcaeae232beee20fb9998871552a1ce7757f2d8f0c557fee0fbda37418a6bec2f9ddc90e77117a4d0dfceb60a30bf6f4bf1a603b437c58c0be8c7c5
6
+ metadata.gz: cf93fea2da9f1ccb6b1de1ed880620514a437c4f5f7c371817b1fb052fed084b8911035c83245f3e9cca976c444b4e7058ecb1052a35d8d4802a05e08e07bcff
7
+ data.tar.gz: 212d0aca54f4d5709f9f528cd0265bfd5aafe13126f1a7617b4bcbaf678556e31289764d541122174180efc90331dab77a90085ff2e1b594b5fc1386ef4430f0
@@ -43,6 +43,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
43
43
  # @service
44
44
  module Aws::SageMaker
45
45
 
46
- GEM_VERSION = '1.8.0'
46
+ GEM_VERSION = '1.9.0'
47
47
 
48
48
  end
@@ -382,6 +382,145 @@ module Aws::SageMaker
382
382
  req.send_request(options)
383
383
  end
384
384
 
385
+ # Starts a hyperparameter tuning job.
386
+ #
387
+ # @option params [required, String] :hyper_parameter_tuning_job_name
388
+ # The name of the tuning job. This name is the prefix for the names of
389
+ # all training jobs that this tuning job launches. The name must be
390
+ # unique within the same AWS account and AWS Region. Names are not case
391
+ # sensitive, and must be between 1-32 characters.
392
+ #
393
+ # @option params [required, Types::HyperParameterTuningJobConfig] :hyper_parameter_tuning_job_config
394
+ # The object that describes the tuning job, including the search
395
+ # strategy, metric used to evaluate training jobs, ranges of parameters
396
+ # to search, and resource limits for the tuning job.
397
+ #
398
+ # @option params [required, Types::HyperParameterTrainingJobDefinition] :training_job_definition
399
+ # The object that describes the training jobs that this tuning job
400
+ # launches, including static hyperparameters, input data configuration,
401
+ # output data configuration, resource configuration, and stopping
402
+ # condition.
403
+ #
404
+ # @option params [Array<Types::Tag>] :tags
405
+ # An array of key-value pairs. You can use tags to categorize your AWS
406
+ # resources in different ways, for example, by purpose, owner, or
407
+ # environment. For more information, see [Using Cost Allocation Tags][1]
408
+ # in the *AWS Billing and Cost Management User Guide*.
409
+ #
410
+ #
411
+ #
412
+ # [1]: http://docs.aws.amazon.com//awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what
413
+ #
414
+ # @return [Types::CreateHyperParameterTuningJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
415
+ #
416
+ # * {Types::CreateHyperParameterTuningJobResponse#hyper_parameter_tuning_job_arn #hyper_parameter_tuning_job_arn} => String
417
+ #
418
+ # @example Request syntax with placeholder values
419
+ #
420
+ # resp = client.create_hyper_parameter_tuning_job({
421
+ # hyper_parameter_tuning_job_name: "HyperParameterTuningJobName", # required
422
+ # hyper_parameter_tuning_job_config: { # required
423
+ # strategy: "Bayesian", # required, accepts Bayesian
424
+ # hyper_parameter_tuning_job_objective: { # required
425
+ # type: "Maximize", # required, accepts Maximize, Minimize
426
+ # metric_name: "MetricName", # required
427
+ # },
428
+ # resource_limits: { # required
429
+ # max_number_of_training_jobs: 1, # required
430
+ # max_parallel_training_jobs: 1, # required
431
+ # },
432
+ # parameter_ranges: { # required
433
+ # integer_parameter_ranges: [
434
+ # {
435
+ # name: "ParameterKey", # required
436
+ # min_value: "ParameterValue", # required
437
+ # max_value: "ParameterValue", # required
438
+ # },
439
+ # ],
440
+ # continuous_parameter_ranges: [
441
+ # {
442
+ # name: "ParameterKey", # required
443
+ # min_value: "ParameterValue", # required
444
+ # max_value: "ParameterValue", # required
445
+ # },
446
+ # ],
447
+ # categorical_parameter_ranges: [
448
+ # {
449
+ # name: "ParameterKey", # required
450
+ # values: ["ParameterValue"], # required
451
+ # },
452
+ # ],
453
+ # },
454
+ # },
455
+ # training_job_definition: { # required
456
+ # static_hyper_parameters: {
457
+ # "ParameterKey" => "ParameterValue",
458
+ # },
459
+ # algorithm_specification: { # required
460
+ # training_image: "AlgorithmImage", # required
461
+ # training_input_mode: "Pipe", # required, accepts Pipe, File
462
+ # metric_definitions: [
463
+ # {
464
+ # name: "MetricName", # required
465
+ # regex: "MetricRegex", # required
466
+ # },
467
+ # ],
468
+ # },
469
+ # role_arn: "RoleArn", # required
470
+ # input_data_config: [ # required
471
+ # {
472
+ # channel_name: "ChannelName", # required
473
+ # data_source: { # required
474
+ # s3_data_source: { # required
475
+ # s3_data_type: "ManifestFile", # required, accepts ManifestFile, S3Prefix
476
+ # s3_uri: "S3Uri", # required
477
+ # s3_data_distribution_type: "FullyReplicated", # accepts FullyReplicated, ShardedByS3Key
478
+ # },
479
+ # },
480
+ # content_type: "ContentType",
481
+ # compression_type: "None", # accepts None, Gzip
482
+ # record_wrapper_type: "None", # accepts None, RecordIO
483
+ # },
484
+ # ],
485
+ # vpc_config: {
486
+ # security_group_ids: ["SecurityGroupId"], # required
487
+ # subnets: ["SubnetId"], # required
488
+ # },
489
+ # output_data_config: { # required
490
+ # kms_key_id: "KmsKeyId",
491
+ # s3_output_path: "S3Uri", # required
492
+ # },
493
+ # resource_config: { # required
494
+ # instance_type: "ml.m4.xlarge", # required, accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge
495
+ # instance_count: 1, # required
496
+ # volume_size_in_gb: 1, # required
497
+ # volume_kms_key_id: "KmsKeyId",
498
+ # },
499
+ # stopping_condition: { # required
500
+ # max_runtime_in_seconds: 1,
501
+ # },
502
+ # },
503
+ # tags: [
504
+ # {
505
+ # key: "TagKey", # required
506
+ # value: "TagValue", # required
507
+ # },
508
+ # ],
509
+ # })
510
+ #
511
+ # @example Response structure
512
+ #
513
+ # resp.hyper_parameter_tuning_job_arn #=> String
514
+ #
515
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateHyperParameterTuningJob AWS API Documentation
516
+ #
517
+ # @overload create_hyper_parameter_tuning_job(params = {})
518
+ # @param [Hash] params ({})
519
+ def create_hyper_parameter_tuning_job(params = {}, options = {})
520
+ req = build_request(:create_hyper_parameter_tuning_job, params)
521
+ req.send_request(options)
522
+ end
523
+
385
524
  # Creates a model in Amazon SageMaker. In the request, you name the
386
525
  # model and describe one or more containers. For each container, you
387
526
  # specify the docker image containing inference code, artifacts (from
@@ -420,6 +559,11 @@ module Aws::SageMaker
420
559
  # on ML compute instances. Deploying on ML compute instances is part of
421
560
  # model hosting. For more information, see [Amazon SageMaker Roles][1].
422
561
  #
562
+ # <note markdown="1"> To be able to pass this role to Amazon SageMaker, the caller of this
563
+ # API must have the `iam:PassRole` permission.
564
+ #
565
+ # </note>
566
+ #
423
567
  #
424
568
  #
425
569
  # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html
@@ -435,8 +579,8 @@ module Aws::SageMaker
435
579
  #
436
580
  # @option params [Types::VpcConfig] :vpc_config
437
581
  # A object that specifies the VPC that you want your model to connect
438
- # to. Control access to and from your training container by configuring
439
- # the VPC. For more information, see host-vpc.
582
+ # to. Control access to and from your model container by configuring the
583
+ # VPC. For more information, see host-vpc.
440
584
  #
441
585
  # @return [Types::CreateModelOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
442
586
  #
@@ -549,6 +693,11 @@ module Aws::SageMaker
549
693
  # assume this role. For more information, see [Amazon SageMaker
550
694
  # Roles][1].
551
695
  #
696
+ # <note markdown="1"> To be able to pass this role to Amazon SageMaker, the caller of this
697
+ # API must have the `iam:PassRole` permission.
698
+ #
699
+ # </note>
700
+ #
552
701
  #
553
702
  #
554
703
  # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html
@@ -678,7 +827,7 @@ module Aws::SageMaker
678
827
  req.send_request(options)
679
828
  end
680
829
 
681
- # Returns a URL that you can use to connect to the Juypter server from a
830
+ # Returns a URL that you can use to connect to the Jupyter server from a
682
831
  # notebook instance. In the Amazon SageMaker console, when you choose
683
832
  # `Open` next to a notebook instance, Amazon SageMaker opens a new tab
684
833
  # showing the Jupyter server home page from the notebook instance. The
@@ -765,10 +914,10 @@ module Aws::SageMaker
765
914
  # Region in an AWS account. It appears in the Amazon SageMaker console.
766
915
  #
767
916
  # @option params [Hash<String,String>] :hyper_parameters
768
- # Algorithm-specific parameters. You set hyperparameters before you
769
- # start the learning process. Hyperparameters influence the quality of
770
- # the model. For a list of hyperparameters for each training algorithm
771
- # provided by Amazon SageMaker, see [Algorithms][1].
917
+ # Algorithm-specific parameters that influence the quality of the model.
918
+ # You set hyperparameters before you start the learning process. For a
919
+ # list of hyperparameters for each training algorithm provided by Amazon
920
+ # SageMaker, see [Algorithms][1].
772
921
  #
773
922
  # You can specify a maximum of 100 hyperparameters. Each hyperparameter
774
923
  # is a key-value pair. Each key and value is limited to 256 characters,
@@ -800,6 +949,11 @@ module Aws::SageMaker
800
949
  # grant permissions for all of these tasks to an IAM role. For more
801
950
  # information, see [Amazon SageMaker Roles][1].
802
951
  #
952
+ # <note markdown="1"> To be able to pass this role to Amazon SageMaker, the caller of this
953
+ # API must have the `iam:PassRole` permission.
954
+ #
955
+ # </note>
956
+ #
803
957
  #
804
958
  #
805
959
  # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html
@@ -955,7 +1109,7 @@ module Aws::SageMaker
955
1109
  req.send_request(options)
956
1110
  end
957
1111
 
958
- # Deletes an endpoint configuration. The `DeleteEndpoingConfig` API
1112
+ # Deletes an endpoint configuration. The `DeleteEndpointConfig` API
959
1113
  # deletes only the specified configuration. It does not delete endpoints
960
1114
  # created using the configuration.
961
1115
  #
@@ -1176,6 +1330,116 @@ module Aws::SageMaker
1176
1330
  req.send_request(options)
1177
1331
  end
1178
1332
 
1333
+ # Gets a description of a hyperparameter tuning job.
1334
+ #
1335
+ # @option params [required, String] :hyper_parameter_tuning_job_name
1336
+ # The name of the tuning job to describe.
1337
+ #
1338
+ # @return [Types::DescribeHyperParameterTuningJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
1339
+ #
1340
+ # * {Types::DescribeHyperParameterTuningJobResponse#hyper_parameter_tuning_job_name #hyper_parameter_tuning_job_name} => String
1341
+ # * {Types::DescribeHyperParameterTuningJobResponse#hyper_parameter_tuning_job_arn #hyper_parameter_tuning_job_arn} => String
1342
+ # * {Types::DescribeHyperParameterTuningJobResponse#hyper_parameter_tuning_job_config #hyper_parameter_tuning_job_config} => Types::HyperParameterTuningJobConfig
1343
+ # * {Types::DescribeHyperParameterTuningJobResponse#training_job_definition #training_job_definition} => Types::HyperParameterTrainingJobDefinition
1344
+ # * {Types::DescribeHyperParameterTuningJobResponse#hyper_parameter_tuning_job_status #hyper_parameter_tuning_job_status} => String
1345
+ # * {Types::DescribeHyperParameterTuningJobResponse#creation_time #creation_time} => Time
1346
+ # * {Types::DescribeHyperParameterTuningJobResponse#hyper_parameter_tuning_end_time #hyper_parameter_tuning_end_time} => Time
1347
+ # * {Types::DescribeHyperParameterTuningJobResponse#last_modified_time #last_modified_time} => Time
1348
+ # * {Types::DescribeHyperParameterTuningJobResponse#training_job_status_counters #training_job_status_counters} => Types::TrainingJobStatusCounters
1349
+ # * {Types::DescribeHyperParameterTuningJobResponse#objective_status_counters #objective_status_counters} => Types::ObjectiveStatusCounters
1350
+ # * {Types::DescribeHyperParameterTuningJobResponse#best_training_job #best_training_job} => Types::HyperParameterTrainingJobSummary
1351
+ # * {Types::DescribeHyperParameterTuningJobResponse#failure_reason #failure_reason} => String
1352
+ #
1353
+ # @example Request syntax with placeholder values
1354
+ #
1355
+ # resp = client.describe_hyper_parameter_tuning_job({
1356
+ # hyper_parameter_tuning_job_name: "HyperParameterTuningJobName", # required
1357
+ # })
1358
+ #
1359
+ # @example Response structure
1360
+ #
1361
+ # resp.hyper_parameter_tuning_job_name #=> String
1362
+ # resp.hyper_parameter_tuning_job_arn #=> String
1363
+ # resp.hyper_parameter_tuning_job_config.strategy #=> String, one of "Bayesian"
1364
+ # resp.hyper_parameter_tuning_job_config.hyper_parameter_tuning_job_objective.type #=> String, one of "Maximize", "Minimize"
1365
+ # resp.hyper_parameter_tuning_job_config.hyper_parameter_tuning_job_objective.metric_name #=> String
1366
+ # resp.hyper_parameter_tuning_job_config.resource_limits.max_number_of_training_jobs #=> Integer
1367
+ # resp.hyper_parameter_tuning_job_config.resource_limits.max_parallel_training_jobs #=> Integer
1368
+ # resp.hyper_parameter_tuning_job_config.parameter_ranges.integer_parameter_ranges #=> Array
1369
+ # resp.hyper_parameter_tuning_job_config.parameter_ranges.integer_parameter_ranges[0].name #=> String
1370
+ # resp.hyper_parameter_tuning_job_config.parameter_ranges.integer_parameter_ranges[0].min_value #=> String
1371
+ # resp.hyper_parameter_tuning_job_config.parameter_ranges.integer_parameter_ranges[0].max_value #=> String
1372
+ # resp.hyper_parameter_tuning_job_config.parameter_ranges.continuous_parameter_ranges #=> Array
1373
+ # resp.hyper_parameter_tuning_job_config.parameter_ranges.continuous_parameter_ranges[0].name #=> String
1374
+ # resp.hyper_parameter_tuning_job_config.parameter_ranges.continuous_parameter_ranges[0].min_value #=> String
1375
+ # resp.hyper_parameter_tuning_job_config.parameter_ranges.continuous_parameter_ranges[0].max_value #=> String
1376
+ # resp.hyper_parameter_tuning_job_config.parameter_ranges.categorical_parameter_ranges #=> Array
1377
+ # resp.hyper_parameter_tuning_job_config.parameter_ranges.categorical_parameter_ranges[0].name #=> String
1378
+ # resp.hyper_parameter_tuning_job_config.parameter_ranges.categorical_parameter_ranges[0].values #=> Array
1379
+ # resp.hyper_parameter_tuning_job_config.parameter_ranges.categorical_parameter_ranges[0].values[0] #=> String
1380
+ # resp.training_job_definition.static_hyper_parameters #=> Hash
1381
+ # resp.training_job_definition.static_hyper_parameters["ParameterKey"] #=> String
1382
+ # resp.training_job_definition.algorithm_specification.training_image #=> String
1383
+ # resp.training_job_definition.algorithm_specification.training_input_mode #=> String, one of "Pipe", "File"
1384
+ # resp.training_job_definition.algorithm_specification.metric_definitions #=> Array
1385
+ # resp.training_job_definition.algorithm_specification.metric_definitions[0].name #=> String
1386
+ # resp.training_job_definition.algorithm_specification.metric_definitions[0].regex #=> String
1387
+ # resp.training_job_definition.role_arn #=> String
1388
+ # resp.training_job_definition.input_data_config #=> Array
1389
+ # resp.training_job_definition.input_data_config[0].channel_name #=> String
1390
+ # resp.training_job_definition.input_data_config[0].data_source.s3_data_source.s3_data_type #=> String, one of "ManifestFile", "S3Prefix"
1391
+ # resp.training_job_definition.input_data_config[0].data_source.s3_data_source.s3_uri #=> String
1392
+ # resp.training_job_definition.input_data_config[0].data_source.s3_data_source.s3_data_distribution_type #=> String, one of "FullyReplicated", "ShardedByS3Key"
1393
+ # resp.training_job_definition.input_data_config[0].content_type #=> String
1394
+ # resp.training_job_definition.input_data_config[0].compression_type #=> String, one of "None", "Gzip"
1395
+ # resp.training_job_definition.input_data_config[0].record_wrapper_type #=> String, one of "None", "RecordIO"
1396
+ # resp.training_job_definition.vpc_config.security_group_ids #=> Array
1397
+ # resp.training_job_definition.vpc_config.security_group_ids[0] #=> String
1398
+ # resp.training_job_definition.vpc_config.subnets #=> Array
1399
+ # resp.training_job_definition.vpc_config.subnets[0] #=> String
1400
+ # resp.training_job_definition.output_data_config.kms_key_id #=> String
1401
+ # resp.training_job_definition.output_data_config.s3_output_path #=> String
1402
+ # resp.training_job_definition.resource_config.instance_type #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge"
1403
+ # resp.training_job_definition.resource_config.instance_count #=> Integer
1404
+ # resp.training_job_definition.resource_config.volume_size_in_gb #=> Integer
1405
+ # resp.training_job_definition.resource_config.volume_kms_key_id #=> String
1406
+ # resp.training_job_definition.stopping_condition.max_runtime_in_seconds #=> Integer
1407
+ # resp.hyper_parameter_tuning_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
1408
+ # resp.creation_time #=> Time
1409
+ # resp.hyper_parameter_tuning_end_time #=> Time
1410
+ # resp.last_modified_time #=> Time
1411
+ # resp.training_job_status_counters.completed #=> Integer
1412
+ # resp.training_job_status_counters.in_progress #=> Integer
1413
+ # resp.training_job_status_counters.retryable_error #=> Integer
1414
+ # resp.training_job_status_counters.non_retryable_error #=> Integer
1415
+ # resp.training_job_status_counters.stopped #=> Integer
1416
+ # resp.objective_status_counters.succeeded #=> Integer
1417
+ # resp.objective_status_counters.pending #=> Integer
1418
+ # resp.objective_status_counters.failed #=> Integer
1419
+ # resp.best_training_job.training_job_name #=> String
1420
+ # resp.best_training_job.training_job_arn #=> String
1421
+ # resp.best_training_job.creation_time #=> Time
1422
+ # resp.best_training_job.training_start_time #=> Time
1423
+ # resp.best_training_job.training_end_time #=> Time
1424
+ # resp.best_training_job.training_job_status #=> String, one of "InProgress", "Completed", "Failed", "Stopping", "Stopped"
1425
+ # resp.best_training_job.tuned_hyper_parameters #=> Hash
1426
+ # resp.best_training_job.tuned_hyper_parameters["ParameterKey"] #=> String
1427
+ # resp.best_training_job.failure_reason #=> String
1428
+ # resp.best_training_job.final_hyper_parameter_tuning_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
1429
+ # resp.best_training_job.final_hyper_parameter_tuning_job_objective_metric.metric_name #=> String
1430
+ # resp.best_training_job.final_hyper_parameter_tuning_job_objective_metric.value #=> Float
1431
+ # resp.best_training_job.objective_status #=> String, one of "Succeeded", "Pending", "Failed"
1432
+ # resp.failure_reason #=> String
1433
+ #
1434
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeHyperParameterTuningJob AWS API Documentation
1435
+ #
1436
+ # @overload describe_hyper_parameter_tuning_job(params = {})
1437
+ # @param [Hash] params ({})
1438
+ def describe_hyper_parameter_tuning_job(params = {}, options = {})
1439
+ req = build_request(:describe_hyper_parameter_tuning_job, params)
1440
+ req.send_request(options)
1441
+ end
1442
+
1179
1443
  # Describes a model that you created using the `CreateModel` API.
1180
1444
  #
1181
1445
  # @option params [required, String] :model_name
@@ -1330,6 +1594,7 @@ module Aws::SageMaker
1330
1594
  #
1331
1595
  # * {Types::DescribeTrainingJobResponse#training_job_name #training_job_name} => String
1332
1596
  # * {Types::DescribeTrainingJobResponse#training_job_arn #training_job_arn} => String
1597
+ # * {Types::DescribeTrainingJobResponse#tuning_job_arn #tuning_job_arn} => String
1333
1598
  # * {Types::DescribeTrainingJobResponse#model_artifacts #model_artifacts} => Types::ModelArtifacts
1334
1599
  # * {Types::DescribeTrainingJobResponse#training_job_status #training_job_status} => String
1335
1600
  # * {Types::DescribeTrainingJobResponse#secondary_status #secondary_status} => String
@@ -1357,6 +1622,7 @@ module Aws::SageMaker
1357
1622
  #
1358
1623
  # resp.training_job_name #=> String
1359
1624
  # resp.training_job_arn #=> String
1625
+ # resp.tuning_job_arn #=> String
1360
1626
  # resp.model_artifacts.s3_model_artifacts #=> String
1361
1627
  # resp.training_job_status #=> String, one of "InProgress", "Completed", "Failed", "Stopping", "Stopped"
1362
1628
  # resp.secondary_status #=> String, one of "Starting", "Downloading", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed"
@@ -1539,6 +1805,97 @@ module Aws::SageMaker
1539
1805
  req.send_request(options)
1540
1806
  end
1541
1807
 
1808
+ # Gets a list of objects that describe the hyperparameter tuning jobs
1809
+ # launched in your account.
1810
+ #
1811
+ # @option params [String] :next_token
1812
+ # If the result of the previous `ListHyperParameterTuningJobs` request
1813
+ # was truncated, the response includes a `NextToken`. To retrieve the
1814
+ # next set of tuning jobs, use the token in the next request.
1815
+ #
1816
+ # @option params [Integer] :max_results
1817
+ # The maximum number of tuning jobs to return.
1818
+ #
1819
+ # @option params [String] :sort_by
1820
+ # The field to sort results by. The default is `Name`.
1821
+ #
1822
+ # @option params [String] :sort_order
1823
+ # The sort order for results. The default is `Ascending`.
1824
+ #
1825
+ # @option params [String] :name_contains
1826
+ # A string in the tuning job name. This filter returns only tuning jobs
1827
+ # whose name contains the specified string.
1828
+ #
1829
+ # @option params [Time,DateTime,Date,Integer,String] :creation_time_after
1830
+ # A filter that returns only tuning jobs that were created after the
1831
+ # specified time.
1832
+ #
1833
+ # @option params [Time,DateTime,Date,Integer,String] :creation_time_before
1834
+ # A filter that returns only tuning jobs that were created before the
1835
+ # specified time.
1836
+ #
1837
+ # @option params [Time,DateTime,Date,Integer,String] :last_modified_time_after
1838
+ # A filter that returns only tuning jobs that were modified after the
1839
+ # specified time.
1840
+ #
1841
+ # @option params [Time,DateTime,Date,Integer,String] :last_modified_time_before
1842
+ # A filter that returns only tuning jobs that were modified before the
1843
+ # specified time.
1844
+ #
1845
+ # @option params [String] :status_equals
1846
+ # A filter that returns only tuning jobs with the specified status.
1847
+ #
1848
+ # @return [Types::ListHyperParameterTuningJobsResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
1849
+ #
1850
+ # * {Types::ListHyperParameterTuningJobsResponse#hyper_parameter_tuning_job_summaries #hyper_parameter_tuning_job_summaries} => Array&lt;Types::HyperParameterTuningJobSummary&gt;
1851
+ # * {Types::ListHyperParameterTuningJobsResponse#next_token #next_token} => String
1852
+ #
1853
+ # @example Request syntax with placeholder values
1854
+ #
1855
+ # resp = client.list_hyper_parameter_tuning_jobs({
1856
+ # next_token: "NextToken",
1857
+ # max_results: 1,
1858
+ # sort_by: "Name", # accepts Name, Status, CreationTime
1859
+ # sort_order: "Ascending", # accepts Ascending, Descending
1860
+ # name_contains: "NameContains",
1861
+ # creation_time_after: Time.now,
1862
+ # creation_time_before: Time.now,
1863
+ # last_modified_time_after: Time.now,
1864
+ # last_modified_time_before: Time.now,
1865
+ # status_equals: "Completed", # accepts Completed, InProgress, Failed, Stopped, Stopping
1866
+ # })
1867
+ #
1868
+ # @example Response structure
1869
+ #
1870
+ # resp.hyper_parameter_tuning_job_summaries #=> Array
1871
+ # resp.hyper_parameter_tuning_job_summaries[0].hyper_parameter_tuning_job_name #=> String
1872
+ # resp.hyper_parameter_tuning_job_summaries[0].hyper_parameter_tuning_job_arn #=> String
1873
+ # resp.hyper_parameter_tuning_job_summaries[0].hyper_parameter_tuning_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
1874
+ # resp.hyper_parameter_tuning_job_summaries[0].strategy #=> String, one of "Bayesian"
1875
+ # resp.hyper_parameter_tuning_job_summaries[0].creation_time #=> Time
1876
+ # resp.hyper_parameter_tuning_job_summaries[0].hyper_parameter_tuning_end_time #=> Time
1877
+ # resp.hyper_parameter_tuning_job_summaries[0].last_modified_time #=> Time
1878
+ # resp.hyper_parameter_tuning_job_summaries[0].training_job_status_counters.completed #=> Integer
1879
+ # resp.hyper_parameter_tuning_job_summaries[0].training_job_status_counters.in_progress #=> Integer
1880
+ # resp.hyper_parameter_tuning_job_summaries[0].training_job_status_counters.retryable_error #=> Integer
1881
+ # resp.hyper_parameter_tuning_job_summaries[0].training_job_status_counters.non_retryable_error #=> Integer
1882
+ # resp.hyper_parameter_tuning_job_summaries[0].training_job_status_counters.stopped #=> Integer
1883
+ # resp.hyper_parameter_tuning_job_summaries[0].objective_status_counters.succeeded #=> Integer
1884
+ # resp.hyper_parameter_tuning_job_summaries[0].objective_status_counters.pending #=> Integer
1885
+ # resp.hyper_parameter_tuning_job_summaries[0].objective_status_counters.failed #=> Integer
1886
+ # resp.hyper_parameter_tuning_job_summaries[0].resource_limits.max_number_of_training_jobs #=> Integer
1887
+ # resp.hyper_parameter_tuning_job_summaries[0].resource_limits.max_parallel_training_jobs #=> Integer
1888
+ # resp.next_token #=> String
1889
+ #
1890
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListHyperParameterTuningJobs AWS API Documentation
1891
+ #
1892
+ # @overload list_hyper_parameter_tuning_jobs(params = {})
1893
+ # @param [Hash] params ({})
1894
+ def list_hyper_parameter_tuning_jobs(params = {}, options = {})
1895
+ req = build_request(:list_hyper_parameter_tuning_jobs, params)
1896
+ req.send_request(options)
1897
+ end
1898
+
1542
1899
  # Lists models created with the [CreateModel][1] API.
1543
1900
  #
1544
1901
  #
@@ -1846,8 +2203,8 @@ module Aws::SageMaker
1846
2203
  # time (timestamp).
1847
2204
  #
1848
2205
  # @option params [String] :name_contains
1849
- # A string in the training job name. This filter returns only models
1850
- # whose name contains the specified string.
2206
+ # A string in the training job name. This filter returns only training
2207
+ # jobs whose name contains the specified string.
1851
2208
  #
1852
2209
  # @option params [String] :status_equals
1853
2210
  # A filter that retrieves only training jobs with a specific status.
@@ -1898,6 +2255,73 @@ module Aws::SageMaker
1898
2255
  req.send_request(options)
1899
2256
  end
1900
2257
 
2258
+ # Gets a list of objects that describe the training jobs that a
2259
+ # hyperparameter tuning job launched.
2260
+ #
2261
+ # @option params [required, String] :hyper_parameter_tuning_job_name
2262
+ # The name of the tuning job whose training jobs you want to list.
2263
+ #
2264
+ # @option params [String] :next_token
2265
+ # If the result of the previous
2266
+ # `ListTrainingJobsForHyperParameterTuningJob` request was truncated,
2267
+ # the response includes a `NextToken`. To retrieve the next set of
2268
+ # training jobs, use the token in the next request.
2269
+ #
2270
+ # @option params [Integer] :max_results
2271
+ # The maximum number of training jobs to return.
2272
+ #
2273
+ # @option params [String] :status_equals
2274
+ # A filter that returns only training jobs with the specified status.
2275
+ #
2276
+ # @option params [String] :sort_by
2277
+ # The field to sort results by. The default is `Name`.
2278
+ #
2279
+ # @option params [String] :sort_order
2280
+ # The sort order for results. The default is `Ascending`.
2281
+ #
2282
+ # @return [Types::ListTrainingJobsForHyperParameterTuningJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
2283
+ #
2284
+ # * {Types::ListTrainingJobsForHyperParameterTuningJobResponse#training_job_summaries #training_job_summaries} => Array&lt;Types::HyperParameterTrainingJobSummary&gt;
2285
+ # * {Types::ListTrainingJobsForHyperParameterTuningJobResponse#next_token #next_token} => String
2286
+ #
2287
+ # @example Request syntax with placeholder values
2288
+ #
2289
+ # resp = client.list_training_jobs_for_hyper_parameter_tuning_job({
2290
+ # hyper_parameter_tuning_job_name: "HyperParameterTuningJobName", # required
2291
+ # next_token: "NextToken",
2292
+ # max_results: 1,
2293
+ # status_equals: "InProgress", # accepts InProgress, Completed, Failed, Stopping, Stopped
2294
+ # sort_by: "Name", # accepts Name, CreationTime, Status, FinalObjectiveMetricValue
2295
+ # sort_order: "Ascending", # accepts Ascending, Descending
2296
+ # })
2297
+ #
2298
+ # @example Response structure
2299
+ #
2300
+ # resp.training_job_summaries #=> Array
2301
+ # resp.training_job_summaries[0].training_job_name #=> String
2302
+ # resp.training_job_summaries[0].training_job_arn #=> String
2303
+ # resp.training_job_summaries[0].creation_time #=> Time
2304
+ # resp.training_job_summaries[0].training_start_time #=> Time
2305
+ # resp.training_job_summaries[0].training_end_time #=> Time
2306
+ # resp.training_job_summaries[0].training_job_status #=> String, one of "InProgress", "Completed", "Failed", "Stopping", "Stopped"
2307
+ # resp.training_job_summaries[0].tuned_hyper_parameters #=> Hash
2308
+ # resp.training_job_summaries[0].tuned_hyper_parameters["ParameterKey"] #=> String
2309
+ # resp.training_job_summaries[0].failure_reason #=> String
2310
+ # resp.training_job_summaries[0].final_hyper_parameter_tuning_job_objective_metric.type #=> String, one of "Maximize", "Minimize"
2311
+ # resp.training_job_summaries[0].final_hyper_parameter_tuning_job_objective_metric.metric_name #=> String
2312
+ # resp.training_job_summaries[0].final_hyper_parameter_tuning_job_objective_metric.value #=> Float
2313
+ # resp.training_job_summaries[0].objective_status #=> String, one of "Succeeded", "Pending", "Failed"
2314
+ # resp.next_token #=> String
2315
+ #
2316
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ListTrainingJobsForHyperParameterTuningJob AWS API Documentation
2317
+ #
2318
+ # @overload list_training_jobs_for_hyper_parameter_tuning_job(params = {})
2319
+ # @param [Hash] params ({})
2320
+ def list_training_jobs_for_hyper_parameter_tuning_job(params = {}, options = {})
2321
+ req = build_request(:list_training_jobs_for_hyper_parameter_tuning_job, params)
2322
+ req.send_request(options)
2323
+ end
2324
+
1901
2325
  # Launches an ML compute instance with the latest version of the
1902
2326
  # libraries and attaches your ML storage volume. After configuring the
1903
2327
  # notebook instance, Amazon SageMaker sets the notebook instance status
@@ -1924,6 +2348,35 @@ module Aws::SageMaker
1924
2348
  req.send_request(options)
1925
2349
  end
1926
2350
 
2351
+ # Stops a running hyperparameter tuning job and all running training
2352
+ # jobs that the tuning job launched.
2353
+ #
2354
+ # All model artifacts output from the training jobs are stored in Amazon
2355
+ # Simple Storage Service (Amazon S3). All data that the training jobs
2356
+ # write toAmazon CloudWatch Logs are still available in CloudWatch.
2357
+ # After the tuning job moves to the `Stopped` state, it releases all
2358
+ # reserved resources for the tuning job.
2359
+ #
2360
+ # @option params [required, String] :hyper_parameter_tuning_job_name
2361
+ # The name of the tuning job to stop.
2362
+ #
2363
+ # @return [Struct] Returns an empty {Seahorse::Client::Response response}.
2364
+ #
2365
+ # @example Request syntax with placeholder values
2366
+ #
2367
+ # resp = client.stop_hyper_parameter_tuning_job({
2368
+ # hyper_parameter_tuning_job_name: "HyperParameterTuningJobName", # required
2369
+ # })
2370
+ #
2371
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/StopHyperParameterTuningJob AWS API Documentation
2372
+ #
2373
+ # @overload stop_hyper_parameter_tuning_job(params = {})
2374
+ # @param [Hash] params ({})
2375
+ def stop_hyper_parameter_tuning_job(params = {}, options = {})
2376
+ req = build_request(:stop_hyper_parameter_tuning_job, params)
2377
+ req.send_request(options)
2378
+ end
2379
+
1927
2380
  # Terminates the ML compute instance. Before terminating the instance,
1928
2381
  # Amazon SageMaker disconnects the ML storage volume from it. Amazon
1929
2382
  # SageMaker preserves the ML storage volume.
@@ -2091,8 +2544,18 @@ module Aws::SageMaker
2091
2544
  # The Amazon ML compute instance type.
2092
2545
  #
2093
2546
  # @option params [String] :role_arn
2094
- # Amazon Resource Name (ARN) of the IAM role to associate with the
2095
- # instance.
2547
+ # The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker
2548
+ # can assume to access the notebook instance. For more information, see
2549
+ # [Amazon SageMaker Roles][1].
2550
+ #
2551
+ # <note markdown="1"> To be able to pass this role to Amazon SageMaker, the caller of this
2552
+ # API must have the `iam:PassRole` permission.
2553
+ #
2554
+ # </note>
2555
+ #
2556
+ #
2557
+ #
2558
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html
2096
2559
  #
2097
2560
  # @return [Struct] Returns an empty {Seahorse::Client::Response response}.
2098
2561
  #
@@ -2167,7 +2630,7 @@ module Aws::SageMaker
2167
2630
  params: params,
2168
2631
  config: config)
2169
2632
  context[:gem_name] = 'aws-sdk-sagemaker'
2170
- context[:gem_version] = '1.8.0'
2633
+ context[:gem_version] = '1.9.0'
2171
2634
  Seahorse::Client::Request.new(handlers, context)
2172
2635
  end
2173
2636