aws-sdk-sagemaker 1.41.0 → 1.42.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA1:
3
- metadata.gz: a2109d6419ec7fc92cb96dc12451608d30fef954
4
- data.tar.gz: db3a8b87c0840a52e6511e91f938f9d2bfa398ac
3
+ metadata.gz: 829128de48619538f7602cda6c1a52174eef27f9
4
+ data.tar.gz: 0a0f1cf1336b9046b15b4ff97555b8fdb50b2224
5
5
  SHA512:
6
- metadata.gz: 50b384354c2d81805d4fcb7aea64446ba8ef0d03d1ec3d11ba75fb9250b458b3da9fd8201ca949b8febad5bd30f4b90ffa44221eba030bbdfe9ab22788a7b4a6
7
- data.tar.gz: fb3149874732dab5192261b0eb93e624cfa01a8eb9663ece4c98c2d3a32e01bd239661a1f0b3dec7ad1235c168780782f3c6c224f2eeda7a2d942e7d52ed560f
6
+ metadata.gz: 3a34ccb05f263a3dc25db769e255f39aa16fed751766518a4e2f426fda2fcb10df504239d022c66482312ae7bbe4a0f358161793bff036944f5bd06ea155e4d4
7
+ data.tar.gz: '028a592c350ab4e38ba1db4dc5da11f8ed4e69079ce207424e0ea75dff6b883f8858f6b635c5b316257c7bb6c5f8194f207127e19dd5f08a7a8a45af0410bbb6'
@@ -43,6 +43,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
43
43
  # @service
44
44
  module Aws::SageMaker
45
45
 
46
- GEM_VERSION = '1.41.0'
46
+ GEM_VERSION = '1.42.0'
47
47
 
48
48
  end
@@ -499,6 +499,7 @@ module Aws::SageMaker
499
499
  # },
500
500
  # stopping_condition: { # required
501
501
  # max_runtime_in_seconds: 1,
502
+ # max_wait_time_in_seconds: 1,
502
503
  # },
503
504
  # },
504
505
  # transform_job_definition: {
@@ -689,10 +690,11 @@ module Aws::SageMaker
689
690
  # },
690
691
  # output_config: { # required
691
692
  # s3_output_location: "S3Uri", # required
692
- # target_device: "lambda", # required, accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, jetson_tx1, jetson_tx2, jetson_nano, rasp3b, deeplens, rk3399, rk3288, sbe_c
693
+ # target_device: "lambda", # required, accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, jetson_tx1, jetson_tx2, jetson_nano, rasp3b, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603
693
694
  # },
694
695
  # stopping_condition: { # required
695
696
  # max_runtime_in_seconds: 1,
697
+ # max_wait_time_in_seconds: 1,
696
698
  # },
697
699
  # })
698
700
  #
@@ -1056,9 +1058,15 @@ module Aws::SageMaker
1056
1058
  # },
1057
1059
  # stopping_condition: { # required
1058
1060
  # max_runtime_in_seconds: 1,
1061
+ # max_wait_time_in_seconds: 1,
1059
1062
  # },
1060
1063
  # enable_network_isolation: false,
1061
1064
  # enable_inter_container_traffic_encryption: false,
1065
+ # enable_managed_spot_training: false,
1066
+ # checkpoint_config: {
1067
+ # s3_uri: "S3Uri", # required
1068
+ # local_path: "DirectoryPath",
1069
+ # },
1062
1070
  # },
1063
1071
  # warm_start_config: {
1064
1072
  # parent_hyper_parameter_tuning_jobs: [ # required
@@ -1593,7 +1601,8 @@ module Aws::SageMaker
1593
1601
  # the notebook instance, assuming that the security groups allow it.
1594
1602
  #
1595
1603
  # After creating the notebook instance, Amazon SageMaker returns its
1596
- # Amazon Resource Name (ARN).
1604
+ # Amazon Resource Name (ARN). You can't change the name of a notebook
1605
+ # instance after you create it.
1597
1606
  #
1598
1607
  # After Amazon SageMaker creates the notebook instance, you can connect
1599
1608
  # to the Jupyter server and work in Jupyter notebooks. For example, you
@@ -1928,20 +1937,27 @@ module Aws::SageMaker
1928
1937
  # and ML storage volumes to deploy for model training. In distributed
1929
1938
  # training, you specify more than one instance.
1930
1939
  #
1940
+ # * `EnableManagedSpotTraining` - Optimize the cost of training machine
1941
+ # learning models by up to 80% by using Amazon EC2 Spot instances. For
1942
+ # more information, see [Managed Spot Training][2].
1943
+ #
1931
1944
  # * `RoleARN` - The Amazon Resource Number (ARN) that Amazon SageMaker
1932
1945
  # assumes to perform tasks on your behalf during model training. You
1933
1946
  # must grant this role the necessary permissions so that Amazon
1934
1947
  # SageMaker can successfully complete model training.
1935
1948
  #
1936
- # * `StoppingCondition` - Sets a time limit for training. Use this
1937
- # parameter to cap model training costs.
1949
+ # * `StoppingCondition` - To help cap training costs, use
1950
+ # `MaxRuntimeInSeconds` to set a time limit for training. Use
1951
+ # `MaxWaitTimeInSeconds` to specify how long you are willing to to
1952
+ # wait for a managed spot training job to complete.
1938
1953
  #
1939
- # For more information about Amazon SageMaker, see [How It Works][2].
1954
+ # For more information about Amazon SageMaker, see [How It Works][3].
1940
1955
  #
1941
1956
  #
1942
1957
  #
1943
1958
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
1944
- # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works.html
1959
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/dg/model-managed-spot-training.html
1960
+ # [3]: https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works.html
1945
1961
  #
1946
1962
  # @option params [required, String] :training_job_name
1947
1963
  # The name of the training job. The name must be unique within an AWS
@@ -2081,6 +2097,23 @@ module Aws::SageMaker
2081
2097
  #
2082
2098
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/train-encrypt.html
2083
2099
  #
2100
+ # @option params [Boolean] :enable_managed_spot_training
2101
+ # To train models using managed spot training, choose `True`. Managed
2102
+ # spot training provides a fully managed and scalable infrastructure for
2103
+ # training machine learning models. this option is useful when training
2104
+ # jobs can be interrupted and when there is flexibility when the
2105
+ # training job is run.
2106
+ #
2107
+ # The complete and intermediate results of jobs are stored in an Amazon
2108
+ # S3 bucket, and can be used as a starting point to train models
2109
+ # incrementally. Amazon SageMaker provides metrics and logs in
2110
+ # CloudWatch. They can be used to see when managed spot training jobs
2111
+ # are running, interrupted, resumed, or completed.
2112
+ #
2113
+ # @option params [Types::CheckpointConfig] :checkpoint_config
2114
+ # Contains information about the output location for managed spot
2115
+ # training checkpoint data.
2116
+ #
2084
2117
  # @return [Types::CreateTrainingJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
2085
2118
  #
2086
2119
  # * {Types::CreateTrainingJobResponse#training_job_arn #training_job_arn} => String
@@ -2140,6 +2173,7 @@ module Aws::SageMaker
2140
2173
  # },
2141
2174
  # stopping_condition: { # required
2142
2175
  # max_runtime_in_seconds: 1,
2176
+ # max_wait_time_in_seconds: 1,
2143
2177
  # },
2144
2178
  # tags: [
2145
2179
  # {
@@ -2149,6 +2183,11 @@ module Aws::SageMaker
2149
2183
  # ],
2150
2184
  # enable_network_isolation: false,
2151
2185
  # enable_inter_container_traffic_encryption: false,
2186
+ # enable_managed_spot_training: false,
2187
+ # checkpoint_config: {
2188
+ # s3_uri: "S3Uri", # required
2189
+ # local_path: "DirectoryPath",
2190
+ # },
2152
2191
  # })
2153
2192
  #
2154
2193
  # @example Response structure
@@ -2266,13 +2305,18 @@ module Aws::SageMaker
2266
2305
  # count, to use for the transform job.
2267
2306
  #
2268
2307
  # @option params [Types::DataProcessing] :data_processing
2269
- # The data structure used for combining the input data and inference in
2270
- # the output file. For more information, see [Batch Transform I/O
2271
- # Join][1].
2308
+ # The data structure used to specify the data to be used for inference
2309
+ # in a batch transform job and to associate the data that is relevant to
2310
+ # the prediction results in the output. The input filter provided allows
2311
+ # you to exclude input data that is not needed for inference in a batch
2312
+ # transform job. The output filter provided allows you to include input
2313
+ # data relevant to interpreting the predictions in the output from the
2314
+ # job. For more information, see [Associate Prediction Results with
2315
+ # their Corresponding Input Records][1].
2272
2316
  #
2273
2317
  #
2274
2318
  #
2275
- # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-io-join.html
2319
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html
2276
2320
  #
2277
2321
  # @option params [Array<Types::Tag>] :tags
2278
2322
  # (Optional) An array of key-value pairs. For more information, see
@@ -2791,6 +2835,7 @@ module Aws::SageMaker
2791
2835
  # resp.validation_specification.validation_profiles[0].training_job_definition.resource_config.volume_size_in_gb #=> Integer
2792
2836
  # resp.validation_specification.validation_profiles[0].training_job_definition.resource_config.volume_kms_key_id #=> String
2793
2837
  # resp.validation_specification.validation_profiles[0].training_job_definition.stopping_condition.max_runtime_in_seconds #=> Integer
2838
+ # resp.validation_specification.validation_profiles[0].training_job_definition.stopping_condition.max_wait_time_in_seconds #=> Integer
2794
2839
  # resp.validation_specification.validation_profiles[0].transform_job_definition.max_concurrent_transforms #=> Integer
2795
2840
  # resp.validation_specification.validation_profiles[0].transform_job_definition.max_payload_in_mb #=> Integer
2796
2841
  # resp.validation_specification.validation_profiles[0].transform_job_definition.batch_strategy #=> String, one of "MultiRecord", "SingleRecord"
@@ -2906,6 +2951,7 @@ module Aws::SageMaker
2906
2951
  # resp.compilation_start_time #=> Time
2907
2952
  # resp.compilation_end_time #=> Time
2908
2953
  # resp.stopping_condition.max_runtime_in_seconds #=> Integer
2954
+ # resp.stopping_condition.max_wait_time_in_seconds #=> Integer
2909
2955
  # resp.creation_time #=> Time
2910
2956
  # resp.last_modified_time #=> Time
2911
2957
  # resp.failure_reason #=> String
@@ -2915,7 +2961,7 @@ module Aws::SageMaker
2915
2961
  # resp.input_config.data_input_config #=> String
2916
2962
  # resp.input_config.framework #=> String, one of "TENSORFLOW", "MXNET", "ONNX", "PYTORCH", "XGBOOST"
2917
2963
  # resp.output_config.s3_output_location #=> String
2918
- # resp.output_config.target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "jetson_tx1", "jetson_tx2", "jetson_nano", "rasp3b", "deeplens", "rk3399", "rk3288", "sbe_c"
2964
+ # resp.output_config.target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "jetson_tx1", "jetson_tx2", "jetson_nano", "rasp3b", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603"
2919
2965
  #
2920
2966
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeCompilationJob AWS API Documentation
2921
2967
  #
@@ -3104,8 +3150,12 @@ module Aws::SageMaker
3104
3150
  # resp.training_job_definition.resource_config.volume_size_in_gb #=> Integer
3105
3151
  # resp.training_job_definition.resource_config.volume_kms_key_id #=> String
3106
3152
  # resp.training_job_definition.stopping_condition.max_runtime_in_seconds #=> Integer
3153
+ # resp.training_job_definition.stopping_condition.max_wait_time_in_seconds #=> Integer
3107
3154
  # resp.training_job_definition.enable_network_isolation #=> Boolean
3108
3155
  # resp.training_job_definition.enable_inter_container_traffic_encryption #=> Boolean
3156
+ # resp.training_job_definition.enable_managed_spot_training #=> Boolean
3157
+ # resp.training_job_definition.checkpoint_config.s3_uri #=> String
3158
+ # resp.training_job_definition.checkpoint_config.local_path #=> String
3109
3159
  # resp.hyper_parameter_tuning_job_status #=> String, one of "Completed", "InProgress", "Failed", "Stopped", "Stopping"
3110
3160
  # resp.creation_time #=> Time
3111
3161
  # resp.hyper_parameter_tuning_end_time #=> Time
@@ -3577,6 +3627,10 @@ module Aws::SageMaker
3577
3627
  # * {Types::DescribeTrainingJobResponse#final_metric_data_list #final_metric_data_list} => Array&lt;Types::MetricData&gt;
3578
3628
  # * {Types::DescribeTrainingJobResponse#enable_network_isolation #enable_network_isolation} => Boolean
3579
3629
  # * {Types::DescribeTrainingJobResponse#enable_inter_container_traffic_encryption #enable_inter_container_traffic_encryption} => Boolean
3630
+ # * {Types::DescribeTrainingJobResponse#enable_managed_spot_training #enable_managed_spot_training} => Boolean
3631
+ # * {Types::DescribeTrainingJobResponse#checkpoint_config #checkpoint_config} => Types::CheckpointConfig
3632
+ # * {Types::DescribeTrainingJobResponse#training_time_in_seconds #training_time_in_seconds} => Integer
3633
+ # * {Types::DescribeTrainingJobResponse#billable_time_in_seconds #billable_time_in_seconds} => Integer
3580
3634
  #
3581
3635
  # @example Request syntax with placeholder values
3582
3636
  #
@@ -3592,7 +3646,7 @@ module Aws::SageMaker
3592
3646
  # resp.labeling_job_arn #=> String
3593
3647
  # resp.model_artifacts.s3_model_artifacts #=> String
3594
3648
  # resp.training_job_status #=> String, one of "InProgress", "Completed", "Failed", "Stopping", "Stopped"
3595
- # resp.secondary_status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed"
3649
+ # resp.secondary_status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded"
3596
3650
  # resp.failure_reason #=> String
3597
3651
  # resp.hyper_parameters #=> Hash
3598
3652
  # resp.hyper_parameters["ParameterKey"] #=> String
@@ -3626,12 +3680,13 @@ module Aws::SageMaker
3626
3680
  # resp.vpc_config.subnets #=> Array
3627
3681
  # resp.vpc_config.subnets[0] #=> String
3628
3682
  # resp.stopping_condition.max_runtime_in_seconds #=> Integer
3683
+ # resp.stopping_condition.max_wait_time_in_seconds #=> Integer
3629
3684
  # resp.creation_time #=> Time
3630
3685
  # resp.training_start_time #=> Time
3631
3686
  # resp.training_end_time #=> Time
3632
3687
  # resp.last_modified_time #=> Time
3633
3688
  # resp.secondary_status_transitions #=> Array
3634
- # resp.secondary_status_transitions[0].status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed"
3689
+ # resp.secondary_status_transitions[0].status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded"
3635
3690
  # resp.secondary_status_transitions[0].start_time #=> Time
3636
3691
  # resp.secondary_status_transitions[0].end_time #=> Time
3637
3692
  # resp.secondary_status_transitions[0].status_message #=> String
@@ -3641,6 +3696,11 @@ module Aws::SageMaker
3641
3696
  # resp.final_metric_data_list[0].timestamp #=> Time
3642
3697
  # resp.enable_network_isolation #=> Boolean
3643
3698
  # resp.enable_inter_container_traffic_encryption #=> Boolean
3699
+ # resp.enable_managed_spot_training #=> Boolean
3700
+ # resp.checkpoint_config.s3_uri #=> String
3701
+ # resp.checkpoint_config.local_path #=> String
3702
+ # resp.training_time_in_seconds #=> Integer
3703
+ # resp.billable_time_in_seconds #=> Integer
3644
3704
  #
3645
3705
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeTrainingJob AWS API Documentation
3646
3706
  #
@@ -4020,7 +4080,7 @@ module Aws::SageMaker
4020
4080
  # resp.compilation_job_summaries[0].creation_time #=> Time
4021
4081
  # resp.compilation_job_summaries[0].compilation_start_time #=> Time
4022
4082
  # resp.compilation_job_summaries[0].compilation_end_time #=> Time
4023
- # resp.compilation_job_summaries[0].compilation_target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "jetson_tx1", "jetson_tx2", "jetson_nano", "rasp3b", "deeplens", "rk3399", "rk3288", "sbe_c"
4083
+ # resp.compilation_job_summaries[0].compilation_target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "jetson_tx1", "jetson_tx2", "jetson_nano", "rasp3b", "deeplens", "rk3399", "rk3288", "aisage", "sbe_c", "qcs605", "qcs603"
4024
4084
  # resp.compilation_job_summaries[0].last_modified_time #=> Time
4025
4085
  # resp.compilation_job_summaries[0].compilation_job_status #=> String, one of "INPROGRESS", "COMPLETED", "FAILED", "STARTING", "STOPPING", "STOPPED"
4026
4086
  # resp.next_token #=> String
@@ -5272,7 +5332,7 @@ module Aws::SageMaker
5272
5332
  # resp.results[0].training_job.labeling_job_arn #=> String
5273
5333
  # resp.results[0].training_job.model_artifacts.s3_model_artifacts #=> String
5274
5334
  # resp.results[0].training_job.training_job_status #=> String, one of "InProgress", "Completed", "Failed", "Stopping", "Stopped"
5275
- # resp.results[0].training_job.secondary_status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed"
5335
+ # resp.results[0].training_job.secondary_status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded"
5276
5336
  # resp.results[0].training_job.failure_reason #=> String
5277
5337
  # resp.results[0].training_job.hyper_parameters #=> Hash
5278
5338
  # resp.results[0].training_job.hyper_parameters["ParameterKey"] #=> String
@@ -5306,12 +5366,13 @@ module Aws::SageMaker
5306
5366
  # resp.results[0].training_job.vpc_config.subnets #=> Array
5307
5367
  # resp.results[0].training_job.vpc_config.subnets[0] #=> String
5308
5368
  # resp.results[0].training_job.stopping_condition.max_runtime_in_seconds #=> Integer
5369
+ # resp.results[0].training_job.stopping_condition.max_wait_time_in_seconds #=> Integer
5309
5370
  # resp.results[0].training_job.creation_time #=> Time
5310
5371
  # resp.results[0].training_job.training_start_time #=> Time
5311
5372
  # resp.results[0].training_job.training_end_time #=> Time
5312
5373
  # resp.results[0].training_job.last_modified_time #=> Time
5313
5374
  # resp.results[0].training_job.secondary_status_transitions #=> Array
5314
- # resp.results[0].training_job.secondary_status_transitions[0].status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed"
5375
+ # resp.results[0].training_job.secondary_status_transitions[0].status #=> String, one of "Starting", "LaunchingMLInstances", "PreparingTrainingStack", "Downloading", "DownloadingTrainingImage", "Training", "Uploading", "Stopping", "Stopped", "MaxRuntimeExceeded", "Completed", "Failed", "Interrupted", "MaxWaitTimeExceeded"
5315
5376
  # resp.results[0].training_job.secondary_status_transitions[0].start_time #=> Time
5316
5377
  # resp.results[0].training_job.secondary_status_transitions[0].end_time #=> Time
5317
5378
  # resp.results[0].training_job.secondary_status_transitions[0].status_message #=> String
@@ -5825,11 +5886,12 @@ module Aws::SageMaker
5825
5886
  #
5826
5887
  # @option params [Array<Types::NotebookInstanceLifecycleHook>] :on_create
5827
5888
  # The shell script that runs only once, when you create a notebook
5828
- # instance
5889
+ # instance. The shell script must be a base64-encoded string.
5829
5890
  #
5830
5891
  # @option params [Array<Types::NotebookInstanceLifecycleHook>] :on_start
5831
5892
  # The shell script that runs every time you start a notebook instance,
5832
- # including when you create the notebook instance.
5893
+ # including when you create the notebook instance. The shell script must
5894
+ # be a base64-encoded string.
5833
5895
  #
5834
5896
  # @return [Struct] Returns an empty {Seahorse::Client::Response response}.
5835
5897
  #
@@ -5936,7 +5998,7 @@ module Aws::SageMaker
5936
5998
  params: params,
5937
5999
  config: config)
5938
6000
  context[:gem_name] = 'aws-sdk-sagemaker'
5939
- context[:gem_version] = '1.41.0'
6001
+ context[:gem_version] = '1.42.0'
5940
6002
  Seahorse::Client::Request.new(handlers, context)
5941
6003
  end
5942
6004
 
@@ -35,6 +35,7 @@ module Aws::SageMaker
35
35
  AttributeName = Shapes::StringShape.new(name: 'AttributeName')
36
36
  AttributeNames = Shapes::ListShape.new(name: 'AttributeNames')
37
37
  BatchStrategy = Shapes::StringShape.new(name: 'BatchStrategy')
38
+ BillableTimeInSeconds = Shapes::IntegerShape.new(name: 'BillableTimeInSeconds')
38
39
  Boolean = Shapes::BooleanShape.new(name: 'Boolean')
39
40
  BooleanOperator = Shapes::StringShape.new(name: 'BooleanOperator')
40
41
  Branch = Shapes::StringShape.new(name: 'Branch')
@@ -47,6 +48,7 @@ module Aws::SageMaker
47
48
  ChannelName = Shapes::StringShape.new(name: 'ChannelName')
48
49
  ChannelSpecification = Shapes::StructureShape.new(name: 'ChannelSpecification')
49
50
  ChannelSpecifications = Shapes::ListShape.new(name: 'ChannelSpecifications')
51
+ CheckpointConfig = Shapes::StructureShape.new(name: 'CheckpointConfig')
50
52
  CodeRepositoryArn = Shapes::StringShape.new(name: 'CodeRepositoryArn')
51
53
  CodeRepositoryContains = Shapes::StringShape.new(name: 'CodeRepositoryContains')
52
54
  CodeRepositoryNameContains = Shapes::StringShape.new(name: 'CodeRepositoryNameContains')
@@ -158,6 +160,7 @@ module Aws::SageMaker
158
160
  DetailedAlgorithmStatus = Shapes::StringShape.new(name: 'DetailedAlgorithmStatus')
159
161
  DetailedModelPackageStatus = Shapes::StringShape.new(name: 'DetailedModelPackageStatus')
160
162
  DirectInternetAccess = Shapes::StringShape.new(name: 'DirectInternetAccess')
163
+ DirectoryPath = Shapes::StringShape.new(name: 'DirectoryPath')
161
164
  DisassociateAdditionalCodeRepositories = Shapes::BooleanShape.new(name: 'DisassociateAdditionalCodeRepositories')
162
165
  DisassociateDefaultCodeRepository = Shapes::BooleanShape.new(name: 'DisassociateDefaultCodeRepository')
163
166
  DisassociateNotebookInstanceAcceleratorTypes = Shapes::BooleanShape.new(name: 'DisassociateNotebookInstanceAcceleratorTypes')
@@ -303,6 +306,7 @@ module Aws::SageMaker
303
306
  MaxPercentageOfInputDatasetLabeled = Shapes::IntegerShape.new(name: 'MaxPercentageOfInputDatasetLabeled')
304
307
  MaxResults = Shapes::IntegerShape.new(name: 'MaxResults')
305
308
  MaxRuntimeInSeconds = Shapes::IntegerShape.new(name: 'MaxRuntimeInSeconds')
309
+ MaxWaitTimeInSeconds = Shapes::IntegerShape.new(name: 'MaxWaitTimeInSeconds')
306
310
  MemberDefinition = Shapes::StructureShape.new(name: 'MemberDefinition')
307
311
  MemberDefinitions = Shapes::ListShape.new(name: 'MemberDefinitions')
308
312
  MetricData = Shapes::StructureShape.new(name: 'MetricData')
@@ -486,6 +490,7 @@ module Aws::SageMaker
486
490
  TrainingJobSummaries = Shapes::ListShape.new(name: 'TrainingJobSummaries')
487
491
  TrainingJobSummary = Shapes::StructureShape.new(name: 'TrainingJobSummary')
488
492
  TrainingSpecification = Shapes::StructureShape.new(name: 'TrainingSpecification')
493
+ TrainingTimeInSeconds = Shapes::IntegerShape.new(name: 'TrainingTimeInSeconds')
489
494
  TransformDataSource = Shapes::StructureShape.new(name: 'TransformDataSource')
490
495
  TransformEnvironmentKey = Shapes::StringShape.new(name: 'TransformEnvironmentKey')
491
496
  TransformEnvironmentMap = Shapes::MapShape.new(name: 'TransformEnvironmentMap')
@@ -608,6 +613,10 @@ module Aws::SageMaker
608
613
 
609
614
  ChannelSpecifications.member = Shapes::ShapeRef.new(shape: ChannelSpecification)
610
615
 
616
+ CheckpointConfig.add_member(:s3_uri, Shapes::ShapeRef.new(shape: S3Uri, required: true, location_name: "S3Uri"))
617
+ CheckpointConfig.add_member(:local_path, Shapes::ShapeRef.new(shape: DirectoryPath, location_name: "LocalPath"))
618
+ CheckpointConfig.struct_class = Types::CheckpointConfig
619
+
611
620
  CodeRepositorySummary.add_member(:code_repository_name, Shapes::ShapeRef.new(shape: EntityName, required: true, location_name: "CodeRepositoryName"))
612
621
  CodeRepositorySummary.add_member(:code_repository_arn, Shapes::ShapeRef.new(shape: CodeRepositoryArn, required: true, location_name: "CodeRepositoryArn"))
613
622
  CodeRepositorySummary.add_member(:creation_time, Shapes::ShapeRef.new(shape: CreationTime, required: true, location_name: "CreationTime"))
@@ -800,6 +809,8 @@ module Aws::SageMaker
800
809
  CreateTrainingJobRequest.add_member(:tags, Shapes::ShapeRef.new(shape: TagList, location_name: "Tags"))
801
810
  CreateTrainingJobRequest.add_member(:enable_network_isolation, Shapes::ShapeRef.new(shape: Boolean, location_name: "EnableNetworkIsolation"))
802
811
  CreateTrainingJobRequest.add_member(:enable_inter_container_traffic_encryption, Shapes::ShapeRef.new(shape: Boolean, location_name: "EnableInterContainerTrafficEncryption"))
812
+ CreateTrainingJobRequest.add_member(:enable_managed_spot_training, Shapes::ShapeRef.new(shape: Boolean, location_name: "EnableManagedSpotTraining"))
813
+ CreateTrainingJobRequest.add_member(:checkpoint_config, Shapes::ShapeRef.new(shape: CheckpointConfig, location_name: "CheckpointConfig"))
803
814
  CreateTrainingJobRequest.struct_class = Types::CreateTrainingJobRequest
804
815
 
805
816
  CreateTrainingJobResponse.add_member(:training_job_arn, Shapes::ShapeRef.new(shape: TrainingJobArn, required: true, location_name: "TrainingJobArn"))
@@ -1088,6 +1099,10 @@ module Aws::SageMaker
1088
1099
  DescribeTrainingJobResponse.add_member(:final_metric_data_list, Shapes::ShapeRef.new(shape: FinalMetricDataList, location_name: "FinalMetricDataList"))
1089
1100
  DescribeTrainingJobResponse.add_member(:enable_network_isolation, Shapes::ShapeRef.new(shape: Boolean, location_name: "EnableNetworkIsolation"))
1090
1101
  DescribeTrainingJobResponse.add_member(:enable_inter_container_traffic_encryption, Shapes::ShapeRef.new(shape: Boolean, location_name: "EnableInterContainerTrafficEncryption"))
1102
+ DescribeTrainingJobResponse.add_member(:enable_managed_spot_training, Shapes::ShapeRef.new(shape: Boolean, location_name: "EnableManagedSpotTraining"))
1103
+ DescribeTrainingJobResponse.add_member(:checkpoint_config, Shapes::ShapeRef.new(shape: CheckpointConfig, location_name: "CheckpointConfig"))
1104
+ DescribeTrainingJobResponse.add_member(:training_time_in_seconds, Shapes::ShapeRef.new(shape: TrainingTimeInSeconds, location_name: "TrainingTimeInSeconds"))
1105
+ DescribeTrainingJobResponse.add_member(:billable_time_in_seconds, Shapes::ShapeRef.new(shape: BillableTimeInSeconds, location_name: "BillableTimeInSeconds"))
1091
1106
  DescribeTrainingJobResponse.struct_class = Types::DescribeTrainingJobResponse
1092
1107
 
1093
1108
  DescribeTransformJobRequest.add_member(:transform_job_name, Shapes::ShapeRef.new(shape: TransformJobName, required: true, location_name: "TransformJobName"))
@@ -1214,6 +1229,8 @@ module Aws::SageMaker
1214
1229
  HyperParameterTrainingJobDefinition.add_member(:stopping_condition, Shapes::ShapeRef.new(shape: StoppingCondition, required: true, location_name: "StoppingCondition"))
1215
1230
  HyperParameterTrainingJobDefinition.add_member(:enable_network_isolation, Shapes::ShapeRef.new(shape: Boolean, location_name: "EnableNetworkIsolation"))
1216
1231
  HyperParameterTrainingJobDefinition.add_member(:enable_inter_container_traffic_encryption, Shapes::ShapeRef.new(shape: Boolean, location_name: "EnableInterContainerTrafficEncryption"))
1232
+ HyperParameterTrainingJobDefinition.add_member(:enable_managed_spot_training, Shapes::ShapeRef.new(shape: Boolean, location_name: "EnableManagedSpotTraining"))
1233
+ HyperParameterTrainingJobDefinition.add_member(:checkpoint_config, Shapes::ShapeRef.new(shape: CheckpointConfig, location_name: "CheckpointConfig"))
1217
1234
  HyperParameterTrainingJobDefinition.struct_class = Types::HyperParameterTrainingJobDefinition
1218
1235
 
1219
1236
  HyperParameterTrainingJobSummaries.member = Shapes::ShapeRef.new(shape: HyperParameterTrainingJobSummary)
@@ -1898,6 +1915,7 @@ module Aws::SageMaker
1898
1915
  StopTransformJobRequest.struct_class = Types::StopTransformJobRequest
1899
1916
 
1900
1917
  StoppingCondition.add_member(:max_runtime_in_seconds, Shapes::ShapeRef.new(shape: MaxRuntimeInSeconds, location_name: "MaxRuntimeInSeconds"))
1918
+ StoppingCondition.add_member(:max_wait_time_in_seconds, Shapes::ShapeRef.new(shape: MaxWaitTimeInSeconds, location_name: "MaxWaitTimeInSeconds"))
1901
1919
  StoppingCondition.struct_class = Types::StoppingCondition
1902
1920
 
1903
1921
  Subnets.member = Shapes::ShapeRef.new(shape: SubnetId)
@@ -267,6 +267,7 @@ module Aws::SageMaker
267
267
  # },
268
268
  # stopping_condition: { # required
269
269
  # max_runtime_in_seconds: 1,
270
+ # max_wait_time_in_seconds: 1,
270
271
  # },
271
272
  # },
272
273
  # transform_job_definition: {
@@ -373,6 +374,7 @@ module Aws::SageMaker
373
374
  # },
374
375
  # stopping_condition: { # required
375
376
  # max_runtime_in_seconds: 1,
377
+ # max_wait_time_in_seconds: 1,
376
378
  # },
377
379
  # },
378
380
  # transform_job_definition: {
@@ -507,6 +509,21 @@ module Aws::SageMaker
507
509
  #
508
510
  # `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-TextMultiClass`
509
511
  #
512
+ # * *Named entity eecognition* - Groups similar selections and
513
+ # calculates aggregate boundaries, resolving to most-assigned label.
514
+ #
515
+ # `arn:aws:lambda:us-east-1:432418664414:function:ACS-NamedEntityRecognition`
516
+ #
517
+ # `arn:aws:lambda:us-east-2:266458841044:function:ACS-NamedEntityRecognition`
518
+ #
519
+ # `arn:aws:lambda:us-west-2:081040173940:function:ACS-NamedEntityRecognition`
520
+ #
521
+ # `arn:aws:lambda:eu-west-1:568282634449:function:ACS-NamedEntityRecognition`
522
+ #
523
+ # `arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-NamedEntityRecognition`
524
+ #
525
+ # `arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-NamedEntityRecognition`
526
+ #
510
527
  # For more information, see [Annotation Consolidation][1].
511
528
  #
512
529
  #
@@ -731,6 +748,35 @@ module Aws::SageMaker
731
748
  include Aws::Structure
732
749
  end
733
750
 
751
+ # Contains information about the output location for managed spot
752
+ # training checkpoint data.
753
+ #
754
+ # @note When making an API call, you may pass CheckpointConfig
755
+ # data as a hash:
756
+ #
757
+ # {
758
+ # s3_uri: "S3Uri", # required
759
+ # local_path: "DirectoryPath",
760
+ # }
761
+ #
762
+ # @!attribute [rw] s3_uri
763
+ # Identifies the S3 path where you want Amazon SageMaker to store
764
+ # checkpoints. For example, `s3://bucket-name/key-name-prefix`.
765
+ # @return [String]
766
+ #
767
+ # @!attribute [rw] local_path
768
+ # (Optional) The local directory where checkpoints are written. The
769
+ # default directory is `/opt/ml/checkpoints/`.
770
+ # @return [String]
771
+ #
772
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CheckpointConfig AWS API Documentation
773
+ #
774
+ class CheckpointConfig < Struct.new(
775
+ :s3_uri,
776
+ :local_path)
777
+ include Aws::Structure
778
+ end
779
+
734
780
  # Specifies summary information about a Git repository.
735
781
  #
736
782
  # @!attribute [rw] code_repository_name
@@ -1162,6 +1208,7 @@ module Aws::SageMaker
1162
1208
  # },
1163
1209
  # stopping_condition: { # required
1164
1210
  # max_runtime_in_seconds: 1,
1211
+ # max_wait_time_in_seconds: 1,
1165
1212
  # },
1166
1213
  # },
1167
1214
  # transform_job_definition: {
@@ -1335,10 +1382,11 @@ module Aws::SageMaker
1335
1382
  # },
1336
1383
  # output_config: { # required
1337
1384
  # s3_output_location: "S3Uri", # required
1338
- # target_device: "lambda", # required, accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, jetson_tx1, jetson_tx2, jetson_nano, rasp3b, deeplens, rk3399, rk3288, sbe_c
1385
+ # target_device: "lambda", # required, accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, jetson_tx1, jetson_tx2, jetson_nano, rasp3b, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603
1339
1386
  # },
1340
1387
  # stopping_condition: { # required
1341
1388
  # max_runtime_in_seconds: 1,
1389
+ # max_wait_time_in_seconds: 1,
1342
1390
  # },
1343
1391
  # }
1344
1392
  #
@@ -1643,9 +1691,15 @@ module Aws::SageMaker
1643
1691
  # },
1644
1692
  # stopping_condition: { # required
1645
1693
  # max_runtime_in_seconds: 1,
1694
+ # max_wait_time_in_seconds: 1,
1646
1695
  # },
1647
1696
  # enable_network_isolation: false,
1648
1697
  # enable_inter_container_traffic_encryption: false,
1698
+ # enable_managed_spot_training: false,
1699
+ # checkpoint_config: {
1700
+ # s3_uri: "S3Uri", # required
1701
+ # local_path: "DirectoryPath",
1702
+ # },
1649
1703
  # },
1650
1704
  # warm_start_config: {
1651
1705
  # parent_hyper_parameter_tuning_jobs: [ # required
@@ -2530,6 +2584,7 @@ module Aws::SageMaker
2530
2584
  # },
2531
2585
  # stopping_condition: { # required
2532
2586
  # max_runtime_in_seconds: 1,
2587
+ # max_wait_time_in_seconds: 1,
2533
2588
  # },
2534
2589
  # tags: [
2535
2590
  # {
@@ -2539,6 +2594,11 @@ module Aws::SageMaker
2539
2594
  # ],
2540
2595
  # enable_network_isolation: false,
2541
2596
  # enable_inter_container_traffic_encryption: false,
2597
+ # enable_managed_spot_training: false,
2598
+ # checkpoint_config: {
2599
+ # s3_uri: "S3Uri", # required
2600
+ # local_path: "DirectoryPath",
2601
+ # },
2542
2602
  # }
2543
2603
  #
2544
2604
  # @!attribute [rw] training_job_name
@@ -2693,6 +2753,25 @@ module Aws::SageMaker
2693
2753
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/train-encrypt.html
2694
2754
  # @return [Boolean]
2695
2755
  #
2756
+ # @!attribute [rw] enable_managed_spot_training
2757
+ # To train models using managed spot training, choose `True`. Managed
2758
+ # spot training provides a fully managed and scalable infrastructure
2759
+ # for training machine learning models. this option is useful when
2760
+ # training jobs can be interrupted and when there is flexibility when
2761
+ # the training job is run.
2762
+ #
2763
+ # The complete and intermediate results of jobs are stored in an
2764
+ # Amazon S3 bucket, and can be used as a starting point to train
2765
+ # models incrementally. Amazon SageMaker provides metrics and logs in
2766
+ # CloudWatch. They can be used to see when managed spot training jobs
2767
+ # are running, interrupted, resumed, or completed.
2768
+ # @return [Boolean]
2769
+ #
2770
+ # @!attribute [rw] checkpoint_config
2771
+ # Contains information about the output location for managed spot
2772
+ # training checkpoint data.
2773
+ # @return [Types::CheckpointConfig]
2774
+ #
2696
2775
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateTrainingJobRequest AWS API Documentation
2697
2776
  #
2698
2777
  class CreateTrainingJobRequest < Struct.new(
@@ -2707,7 +2786,9 @@ module Aws::SageMaker
2707
2786
  :stopping_condition,
2708
2787
  :tags,
2709
2788
  :enable_network_isolation,
2710
- :enable_inter_container_traffic_encryption)
2789
+ :enable_inter_container_traffic_encryption,
2790
+ :enable_managed_spot_training,
2791
+ :checkpoint_config)
2711
2792
  include Aws::Structure
2712
2793
  end
2713
2794
 
@@ -2849,13 +2930,18 @@ module Aws::SageMaker
2849
2930
  # @return [Types::TransformResources]
2850
2931
  #
2851
2932
  # @!attribute [rw] data_processing
2852
- # The data structure used for combining the input data and inference
2853
- # in the output file. For more information, see [Batch Transform I/O
2854
- # Join][1].
2933
+ # The data structure used to specify the data to be used for inference
2934
+ # in a batch transform job and to associate the data that is relevant
2935
+ # to the prediction results in the output. The input filter provided
2936
+ # allows you to exclude input data that is not needed for inference in
2937
+ # a batch transform job. The output filter provided allows you to
2938
+ # include input data relevant to interpreting the predictions in the
2939
+ # output from the job. For more information, see [Associate Prediction
2940
+ # Results with their Corresponding Input Records][1].
2855
2941
  #
2856
2942
  #
2857
2943
  #
2858
- # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-io-join.html
2944
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html
2859
2945
  # @return [Types::DataProcessing]
2860
2946
  #
2861
2947
  # @!attribute [rw] tags
@@ -2974,15 +3060,18 @@ module Aws::SageMaker
2974
3060
  include Aws::Structure
2975
3061
  end
2976
3062
 
2977
- # The data structure used to combine the input data and transformed data
2978
- # from the batch transform output into a joined dataset and to store it
2979
- # in an output file. It also contains information on how to filter the
2980
- # input data and the joined dataset. For more information, see [Batch
2981
- # Transform I/O Join][1].
3063
+ # The data structure used to specify the data to be used for inference
3064
+ # in a batch transform job and to associate the data that is relevant to
3065
+ # the prediction results in the output. The input filter provided allows
3066
+ # you to exclude input data that is not needed for inference in a batch
3067
+ # transform job. The output filter provided allows you to include input
3068
+ # data relevant to interpreting the predictions in the output from the
3069
+ # job. For more information, see [Associate Prediction Results with
3070
+ # their Corresponding Input Records][1].
2982
3071
  #
2983
3072
  #
2984
3073
  #
2985
- # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-io-join.html
3074
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html
2986
3075
  #
2987
3076
  # @note When making an API call, you may pass DataProcessing
2988
3077
  # data as a hash:
@@ -2994,24 +3083,32 @@ module Aws::SageMaker
2994
3083
  # }
2995
3084
  #
2996
3085
  # @!attribute [rw] input_filter
2997
- # A JSONPath expression used to select a portion of the input data to
2998
- # pass to the algorithm. Use the `InputFilter` parameter to exclude
2999
- # fields, such as an ID column, from the input. If you want Amazon
3000
- # SageMaker to pass the entire input dataset to the algorithm, accept
3001
- # the default value `$`.
3086
+ # A [JSONPath][1] expression used to select a portion of the input
3087
+ # data to pass to the algorithm. Use the `InputFilter` parameter to
3088
+ # exclude fields, such as an ID column, from the input. If you want
3089
+ # Amazon SageMaker to pass the entire input dataset to the algorithm,
3090
+ # accept the default value `$`.
3002
3091
  #
3003
3092
  # Examples: `"$"`, `"$[1:]"`, `"$.features"`
3093
+ #
3094
+ #
3095
+ #
3096
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html#data-processing-operators
3004
3097
  # @return [String]
3005
3098
  #
3006
3099
  # @!attribute [rw] output_filter
3007
- # A JSONPath expression used to select a portion of the joined dataset
3008
- # to save in the output file for a batch transform job. If you want
3009
- # Amazon SageMaker to store the entire input dataset in the output
3010
- # file, leave the default value, `$`. If you specify indexes that
3011
- # aren't within the dimension size of the joined dataset, you get an
3012
- # error.
3100
+ # A [JSONPath][1] expression used to select a portion of the joined
3101
+ # dataset to save in the output file for a batch transform job. If you
3102
+ # want Amazon SageMaker to store the entire input dataset in the
3103
+ # output file, leave the default value, `$`. If you specify indexes
3104
+ # that aren't within the dimension size of the joined dataset, you
3105
+ # get an error.
3106
+ #
3107
+ # Examples: `"$"`, `"$[0,5:]"`, `"$['id','SageMakerOutput']"`
3108
+ #
3013
3109
  #
3014
- # Examples: `"$"`, `"$[0,5:]"`, `"$.['id','SageMakerOutput']"`
3110
+ #
3111
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html#data-processing-operators
3015
3112
  # @return [String]
3016
3113
  #
3017
3114
  # @!attribute [rw] join_source
@@ -3019,9 +3116,7 @@ module Aws::SageMaker
3019
3116
  # The valid values are `None` and `Input` The default value is `None`
3020
3117
  # which specifies not to join the input with the transformed data. If
3021
3118
  # you want the batch transform job to join the original input data
3022
- # with the transformed data, set `JoinSource` to `Input`. To join
3023
- # input and output, the batch transform job must satisfy the
3024
- # [Requirements for Using Batch Transform I/O Join][1].
3119
+ # with the transformed data, set `JoinSource` to `Input`.
3025
3120
  #
3026
3121
  # For JSON or JSONLines objects, such as a JSON array, Amazon
3027
3122
  # SageMaker adds the transformed data to the input JSON object in an
@@ -3035,10 +3130,6 @@ module Aws::SageMaker
3035
3130
  # the input data at the end of the input data and stores it in the
3036
3131
  # output file. The joined data has the joined input data followed by
3037
3132
  # the transformed data and the output is a CSV file.
3038
- #
3039
- #
3040
- #
3041
- # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-io-join.html#batch-transform-io-join-requirements
3042
3133
  # @return [String]
3043
3134
  #
3044
3135
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DataProcessing AWS API Documentation
@@ -4505,6 +4596,12 @@ module Aws::SageMaker
4505
4596
  # : * `MaxRuntimeExceeded` - The job stopped because it exceeded the
4506
4597
  # maximum allowed runtime.
4507
4598
  #
4599
+ # * `MaxWaitTmeExceeded` - The job stopped because it exceeded the
4600
+ # maximum allowed wait time.
4601
+ #
4602
+ # * `Interrupted` - The job stopped because the managed spot
4603
+ # training instances were interrupted.
4604
+ #
4508
4605
  # * `Stopped` - The training job has stopped.
4509
4606
  #
4510
4607
  # Stopping
@@ -4568,9 +4665,10 @@ module Aws::SageMaker
4568
4665
  # @return [Types::VpcConfig]
4569
4666
  #
4570
4667
  # @!attribute [rw] stopping_condition
4571
- # Specifies a limit to how long a model training job can run. When the
4572
- # job reaches the time limit, Amazon SageMaker ends the training job.
4573
- # Use this API to cap model training costs.
4668
+ # Specifies a limit to how long a model training job can run. It also
4669
+ # specifies the maximum time to wait for a spot instance. When the job
4670
+ # reaches the time limit, Amazon SageMaker ends the training job. Use
4671
+ # this API to cap model training costs.
4574
4672
  #
4575
4673
  # To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
4576
4674
  # signal, which delays job termination for 120 seconds. Algorithms can
@@ -4640,6 +4738,29 @@ module Aws::SageMaker
4640
4738
  # in distributed training.
4641
4739
  # @return [Boolean]
4642
4740
  #
4741
+ # @!attribute [rw] enable_managed_spot_training
4742
+ # A Boolean indicating whether managed spot training is enabled
4743
+ # (`True`) or not (`False`).
4744
+ # @return [Boolean]
4745
+ #
4746
+ # @!attribute [rw] checkpoint_config
4747
+ # Contains information about the output location for managed spot
4748
+ # training checkpoint data.
4749
+ # @return [Types::CheckpointConfig]
4750
+ #
4751
+ # @!attribute [rw] training_time_in_seconds
4752
+ # The training time in seconds.
4753
+ # @return [Integer]
4754
+ #
4755
+ # @!attribute [rw] billable_time_in_seconds
4756
+ # The billable time in seconds.
4757
+ #
4758
+ # You can calculate the savings from using managed spot training using
4759
+ # the formula `(1 - BillableTimeInSeconds / TrainingTimeInSeconds) *
4760
+ # 100`. For example, if `BillableTimeInSeconds` is 100 and
4761
+ # `TrainingTimeInSeconds` is 500, the savings is 80%.
4762
+ # @return [Integer]
4763
+ #
4643
4764
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeTrainingJobResponse AWS API Documentation
4644
4765
  #
4645
4766
  class DescribeTrainingJobResponse < Struct.new(
@@ -4666,7 +4787,11 @@ module Aws::SageMaker
4666
4787
  :secondary_status_transitions,
4667
4788
  :final_metric_data_list,
4668
4789
  :enable_network_isolation,
4669
- :enable_inter_container_traffic_encryption)
4790
+ :enable_inter_container_traffic_encryption,
4791
+ :enable_managed_spot_training,
4792
+ :checkpoint_config,
4793
+ :training_time_in_seconds,
4794
+ :billable_time_in_seconds)
4670
4795
  include Aws::Structure
4671
4796
  end
4672
4797
 
@@ -4778,15 +4903,18 @@ module Aws::SageMaker
4778
4903
  # @return [String]
4779
4904
  #
4780
4905
  # @!attribute [rw] data_processing
4781
- # The data structure used to combine the input data and transformed
4782
- # data from the batch transform output into a joined dataset and to
4783
- # store it in an output file. It also contains information on how to
4784
- # filter the input data and the joined dataset. For more information,
4785
- # see [Batch Transform I/O Join][1].
4906
+ # The data structure used to specify the data to be used for inference
4907
+ # in a batch transform job and to associate the data that is relevant
4908
+ # to the prediction results in the output. The input filter provided
4909
+ # allows you to exclude input data that is not needed for inference in
4910
+ # a batch transform job. The output filter provided allows you to
4911
+ # include input data relevant to interpreting the predictions in the
4912
+ # output from the job. For more information, see [Associate Prediction
4913
+ # Results with their Corresponding Input Records][1].
4786
4914
  #
4787
4915
  #
4788
4916
  #
4789
- # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-io-join.html
4917
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-data-processing.html
4790
4918
  # @return [Types::DataProcessing]
4791
4919
  #
4792
4920
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeTransformJobResponse AWS API Documentation
@@ -5283,6 +5411,8 @@ module Aws::SageMaker
5283
5411
  #
5284
5412
  # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-TextMultiClass`
5285
5413
  #
5414
+ # * `arn:aws:lambda:us-east-1:432418664414:function:PRE-NamedEntityRecognition`
5415
+ #
5286
5416
  # **US East (Ohio) (us-east-2):**
5287
5417
  #
5288
5418
  # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-BoundingBox`
@@ -5293,6 +5423,8 @@ module Aws::SageMaker
5293
5423
  #
5294
5424
  # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-TextMultiClass`
5295
5425
  #
5426
+ # * `arn:aws:lambda:us-east-2:266458841044:function:PRE-NamedEntityRecognition`
5427
+ #
5296
5428
  # **US West (Oregon) (us-west-2):**
5297
5429
  #
5298
5430
  # * `arn:aws:lambda:us-west-2:081040173940:function:PRE-BoundingBox`
@@ -5303,6 +5435,8 @@ module Aws::SageMaker
5303
5435
  #
5304
5436
  # * `arn:aws:lambda:us-west-2:081040173940:function:PRE-TextMultiClass`
5305
5437
  #
5438
+ # * `arn:aws:lambda:us-west-2:081040173940:function:PRE-NamedEntityRecognition`
5439
+ #
5306
5440
  # **EU (Ireland) (eu-west-1):**
5307
5441
  #
5308
5442
  # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-BoundingBox`
@@ -5313,6 +5447,8 @@ module Aws::SageMaker
5313
5447
  #
5314
5448
  # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-TextMultiClass`
5315
5449
  #
5450
+ # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-NamedEntityRecognition`
5451
+ #
5316
5452
  # **Asia Pacific (Tokyo) (ap-northeast-1):**
5317
5453
  #
5318
5454
  # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-BoundingBox`
@@ -5323,7 +5459,9 @@ module Aws::SageMaker
5323
5459
  #
5324
5460
  # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-TextMultiClass`
5325
5461
  #
5326
- # **Asia Pacific (Sydney) (ap-southeast-1):**
5462
+ # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-NamedEntityRecognition`
5463
+ #
5464
+ # **Asia Pacific (Sydney) (ap-southeast-2):**
5327
5465
  #
5328
5466
  # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-BoundingBox`
5329
5467
  #
@@ -5332,6 +5470,8 @@ module Aws::SageMaker
5332
5470
  # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-SemanticSegmentation`
5333
5471
  #
5334
5472
  # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-TextMultiClass`
5473
+ #
5474
+ # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-NamedEntityRecognition`
5335
5475
  # @return [String]
5336
5476
  #
5337
5477
  # @!attribute [rw] task_keywords
@@ -5356,8 +5496,10 @@ module Aws::SageMaker
5356
5496
  # @return [Integer]
5357
5497
  #
5358
5498
  # @!attribute [rw] task_availability_lifetime_in_seconds
5359
- # The length of time that a task remains available for labelling by
5360
- # human workers.
5499
+ # The length of time that a task remains available for labeling by
5500
+ # human workers. **If you choose the Amazon Mechanical Turk workforce,
5501
+ # the maximum is 12 hours (43200)**. For private and vendor
5502
+ # workforces, the maximum is as listed.
5361
5503
  # @return [Integer]
5362
5504
  #
5363
5505
  # @!attribute [rw] max_concurrent_task_count
@@ -5371,7 +5513,8 @@ module Aws::SageMaker
5371
5513
  # @return [Types::AnnotationConsolidationConfig]
5372
5514
  #
5373
5515
  # @!attribute [rw] public_workforce_task_price
5374
- # The price that you pay for each task performed by a public worker.
5516
+ # The price that you pay for each task performed by an Amazon
5517
+ # Mechanical Turk worker.
5375
5518
  # @return [Types::PublicWorkforceTaskPrice]
5376
5519
  #
5377
5520
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HumanTaskConfig AWS API Documentation
@@ -5596,9 +5739,15 @@ module Aws::SageMaker
5596
5739
  # },
5597
5740
  # stopping_condition: { # required
5598
5741
  # max_runtime_in_seconds: 1,
5742
+ # max_wait_time_in_seconds: 1,
5599
5743
  # },
5600
5744
  # enable_network_isolation: false,
5601
5745
  # enable_inter_container_traffic_encryption: false,
5746
+ # enable_managed_spot_training: false,
5747
+ # checkpoint_config: {
5748
+ # s3_uri: "S3Uri", # required
5749
+ # local_path: "DirectoryPath",
5750
+ # },
5602
5751
  # }
5603
5752
  #
5604
5753
  # @!attribute [rw] static_hyper_parameters
@@ -5653,8 +5802,10 @@ module Aws::SageMaker
5653
5802
  #
5654
5803
  # @!attribute [rw] stopping_condition
5655
5804
  # Specifies a limit to how long a model hyperparameter training job
5656
- # can run. When the job reaches the time limit, Amazon SageMaker ends
5657
- # the training job. Use this API to cap model training costs.
5805
+ # can run. It also specifies how long you are willing to wait for a
5806
+ # managed spot training job to complete. When the job reaches the a
5807
+ # limit, Amazon SageMaker ends the training job. Use this API to cap
5808
+ # model training costs.
5658
5809
  # @return [Types::StoppingCondition]
5659
5810
  #
5660
5811
  # @!attribute [rw] enable_network_isolation
@@ -5681,6 +5832,16 @@ module Aws::SageMaker
5681
5832
  # in distributed training.
5682
5833
  # @return [Boolean]
5683
5834
  #
5835
+ # @!attribute [rw] enable_managed_spot_training
5836
+ # A Boolean indicating whether managed spot training is enabled
5837
+ # (`True`) or not (`False`).
5838
+ # @return [Boolean]
5839
+ #
5840
+ # @!attribute [rw] checkpoint_config
5841
+ # Contains information about the output location for managed spot
5842
+ # training checkpoint data.
5843
+ # @return [Types::CheckpointConfig]
5844
+ #
5684
5845
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HyperParameterTrainingJobDefinition AWS API Documentation
5685
5846
  #
5686
5847
  class HyperParameterTrainingJobDefinition < Struct.new(
@@ -5693,7 +5854,9 @@ module Aws::SageMaker
5693
5854
  :resource_config,
5694
5855
  :stopping_condition,
5695
5856
  :enable_network_isolation,
5696
- :enable_inter_container_traffic_encryption)
5857
+ :enable_inter_container_traffic_encryption,
5858
+ :enable_managed_spot_training,
5859
+ :checkpoint_config)
5697
5860
  include Aws::Structure
5698
5861
  end
5699
5862
 
@@ -6624,8 +6787,18 @@ module Aws::SageMaker
6624
6787
  # }
6625
6788
  #
6626
6789
  # @!attribute [rw] volume_kms_key_id
6627
- # The AWS Key Management Service key ID for the key used to encrypt
6628
- # the output data, if any.
6790
+ # The AWS Key Management Service (AWS KMS) key that Amazon SageMaker
6791
+ # uses to encrypt data on the storage volume attached to the ML
6792
+ # compute instance(s) that run the training job. The `VolumeKmsKeyId`
6793
+ # can be any of the following formats:
6794
+ #
6795
+ # * // KMS Key ID
6796
+ #
6797
+ # `"1234abcd-12ab-34cd-56ef-1234567890ab"`
6798
+ #
6799
+ # * // Amazon Resource Name (ARN) of a KMS Key
6800
+ #
6801
+ # `"arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"`
6629
6802
  # @return [String]
6630
6803
  #
6631
6804
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobResourceConfig AWS API Documentation
@@ -8375,7 +8548,7 @@ module Aws::SageMaker
8375
8548
  end
8376
8549
 
8377
8550
  # Specifies a metric that the training algorithm writes to `stderr` or
8378
- # `stdout`. Amazon SageMakerhyperparameter tuning captures all defined
8551
+ # `stdout` . Amazon SageMakerhyperparameter tuning captures all defined
8379
8552
  # metrics. You specify one metric that a hyperparameter tuning job uses
8380
8553
  # as its objective metric to choose the best training job.
8381
8554
  #
@@ -8741,7 +8914,7 @@ module Aws::SageMaker
8741
8914
  #
8742
8915
  # @!attribute [rw] nested_property_name
8743
8916
  # The name of the property to use in the nested filters. The value
8744
- # must match a listed property name, such as `InputDataConfig`.
8917
+ # must match a listed property name, such as `InputDataConfig` .
8745
8918
  # @return [String]
8746
8919
  #
8747
8920
  # @!attribute [rw] filters
@@ -8984,7 +9157,7 @@ module Aws::SageMaker
8984
9157
  #
8985
9158
  # {
8986
9159
  # s3_output_location: "S3Uri", # required
8987
- # target_device: "lambda", # required, accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, jetson_tx1, jetson_tx2, jetson_nano, rasp3b, deeplens, rk3399, rk3288, sbe_c
9160
+ # target_device: "lambda", # required, accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, jetson_tx1, jetson_tx2, jetson_nano, rasp3b, deeplens, rk3399, rk3288, aisage, sbe_c, qcs605, qcs603
8988
9161
  # }
8989
9162
  #
8990
9163
  # @!attribute [rw] s3_output_location
@@ -9361,7 +9534,8 @@ module Aws::SageMaker
9361
9534
  # for each task performed.
9362
9535
  #
9363
9536
  # Use one of the following prices for bounding box tasks. Prices are in
9364
- # US dollars.
9537
+ # US dollars and should be based on the complexity of the task; the
9538
+ # longer it takes in your initial testing, the more you should offer.
9365
9539
  #
9366
9540
  # * 0\.036
9367
9541
  #
@@ -9449,8 +9623,8 @@ module Aws::SageMaker
9449
9623
  # }
9450
9624
  #
9451
9625
  # @!attribute [rw] amount_in_usd
9452
- # Defines the amount of money paid to a worker in United States
9453
- # dollars.
9626
+ # Defines the amount of money paid to an Amazon Mechanical Turk worker
9627
+ # in United States dollars.
9454
9628
  # @return [Types::USD]
9455
9629
  #
9456
9630
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/PublicWorkforceTaskPrice AWS API Documentation
@@ -10356,8 +10530,10 @@ module Aws::SageMaker
10356
10530
  end
10357
10531
 
10358
10532
  # Specifies a limit to how long a model training or compilation job can
10359
- # run. When the job reaches the time limit, Amazon SageMaker ends the
10360
- # training or compilation job. Use this API to cap model training costs.
10533
+ # run. It also specifies how long you are willing to wait for a managed
10534
+ # spot training job to complete. When the job reaches the time limit,
10535
+ # Amazon SageMaker ends the training or compilation job. Use this API to
10536
+ # cap model training costs.
10361
10537
  #
10362
10538
  # To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
10363
10539
  # signal, which delays job termination for 120 seconds. Algorithms can
@@ -10383,6 +10559,7 @@ module Aws::SageMaker
10383
10559
  #
10384
10560
  # {
10385
10561
  # max_runtime_in_seconds: 1,
10562
+ # max_wait_time_in_seconds: 1,
10386
10563
  # }
10387
10564
  #
10388
10565
  # @!attribute [rw] max_runtime_in_seconds
@@ -10392,10 +10569,19 @@ module Aws::SageMaker
10392
10569
  # value is 1 day. The maximum value is 28 days.
10393
10570
  # @return [Integer]
10394
10571
  #
10572
+ # @!attribute [rw] max_wait_time_in_seconds
10573
+ # The maximum length of time, in seconds, how long you are willing to
10574
+ # wait for a managed spot training job to complete. It is the amount
10575
+ # of time spent waiting for Spot capacity plus the amount of time the
10576
+ # training job runs. It must be equal to or greater than
10577
+ # `MaxRuntimeInSeconds`.
10578
+ # @return [Integer]
10579
+ #
10395
10580
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/StoppingCondition AWS API Documentation
10396
10581
  #
10397
10582
  class StoppingCondition < Struct.new(
10398
- :max_runtime_in_seconds)
10583
+ :max_runtime_in_seconds,
10584
+ :max_wait_time_in_seconds)
10399
10585
  include Aws::Structure
10400
10586
  end
10401
10587
 
@@ -10773,6 +10959,7 @@ module Aws::SageMaker
10773
10959
  # },
10774
10960
  # stopping_condition: { # required
10775
10961
  # max_runtime_in_seconds: 1,
10962
+ # max_wait_time_in_seconds: 1,
10776
10963
  # },
10777
10964
  # }
10778
10965
  #
@@ -11380,7 +11567,7 @@ module Aws::SageMaker
11380
11567
  # @!attribute [rw] instance_type
11381
11568
  # The ML compute instance type for the transform job. If you are using
11382
11569
  # built-in algorithms to transform moderately sized datasets, we
11383
- # recommend using ml.m4.xlarge or `ml.m5.large`instance types.
11570
+ # recommend using ml.m4.xlarge or `ml.m5.large` instance types.
11384
11571
  # @return [String]
11385
11572
  #
11386
11573
  # @!attribute [rw] instance_count
@@ -11869,12 +12056,13 @@ module Aws::SageMaker
11869
12056
  #
11870
12057
  # @!attribute [rw] on_create
11871
12058
  # The shell script that runs only once, when you create a notebook
11872
- # instance
12059
+ # instance. The shell script must be a base64-encoded string.
11873
12060
  # @return [Array<Types::NotebookInstanceLifecycleHook>]
11874
12061
  #
11875
12062
  # @!attribute [rw] on_start
11876
12063
  # The shell script that runs every time you start a notebook instance,
11877
- # including when you create the notebook instance.
12064
+ # including when you create the notebook instance. The shell script
12065
+ # must be a base64-encoded string.
11878
12066
  # @return [Array<Types::NotebookInstanceLifecycleHook>]
11879
12067
  #
11880
12068
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateNotebookInstanceLifecycleConfigInput AWS API Documentation
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-sagemaker
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.41.0
4
+ version: 1.42.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2019-07-25 00:00:00.000000000 Z
11
+ date: 2019-08-20 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core