aws-sdk-sagemaker 1.37.0 → 1.38.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/lib/aws-sdk-sagemaker.rb +1 -1
- data/lib/aws-sdk-sagemaker/client.rb +48 -26
- data/lib/aws-sdk-sagemaker/client_api.rb +10 -0
- data/lib/aws-sdk-sagemaker/types.rb +222 -65
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA1:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 021e6103c08986b3ce6d16c9b304862da80334a1
|
4
|
+
data.tar.gz: 00610c16334164df1821f4059bc54a3fd437a41e
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 13070718845326b45cf17a97e5c1e9719cbd7f3f9278a9c605e0e631fb28144caa7843c49050f16348601bc1e50625622f5d07c809fccbbeffefb35a96f013f9
|
7
|
+
data.tar.gz: a2a084aabeeccd690c970bb6312605b78d7fff3634e821acb7d8e48467d639254c243291ca4bd150a4dacfbd91b6ae93c94870c6230138e1e3115b7fe1a7ec51
|
data/lib/aws-sdk-sagemaker.rb
CHANGED
@@ -665,7 +665,9 @@ module Aws::SageMaker
|
|
665
665
|
# and the target device the model runs on.
|
666
666
|
#
|
667
667
|
# @option params [required, Types::StoppingCondition] :stopping_condition
|
668
|
-
#
|
668
|
+
# Specifies a limit to how long a model compilation job can run. When
|
669
|
+
# the job reaches the time limit, Amazon SageMaker ends the compilation
|
670
|
+
# job. Use this API to cap model training costs.
|
669
671
|
#
|
670
672
|
# @return [Types::CreateCompilationJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
|
671
673
|
#
|
@@ -683,7 +685,7 @@ module Aws::SageMaker
|
|
683
685
|
# },
|
684
686
|
# output_config: { # required
|
685
687
|
# s3_output_location: "S3Uri", # required
|
686
|
-
# target_device: "lambda", # required, accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, jetson_tx1, jetson_tx2, jetson_nano, rasp3b, deeplens, rk3399, rk3288
|
688
|
+
# target_device: "lambda", # required, accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, jetson_tx1, jetson_tx2, jetson_nano, rasp3b, deeplens, rk3399, rk3288, sbe_c
|
687
689
|
# },
|
688
690
|
# stopping_condition: { # required
|
689
691
|
# max_runtime_in_seconds: 1,
|
@@ -1841,11 +1843,10 @@ module Aws::SageMaker
|
|
1841
1843
|
# showing the Jupyter server home page from the notebook instance. The
|
1842
1844
|
# console uses this API to get the URL and show the page.
|
1843
1845
|
#
|
1844
|
-
#
|
1845
|
-
#
|
1846
|
-
#
|
1847
|
-
#
|
1848
|
-
# Management user, group, or role used to access the notebook instance.
|
1846
|
+
# IAM authorization policies for this API are also enforced for every
|
1847
|
+
# HTTP request and WebSocket frame that attempts to connect to the
|
1848
|
+
# notebook instance.For example, you can restrict access to this API and
|
1849
|
+
# to the URL that it returns to a list of IP addresses that you specify.
|
1849
1850
|
# Use the `NotIpAddress` condition operator and the `aws:SourceIP`
|
1850
1851
|
# condition context key to specify the list of IP addresses that you
|
1851
1852
|
# want to have access to the notebook instance. For more information,
|
@@ -1906,9 +1907,10 @@ module Aws::SageMaker
|
|
1906
1907
|
# * `AlgorithmSpecification` - Identifies the training algorithm to use.
|
1907
1908
|
#
|
1908
1909
|
# * `HyperParameters` - Specify these algorithm-specific parameters to
|
1909
|
-
#
|
1910
|
-
#
|
1911
|
-
#
|
1910
|
+
# enable the estimation of model parameters during training.
|
1911
|
+
# Hyperparameters can be tuned to optimize this learning process. For
|
1912
|
+
# a list of hyperparameters for each training algorithm provided by
|
1913
|
+
# Amazon SageMaker, see [Algorithms][1].
|
1912
1914
|
#
|
1913
1915
|
# * `InputDataConfig` - Describes the training dataset and the Amazon S3
|
1914
1916
|
# location where it is stored.
|
@@ -1927,7 +1929,7 @@ module Aws::SageMaker
|
|
1927
1929
|
# must grant this role the necessary permissions so that Amazon
|
1928
1930
|
# SageMaker can successfully complete model training.
|
1929
1931
|
#
|
1930
|
-
# * `StoppingCondition` - Sets a
|
1932
|
+
# * `StoppingCondition` - Sets a time limit for training. Use this
|
1931
1933
|
# parameter to cap model training costs.
|
1932
1934
|
#
|
1933
1935
|
# For more information about Amazon SageMaker, see [How It Works][2].
|
@@ -2030,17 +2032,14 @@ module Aws::SageMaker
|
|
2030
2032
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html
|
2031
2033
|
#
|
2032
2034
|
# @option params [required, Types::StoppingCondition] :stopping_condition
|
2033
|
-
#
|
2034
|
-
#
|
2035
|
-
#
|
2036
|
-
#
|
2037
|
-
#
|
2038
|
-
#
|
2039
|
-
#
|
2040
|
-
#
|
2041
|
-
# the intermediate results of the job. This intermediate data is a valid
|
2042
|
-
# model artifact. You can use it to create a model using the
|
2043
|
-
# `CreateModel` API.
|
2035
|
+
# Specifies a limit to how long a model training job can run. When the
|
2036
|
+
# job reaches the time limit, Amazon SageMaker ends the training job.
|
2037
|
+
# Use this API to cap model training costs.
|
2038
|
+
#
|
2039
|
+
# To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
|
2040
|
+
# signal, which delays job termination for 120 seconds. Algorithms can
|
2041
|
+
# use this 120-second window to save the model artifacts, so the results
|
2042
|
+
# of training are not lost.
|
2044
2043
|
#
|
2045
2044
|
# @option params [Array<Types::Tag>] :tags
|
2046
2045
|
# An array of key-value pairs. For more information, see [Using Cost
|
@@ -2262,6 +2261,15 @@ module Aws::SageMaker
|
|
2262
2261
|
# Describes the resources, including ML instance types and ML instance
|
2263
2262
|
# count, to use for the transform job.
|
2264
2263
|
#
|
2264
|
+
# @option params [Types::DataProcessing] :data_processing
|
2265
|
+
# The data structure used for combining the input data and inference in
|
2266
|
+
# the output file. For more information, see [Batch Transform I/O
|
2267
|
+
# Join][1].
|
2268
|
+
#
|
2269
|
+
#
|
2270
|
+
#
|
2271
|
+
# [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-io-join.html
|
2272
|
+
#
|
2265
2273
|
# @option params [Array<Types::Tag>] :tags
|
2266
2274
|
# (Optional) An array of key-value pairs. For more information, see
|
2267
2275
|
# [Using Cost Allocation Tags][1] in the *AWS Billing and Cost
|
@@ -2308,6 +2316,11 @@ module Aws::SageMaker
|
|
2308
2316
|
# instance_count: 1, # required
|
2309
2317
|
# volume_kms_key_id: "KmsKeyId",
|
2310
2318
|
# },
|
2319
|
+
# data_processing: {
|
2320
|
+
# input_filter: "JsonPath",
|
2321
|
+
# output_filter: "JsonPath",
|
2322
|
+
# join_source: "Input", # accepts Input, None
|
2323
|
+
# },
|
2311
2324
|
# tags: [
|
2312
2325
|
# {
|
2313
2326
|
# key: "TagKey", # required
|
@@ -2898,7 +2911,7 @@ module Aws::SageMaker
|
|
2898
2911
|
# resp.input_config.data_input_config #=> String
|
2899
2912
|
# resp.input_config.framework #=> String, one of "TENSORFLOW", "MXNET", "ONNX", "PYTORCH", "XGBOOST"
|
2900
2913
|
# resp.output_config.s3_output_location #=> String
|
2901
|
-
# resp.output_config.target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "jetson_tx1", "jetson_tx2", "jetson_nano", "rasp3b", "deeplens", "rk3399", "rk3288"
|
2914
|
+
# resp.output_config.target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "jetson_tx1", "jetson_tx2", "jetson_nano", "rasp3b", "deeplens", "rk3399", "rk3288", "sbe_c"
|
2902
2915
|
#
|
2903
2916
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeCompilationJob AWS API Documentation
|
2904
2917
|
#
|
@@ -3657,6 +3670,7 @@ module Aws::SageMaker
|
|
3657
3670
|
# * {Types::DescribeTransformJobResponse#transform_start_time #transform_start_time} => Time
|
3658
3671
|
# * {Types::DescribeTransformJobResponse#transform_end_time #transform_end_time} => Time
|
3659
3672
|
# * {Types::DescribeTransformJobResponse#labeling_job_arn #labeling_job_arn} => String
|
3673
|
+
# * {Types::DescribeTransformJobResponse#data_processing #data_processing} => Types::DataProcessing
|
3660
3674
|
#
|
3661
3675
|
# @example Request syntax with placeholder values
|
3662
3676
|
#
|
@@ -3692,6 +3706,9 @@ module Aws::SageMaker
|
|
3692
3706
|
# resp.transform_start_time #=> Time
|
3693
3707
|
# resp.transform_end_time #=> Time
|
3694
3708
|
# resp.labeling_job_arn #=> String
|
3709
|
+
# resp.data_processing.input_filter #=> String
|
3710
|
+
# resp.data_processing.output_filter #=> String
|
3711
|
+
# resp.data_processing.join_source #=> String, one of "Input", "None"
|
3695
3712
|
#
|
3696
3713
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeTransformJob AWS API Documentation
|
3697
3714
|
#
|
@@ -3999,7 +4016,7 @@ module Aws::SageMaker
|
|
3999
4016
|
# resp.compilation_job_summaries[0].creation_time #=> Time
|
4000
4017
|
# resp.compilation_job_summaries[0].compilation_start_time #=> Time
|
4001
4018
|
# resp.compilation_job_summaries[0].compilation_end_time #=> Time
|
4002
|
-
# resp.compilation_job_summaries[0].compilation_target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "jetson_tx1", "jetson_tx2", "jetson_nano", "rasp3b", "deeplens", "rk3399", "rk3288"
|
4019
|
+
# resp.compilation_job_summaries[0].compilation_target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "jetson_tx1", "jetson_tx2", "jetson_nano", "rasp3b", "deeplens", "rk3399", "rk3288", "sbe_c"
|
4003
4020
|
# resp.compilation_job_summaries[0].last_modified_time #=> Time
|
4004
4021
|
# resp.compilation_job_summaries[0].compilation_job_status #=> String, one of "INPROGRESS", "COMPLETED", "FAILED", "STARTING", "STOPPING", "STOPPED"
|
4005
4022
|
# resp.next_token #=> String
|
@@ -5694,7 +5711,12 @@ module Aws::SageMaker
|
|
5694
5711
|
#
|
5695
5712
|
# @option params [Integer] :volume_size_in_gb
|
5696
5713
|
# The size, in GB, of the ML storage volume to attach to the notebook
|
5697
|
-
# instance. The default value is 5 GB.
|
5714
|
+
# instance. The default value is 5 GB. ML storage volumes are encrypted,
|
5715
|
+
# so Amazon SageMaker can't determine the amount of available free
|
5716
|
+
# space on the volume. Because of this, you can increase the volume size
|
5717
|
+
# when you update a notebook instance, but you can't decrease the
|
5718
|
+
# volume size. If you want to decrease the size of the ML storage volume
|
5719
|
+
# in use, create a new notebook instance with the desired size.
|
5698
5720
|
#
|
5699
5721
|
# @option params [String] :default_code_repository
|
5700
5722
|
# The Git repository to associate with the notebook instance as its
|
@@ -5910,7 +5932,7 @@ module Aws::SageMaker
|
|
5910
5932
|
params: params,
|
5911
5933
|
config: config)
|
5912
5934
|
context[:gem_name] = 'aws-sdk-sagemaker'
|
5913
|
-
context[:gem_version] = '1.
|
5935
|
+
context[:gem_version] = '1.38.0'
|
5914
5936
|
Seahorse::Client::Request.new(handlers, context)
|
5915
5937
|
end
|
5916
5938
|
|
@@ -107,6 +107,7 @@ module Aws::SageMaker
|
|
107
107
|
CreateWorkteamResponse = Shapes::StructureShape.new(name: 'CreateWorkteamResponse')
|
108
108
|
CreationTime = Shapes::TimestampShape.new(name: 'CreationTime')
|
109
109
|
DataInputConfig = Shapes::StringShape.new(name: 'DataInputConfig')
|
110
|
+
DataProcessing = Shapes::StructureShape.new(name: 'DataProcessing')
|
110
111
|
DataSource = Shapes::StructureShape.new(name: 'DataSource')
|
111
112
|
DeleteAlgorithmInput = Shapes::StructureShape.new(name: 'DeleteAlgorithmInput')
|
112
113
|
DeleteCodeRepositoryInput = Shapes::StructureShape.new(name: 'DeleteCodeRepositoryInput')
|
@@ -227,6 +228,8 @@ module Aws::SageMaker
|
|
227
228
|
IntegerParameterRanges = Shapes::ListShape.new(name: 'IntegerParameterRanges')
|
228
229
|
JobReferenceCode = Shapes::StringShape.new(name: 'JobReferenceCode')
|
229
230
|
JobReferenceCodeContains = Shapes::StringShape.new(name: 'JobReferenceCodeContains')
|
231
|
+
JoinSource = Shapes::StringShape.new(name: 'JoinSource')
|
232
|
+
JsonPath = Shapes::StringShape.new(name: 'JsonPath')
|
230
233
|
KmsKeyId = Shapes::StringShape.new(name: 'KmsKeyId')
|
231
234
|
LabelAttributeName = Shapes::StringShape.new(name: 'LabelAttributeName')
|
232
235
|
LabelCounter = Shapes::IntegerShape.new(name: 'LabelCounter')
|
@@ -811,6 +814,7 @@ module Aws::SageMaker
|
|
811
814
|
CreateTransformJobRequest.add_member(:transform_input, Shapes::ShapeRef.new(shape: TransformInput, required: true, location_name: "TransformInput"))
|
812
815
|
CreateTransformJobRequest.add_member(:transform_output, Shapes::ShapeRef.new(shape: TransformOutput, required: true, location_name: "TransformOutput"))
|
813
816
|
CreateTransformJobRequest.add_member(:transform_resources, Shapes::ShapeRef.new(shape: TransformResources, required: true, location_name: "TransformResources"))
|
817
|
+
CreateTransformJobRequest.add_member(:data_processing, Shapes::ShapeRef.new(shape: DataProcessing, location_name: "DataProcessing"))
|
814
818
|
CreateTransformJobRequest.add_member(:tags, Shapes::ShapeRef.new(shape: TagList, location_name: "Tags"))
|
815
819
|
CreateTransformJobRequest.struct_class = Types::CreateTransformJobRequest
|
816
820
|
|
@@ -827,6 +831,11 @@ module Aws::SageMaker
|
|
827
831
|
CreateWorkteamResponse.add_member(:workteam_arn, Shapes::ShapeRef.new(shape: WorkteamArn, location_name: "WorkteamArn"))
|
828
832
|
CreateWorkteamResponse.struct_class = Types::CreateWorkteamResponse
|
829
833
|
|
834
|
+
DataProcessing.add_member(:input_filter, Shapes::ShapeRef.new(shape: JsonPath, location_name: "InputFilter"))
|
835
|
+
DataProcessing.add_member(:output_filter, Shapes::ShapeRef.new(shape: JsonPath, location_name: "OutputFilter"))
|
836
|
+
DataProcessing.add_member(:join_source, Shapes::ShapeRef.new(shape: JoinSource, location_name: "JoinSource"))
|
837
|
+
DataProcessing.struct_class = Types::DataProcessing
|
838
|
+
|
830
839
|
DataSource.add_member(:s3_data_source, Shapes::ShapeRef.new(shape: S3DataSource, location_name: "S3DataSource"))
|
831
840
|
DataSource.struct_class = Types::DataSource
|
832
841
|
|
@@ -1100,6 +1109,7 @@ module Aws::SageMaker
|
|
1100
1109
|
DescribeTransformJobResponse.add_member(:transform_start_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "TransformStartTime"))
|
1101
1110
|
DescribeTransformJobResponse.add_member(:transform_end_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "TransformEndTime"))
|
1102
1111
|
DescribeTransformJobResponse.add_member(:labeling_job_arn, Shapes::ShapeRef.new(shape: LabelingJobArn, location_name: "LabelingJobArn"))
|
1112
|
+
DescribeTransformJobResponse.add_member(:data_processing, Shapes::ShapeRef.new(shape: DataProcessing, location_name: "DataProcessing"))
|
1103
1113
|
DescribeTransformJobResponse.struct_class = Types::DescribeTransformJobResponse
|
1104
1114
|
|
1105
1115
|
DescribeWorkteamRequest.add_member(:workteam_name, Shapes::ShapeRef.new(shape: WorkteamName, required: true, location_name: "WorkteamName"))
|
@@ -933,7 +933,8 @@ module Aws::SageMaker
|
|
933
933
|
# @return [Hash<String,String>]
|
934
934
|
#
|
935
935
|
# @!attribute [rw] model_package_name
|
936
|
-
# The name of the model package to use
|
936
|
+
# The name or Amazon Resource Name (ARN) of the model package to use
|
937
|
+
# to create the model.
|
937
938
|
# @return [String]
|
938
939
|
#
|
939
940
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ContainerDefinition AWS API Documentation
|
@@ -992,7 +993,7 @@ module Aws::SageMaker
|
|
992
993
|
#
|
993
994
|
# Logarithmic
|
994
995
|
#
|
995
|
-
# :
|
996
|
+
# : Hyperparameter tuning searches the values in the hyperparameter
|
996
997
|
# range by using a logarithmic scale.
|
997
998
|
#
|
998
999
|
# Logarithmic scaling works only for ranges that have only values
|
@@ -1334,7 +1335,7 @@ module Aws::SageMaker
|
|
1334
1335
|
# },
|
1335
1336
|
# output_config: { # required
|
1336
1337
|
# s3_output_location: "S3Uri", # required
|
1337
|
-
# target_device: "lambda", # required, accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, jetson_tx1, jetson_tx2, jetson_nano, rasp3b, deeplens, rk3399, rk3288
|
1338
|
+
# target_device: "lambda", # required, accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, jetson_tx1, jetson_tx2, jetson_nano, rasp3b, deeplens, rk3399, rk3288, sbe_c
|
1338
1339
|
# },
|
1339
1340
|
# stopping_condition: { # required
|
1340
1341
|
# max_runtime_in_seconds: 1,
|
@@ -1382,7 +1383,9 @@ module Aws::SageMaker
|
|
1382
1383
|
# @return [Types::OutputConfig]
|
1383
1384
|
#
|
1384
1385
|
# @!attribute [rw] stopping_condition
|
1385
|
-
#
|
1386
|
+
# Specifies a limit to how long a model compilation job can run. When
|
1387
|
+
# the job reaches the time limit, Amazon SageMaker ends the
|
1388
|
+
# compilation job. Use this API to cap model training costs.
|
1386
1389
|
# @return [Types::StoppingCondition]
|
1387
1390
|
#
|
1388
1391
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateCompilationJobRequest AWS API Documentation
|
@@ -2640,17 +2643,14 @@ module Aws::SageMaker
|
|
2640
2643
|
# @return [Types::VpcConfig]
|
2641
2644
|
#
|
2642
2645
|
# @!attribute [rw] stopping_condition
|
2643
|
-
#
|
2644
|
-
#
|
2645
|
-
#
|
2646
|
-
# Algorithms might use this 120-second window to save the model
|
2647
|
-
# artifacts.
|
2646
|
+
# Specifies a limit to how long a model training job can run. When the
|
2647
|
+
# job reaches the time limit, Amazon SageMaker ends the training job.
|
2648
|
+
# Use this API to cap model training costs.
|
2648
2649
|
#
|
2649
|
-
#
|
2650
|
-
#
|
2651
|
-
#
|
2652
|
-
#
|
2653
|
-
# create a model using the `CreateModel` API.
|
2650
|
+
# To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
|
2651
|
+
# signal, which delays job termination for 120 seconds. Algorithms can
|
2652
|
+
# use this 120-second window to save the model artifacts, so the
|
2653
|
+
# results of training are not lost.
|
2654
2654
|
# @return [Types::StoppingCondition]
|
2655
2655
|
#
|
2656
2656
|
# @!attribute [rw] tags
|
@@ -2756,6 +2756,11 @@ module Aws::SageMaker
|
|
2756
2756
|
# instance_count: 1, # required
|
2757
2757
|
# volume_kms_key_id: "KmsKeyId",
|
2758
2758
|
# },
|
2759
|
+
# data_processing: {
|
2760
|
+
# input_filter: "JsonPath",
|
2761
|
+
# output_filter: "JsonPath",
|
2762
|
+
# join_source: "Input", # accepts Input, None
|
2763
|
+
# },
|
2759
2764
|
# tags: [
|
2760
2765
|
# {
|
2761
2766
|
# key: "TagKey", # required
|
@@ -2843,6 +2848,16 @@ module Aws::SageMaker
|
|
2843
2848
|
# count, to use for the transform job.
|
2844
2849
|
# @return [Types::TransformResources]
|
2845
2850
|
#
|
2851
|
+
# @!attribute [rw] data_processing
|
2852
|
+
# The data structure used for combining the input data and inference
|
2853
|
+
# in the output file. For more information, see [Batch Transform I/O
|
2854
|
+
# Join][1].
|
2855
|
+
#
|
2856
|
+
#
|
2857
|
+
#
|
2858
|
+
# [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-io-join.html
|
2859
|
+
# @return [Types::DataProcessing]
|
2860
|
+
#
|
2846
2861
|
# @!attribute [rw] tags
|
2847
2862
|
# (Optional) An array of key-value pairs. For more information, see
|
2848
2863
|
# [Using Cost Allocation Tags][1] in the *AWS Billing and Cost
|
@@ -2865,6 +2880,7 @@ module Aws::SageMaker
|
|
2865
2880
|
:transform_input,
|
2866
2881
|
:transform_output,
|
2867
2882
|
:transform_resources,
|
2883
|
+
:data_processing,
|
2868
2884
|
:tags)
|
2869
2885
|
include Aws::Structure
|
2870
2886
|
end
|
@@ -2958,6 +2974,82 @@ module Aws::SageMaker
|
|
2958
2974
|
include Aws::Structure
|
2959
2975
|
end
|
2960
2976
|
|
2977
|
+
# The data structure used to combine the input data and transformed data
|
2978
|
+
# from the batch transform output into a joined dataset and to store it
|
2979
|
+
# in an output file. It also contains information on how to filter the
|
2980
|
+
# input data and the joined dataset. For more information, see [Batch
|
2981
|
+
# Transform I/O Join][1].
|
2982
|
+
#
|
2983
|
+
#
|
2984
|
+
#
|
2985
|
+
# [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-io-join.html
|
2986
|
+
#
|
2987
|
+
# @note When making an API call, you may pass DataProcessing
|
2988
|
+
# data as a hash:
|
2989
|
+
#
|
2990
|
+
# {
|
2991
|
+
# input_filter: "JsonPath",
|
2992
|
+
# output_filter: "JsonPath",
|
2993
|
+
# join_source: "Input", # accepts Input, None
|
2994
|
+
# }
|
2995
|
+
#
|
2996
|
+
# @!attribute [rw] input_filter
|
2997
|
+
# A JSONPath expression used to select a portion of the input data to
|
2998
|
+
# pass to the algorithm. Use the `InputFilter` parameter to exclude
|
2999
|
+
# fields, such as an ID column, from the input. If you want Amazon
|
3000
|
+
# SageMaker to pass the entire input dataset to the algorithm, accept
|
3001
|
+
# the default value `$`.
|
3002
|
+
#
|
3003
|
+
# Examples: `"$"`, `"$[1:]"`, `"$.features"`
|
3004
|
+
# @return [String]
|
3005
|
+
#
|
3006
|
+
# @!attribute [rw] output_filter
|
3007
|
+
# A JSONPath expression used to select a portion of the joined dataset
|
3008
|
+
# to save in the output file for a batch transform job. If you want
|
3009
|
+
# Amazon SageMaker to store the entire input dataset in the output
|
3010
|
+
# file, leave the default value, `$`. If you specify indexes that
|
3011
|
+
# aren't within the dimension size of the joined dataset, you get an
|
3012
|
+
# error.
|
3013
|
+
#
|
3014
|
+
# Examples: `"$"`, `"$[0,5:]"`, `"$.['id','SageMakerOutput']"`
|
3015
|
+
# @return [String]
|
3016
|
+
#
|
3017
|
+
# @!attribute [rw] join_source
|
3018
|
+
# Specifies the source of the data to join with the transformed data.
|
3019
|
+
# The valid values are `None` and `Input` The default value is `None`
|
3020
|
+
# which specifies not to join the input with the transformed data. If
|
3021
|
+
# you want the batch transform job to join the original input data
|
3022
|
+
# with the transformed data, set `JoinSource` to `Input`. To join
|
3023
|
+
# input and output, the batch transform job must satisfy the
|
3024
|
+
# [Requirements for Using Batch Transform I/O Join][1].
|
3025
|
+
#
|
3026
|
+
# For JSON or JSONLines objects, such as a JSON array, Amazon
|
3027
|
+
# SageMaker adds the transformed data to the input JSON object in an
|
3028
|
+
# attribute called `SageMakerOutput`. The joined result for JSON must
|
3029
|
+
# be a key-value pair object. If the input is not a key-value pair
|
3030
|
+
# object, Amazon SageMaker creates a new JSON file. In the new JSON
|
3031
|
+
# file, and the input data is stored under the `SageMakerInput` key
|
3032
|
+
# and the results are stored in `SageMakerOutput`.
|
3033
|
+
#
|
3034
|
+
# For CSV files, Amazon SageMaker combines the transformed data with
|
3035
|
+
# the input data at the end of the input data and stores it in the
|
3036
|
+
# output file. The joined data has the joined input data followed by
|
3037
|
+
# the transformed data and the output is a CSV file.
|
3038
|
+
#
|
3039
|
+
#
|
3040
|
+
#
|
3041
|
+
# [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-io-join.html#batch-transform-io-join-requirements
|
3042
|
+
# @return [String]
|
3043
|
+
#
|
3044
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DataProcessing AWS API Documentation
|
3045
|
+
#
|
3046
|
+
class DataProcessing < Struct.new(
|
3047
|
+
:input_filter,
|
3048
|
+
:output_filter,
|
3049
|
+
:join_source)
|
3050
|
+
include Aws::Structure
|
3051
|
+
end
|
3052
|
+
|
2961
3053
|
# Describes the location of the channel data.
|
2962
3054
|
#
|
2963
3055
|
# @note When making an API call, you may pass DataSource
|
@@ -3409,7 +3501,9 @@ module Aws::SageMaker
|
|
3409
3501
|
# @return [Time]
|
3410
3502
|
#
|
3411
3503
|
# @!attribute [rw] stopping_condition
|
3412
|
-
#
|
3504
|
+
# Specifies a limit to how long a model compilation job can run. When
|
3505
|
+
# the job reaches the time limit, Amazon SageMaker ends the
|
3506
|
+
# compilation job. Use this API to cap model training costs.
|
3413
3507
|
# @return [Types::StoppingCondition]
|
3414
3508
|
#
|
3415
3509
|
# @!attribute [rw] creation_time
|
@@ -4474,7 +4568,14 @@ module Aws::SageMaker
|
|
4474
4568
|
# @return [Types::VpcConfig]
|
4475
4569
|
#
|
4476
4570
|
# @!attribute [rw] stopping_condition
|
4477
|
-
#
|
4571
|
+
# Specifies a limit to how long a model training job can run. When the
|
4572
|
+
# job reaches the time limit, Amazon SageMaker ends the training job.
|
4573
|
+
# Use this API to cap model training costs.
|
4574
|
+
#
|
4575
|
+
# To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
|
4576
|
+
# signal, which delays job termination for 120 seconds. Algorithms can
|
4577
|
+
# use this 120-second window to save the model artifacts, so the
|
4578
|
+
# results of training are not lost.
|
4478
4579
|
# @return [Types::StoppingCondition]
|
4479
4580
|
#
|
4480
4581
|
# @!attribute [rw] creation_time
|
@@ -4535,7 +4636,7 @@ module Aws::SageMaker
|
|
4535
4636
|
# distributed training, choose `True`. Encryption provides greater
|
4536
4637
|
# security for distributed training, but training might take longer.
|
4537
4638
|
# How long it takes depends on the amount of communication between
|
4538
|
-
# compute instances, especially if you use a deep learning
|
4639
|
+
# compute instances, especially if you use a deep learning algorithms
|
4539
4640
|
# in distributed training.
|
4540
4641
|
# @return [Boolean]
|
4541
4642
|
#
|
@@ -4676,6 +4777,18 @@ module Aws::SageMaker
|
|
4676
4777
|
# labeling job that created the transform or training job.
|
4677
4778
|
# @return [String]
|
4678
4779
|
#
|
4780
|
+
# @!attribute [rw] data_processing
|
4781
|
+
# The data structure used to combine the input data and transformed
|
4782
|
+
# data from the batch transform output into a joined dataset and to
|
4783
|
+
# store it in an output file. It also contains information on how to
|
4784
|
+
# filter the input data and the joined dataset. For more information,
|
4785
|
+
# see [Batch Transform I/O Join][1].
|
4786
|
+
#
|
4787
|
+
#
|
4788
|
+
#
|
4789
|
+
# [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-io-join.html
|
4790
|
+
# @return [Types::DataProcessing]
|
4791
|
+
#
|
4679
4792
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeTransformJobResponse AWS API Documentation
|
4680
4793
|
#
|
4681
4794
|
class DescribeTransformJobResponse < Struct.new(
|
@@ -4694,7 +4807,8 @@ module Aws::SageMaker
|
|
4694
4807
|
:creation_time,
|
4695
4808
|
:transform_start_time,
|
4696
4809
|
:transform_end_time,
|
4697
|
-
:labeling_job_arn
|
4810
|
+
:labeling_job_arn,
|
4811
|
+
:data_processing)
|
4698
4812
|
include Aws::Structure
|
4699
4813
|
end
|
4700
4814
|
|
@@ -5199,7 +5313,7 @@ module Aws::SageMaker
|
|
5199
5313
|
#
|
5200
5314
|
# * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-TextMultiClass`
|
5201
5315
|
#
|
5202
|
-
# **Asia Pacific (Tokyo (ap-northeast-1):**
|
5316
|
+
# **Asia Pacific (Tokyo) (ap-northeast-1):**
|
5203
5317
|
#
|
5204
5318
|
# * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-BoundingBox`
|
5205
5319
|
#
|
@@ -5209,7 +5323,7 @@ module Aws::SageMaker
|
|
5209
5323
|
#
|
5210
5324
|
# * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-TextMultiClass`
|
5211
5325
|
#
|
5212
|
-
# **Asia Pacific (Sydney (ap-southeast-1):**
|
5326
|
+
# **Asia Pacific (Sydney) (ap-southeast-1):**
|
5213
5327
|
#
|
5214
5328
|
# * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-BoundingBox`
|
5215
5329
|
#
|
@@ -5538,16 +5652,9 @@ module Aws::SageMaker
|
|
5538
5652
|
# @return [Types::ResourceConfig]
|
5539
5653
|
#
|
5540
5654
|
# @!attribute [rw] stopping_condition
|
5541
|
-
#
|
5542
|
-
#
|
5543
|
-
#
|
5544
|
-
# To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
|
5545
|
-
# signal. This delays job termination for 120 seconds. Algorithms
|
5546
|
-
# might use this 120-second window to save the model artifacts.
|
5547
|
-
#
|
5548
|
-
# When Amazon SageMaker terminates a job because the stopping
|
5549
|
-
# condition has been met, training algorithms provided by Amazon
|
5550
|
-
# SageMaker save the intermediate results of the job.
|
5655
|
+
# Specifies a limit to how long a model hyperparameter training job
|
5656
|
+
# can run. When the job reaches the time limit, Amazon SageMaker ends
|
5657
|
+
# the training job. Use this API to cap model training costs.
|
5551
5658
|
# @return [Types::StoppingCondition]
|
5552
5659
|
#
|
5553
5660
|
# @!attribute [rw] enable_network_isolation
|
@@ -6475,6 +6582,28 @@ module Aws::SageMaker
|
|
6475
6582
|
# @!attribute [rw] kms_key_id
|
6476
6583
|
# The AWS Key Management Service ID of the key used to encrypt the
|
6477
6584
|
# output data, if any.
|
6585
|
+
#
|
6586
|
+
# If you use a KMS key ID or an alias of your master key, the Amazon
|
6587
|
+
# SageMaker execution role must include permissions to call
|
6588
|
+
# `kms:Encrypt`. If you don't provide a KMS key ID, Amazon SageMaker
|
6589
|
+
# uses the default KMS key for Amazon S3 for your role's account.
|
6590
|
+
# Amazon SageMaker uses server-side encryption with KMS-managed keys
|
6591
|
+
# for `LabelingJobOutputConfig`. If you use a bucket policy with an
|
6592
|
+
# `s3:PutObject` permission that only allows objects with server-side
|
6593
|
+
# encryption, set the condition key of
|
6594
|
+
# `s3:x-amz-server-side-encryption` to `"aws:kms"`. For more
|
6595
|
+
# information, see [KMS-Managed Encryption Keys][1] in the *Amazon
|
6596
|
+
# Simple Storage Service Developer Guide.*
|
6597
|
+
#
|
6598
|
+
# The KMS key policy must grant permission to the IAM role that you
|
6599
|
+
# specify in your `CreateLabelingJob` request. For more information,
|
6600
|
+
# see [Using Key Policies in AWS KMS][2] in the *AWS Key Management
|
6601
|
+
# Service Developer Guide*.
|
6602
|
+
#
|
6603
|
+
#
|
6604
|
+
#
|
6605
|
+
# [1]: https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html
|
6606
|
+
# [2]: http://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
|
6478
6607
|
# @return [String]
|
6479
6608
|
#
|
6480
6609
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobOutputConfig AWS API Documentation
|
@@ -8855,7 +8984,7 @@ module Aws::SageMaker
|
|
8855
8984
|
#
|
8856
8985
|
# {
|
8857
8986
|
# s3_output_location: "S3Uri", # required
|
8858
|
-
# target_device: "lambda", # required, accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, jetson_tx1, jetson_tx2, jetson_nano, rasp3b, deeplens, rk3399, rk3288
|
8987
|
+
# target_device: "lambda", # required, accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, jetson_tx1, jetson_tx2, jetson_nano, rasp3b, deeplens, rk3399, rk3288, sbe_c
|
8859
8988
|
# }
|
8860
8989
|
#
|
8861
8990
|
# @!attribute [rw] s3_output_location
|
@@ -8909,14 +9038,22 @@ module Aws::SageMaker
|
|
8909
9038
|
#
|
8910
9039
|
# `"arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"`
|
8911
9040
|
#
|
8912
|
-
# If you
|
8913
|
-
#
|
9041
|
+
# If you use a KMS key ID or an alias of your master key, the Amazon
|
9042
|
+
# SageMaker execution role must include permissions to call
|
9043
|
+
# `kms:Encrypt`. If you don't provide a KMS key ID, Amazon SageMaker
|
9044
|
+
# uses the default KMS key for Amazon S3 for your role's account.
|
9045
|
+
# Amazon SageMaker uses server-side encryption with KMS-managed keys
|
9046
|
+
# for `OutputDataConfig`. If you use a bucket policy with an
|
9047
|
+
# `s3:PutObject` permission that only allows objects with server-side
|
9048
|
+
# encryption, set the condition key of
|
9049
|
+
# `s3:x-amz-server-side-encryption` to `"aws:kms"`. For more
|
8914
9050
|
# information, see [KMS-Managed Encryption Keys][1] in the *Amazon
|
8915
9051
|
# Simple Storage Service Developer Guide.*
|
8916
9052
|
#
|
8917
9053
|
# The KMS key policy must grant permission to the IAM role that you
|
8918
|
-
# specify in your `
|
8919
|
-
#
|
9054
|
+
# specify in your `CreateTrainingJob`, `CreateTransformJob`, or
|
9055
|
+
# `CreateHyperParameterTuningJob` requests. For more information, see
|
9056
|
+
# [Using Key Policies in AWS KMS][2] in the *AWS Key Management
|
8920
9057
|
# Service Developer Guide*.
|
8921
9058
|
#
|
8922
9059
|
#
|
@@ -9977,10 +10114,9 @@ module Aws::SageMaker
|
|
9977
10114
|
# examples, don't use status messages in if statements.
|
9978
10115
|
#
|
9979
10116
|
# To have an overview of your training job's progress, view
|
9980
|
-
# `TrainingJobStatus` and `SecondaryStatus` in
|
9981
|
-
#
|
9982
|
-
#
|
9983
|
-
# following:
|
10117
|
+
# `TrainingJobStatus` and `SecondaryStatus` in DescribeTrainingJob,
|
10118
|
+
# and `StatusMessage` together. For example, at the start of a
|
10119
|
+
# training job, you might see the following:
|
9984
10120
|
#
|
9985
10121
|
# * `TrainingJobStatus` - InProgress
|
9986
10122
|
#
|
@@ -10219,20 +10355,28 @@ module Aws::SageMaker
|
|
10219
10355
|
include Aws::Structure
|
10220
10356
|
end
|
10221
10357
|
|
10222
|
-
# Specifies how long model training
|
10223
|
-
# the limit, Amazon SageMaker ends the
|
10224
|
-
# model training
|
10358
|
+
# Specifies a limit to how long a model training or compilation job can
|
10359
|
+
# run. When the job reaches the time limit, Amazon SageMaker ends the
|
10360
|
+
# training or compilation job. Use this API to cap model training costs.
|
10225
10361
|
#
|
10226
10362
|
# To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
|
10227
|
-
# signal, which delays job termination
|
10363
|
+
# signal, which delays job termination for 120 seconds. Algorithms can
|
10228
10364
|
# use this 120-second window to save the model artifacts, so the results
|
10229
|
-
# of training
|
10365
|
+
# of training are not lost.
|
10366
|
+
#
|
10367
|
+
# The training algorithms provided by Amazon SageMaker automatically
|
10368
|
+
# save the intermediate results of a model training job when possible.
|
10369
|
+
# This attempt to save artifacts is only a best effort case as model
|
10370
|
+
# might not be in a state from which it can be saved. For example, if
|
10371
|
+
# training has just started, the model might not be ready to save. When
|
10372
|
+
# saved, this intermediate data is a valid model artifact. You can use
|
10373
|
+
# it to create a model with `CreateModel`.
|
10374
|
+
#
|
10375
|
+
# <note markdown="1"> The Neural Topic Model (NTM) currently does not support saving
|
10376
|
+
# intermediate model artifacts. When training NTMs, make sure that the
|
10377
|
+
# maximum runtime is sufficient for the training job to complete.
|
10230
10378
|
#
|
10231
|
-
#
|
10232
|
-
# the intermediate results of a model training job (it is best effort
|
10233
|
-
# case, as model might not be ready to save as some stages, for example
|
10234
|
-
# training just started). This intermediate data is a valid model
|
10235
|
-
# artifact. You can use it to create a model (`CreateModel`).
|
10379
|
+
# </note>
|
10236
10380
|
#
|
10237
10381
|
# @note When making an API call, you may pass StoppingCondition
|
10238
10382
|
# data as a hash:
|
@@ -10242,10 +10386,10 @@ module Aws::SageMaker
|
|
10242
10386
|
# }
|
10243
10387
|
#
|
10244
10388
|
# @!attribute [rw] max_runtime_in_seconds
|
10245
|
-
# The maximum length of time, in seconds, that the training
|
10246
|
-
# run. If
|
10247
|
-
# SageMaker ends the job. If value is not specified, default
|
10248
|
-
# 1 day.
|
10389
|
+
# The maximum length of time, in seconds, that the training or
|
10390
|
+
# compilation job can run. If job does not complete during this time,
|
10391
|
+
# Amazon SageMaker ends the job. If value is not specified, default
|
10392
|
+
# value is 1 day. The maximum value is 28 days.
|
10249
10393
|
# @return [Integer]
|
10250
10394
|
#
|
10251
10395
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/StoppingCondition AWS API Documentation
|
@@ -10483,7 +10627,14 @@ module Aws::SageMaker
|
|
10483
10627
|
# @return [Types::VpcConfig]
|
10484
10628
|
#
|
10485
10629
|
# @!attribute [rw] stopping_condition
|
10486
|
-
#
|
10630
|
+
# Specifies a limit to how long a model training job can run. When the
|
10631
|
+
# job reaches the time limit, Amazon SageMaker ends the training job.
|
10632
|
+
# Use this API to cap model training costs.
|
10633
|
+
#
|
10634
|
+
# To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
|
10635
|
+
# signal, which delays job termination for 120 seconds. Algorithms can
|
10636
|
+
# use this 120-second window to save the model artifacts, so the
|
10637
|
+
# results of training are not lost.
|
10487
10638
|
# @return [Types::StoppingCondition]
|
10488
10639
|
#
|
10489
10640
|
# @!attribute [rw] creation_time
|
@@ -10661,12 +10812,13 @@ module Aws::SageMaker
|
|
10661
10812
|
# @return [Types::ResourceConfig]
|
10662
10813
|
#
|
10663
10814
|
# @!attribute [rw] stopping_condition
|
10664
|
-
#
|
10665
|
-
# training
|
10815
|
+
# Specifies a limit to how long a model training job can run. When the
|
10816
|
+
# job reaches the time limit, Amazon SageMaker ends the training job.
|
10817
|
+
# Use this API to cap model training costs.
|
10666
10818
|
#
|
10667
10819
|
# To stop a job, Amazon SageMaker sends the algorithm the SIGTERM
|
10668
|
-
# signal, which delays job termination for 120 seconds. Algorithms
|
10669
|
-
#
|
10820
|
+
# signal, which delays job termination for 120 seconds. Algorithms can
|
10821
|
+
# use this 120-second window to save the model artifacts.
|
10670
10822
|
# @return [Types::StoppingCondition]
|
10671
10823
|
#
|
10672
10824
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TrainingJobDefinition AWS API Documentation
|
@@ -11226,16 +11378,15 @@ module Aws::SageMaker
|
|
11226
11378
|
# }
|
11227
11379
|
#
|
11228
11380
|
# @!attribute [rw] instance_type
|
11229
|
-
# The ML compute instance type for the transform job.
|
11230
|
-
# built-in algorithms to transform moderately sized datasets,
|
11231
|
-
# ml.m4.xlarge or `ml.m5.large`
|
11232
|
-
# value for `InstanceType`.
|
11381
|
+
# The ML compute instance type for the transform job. If you are using
|
11382
|
+
# built-in algorithms to transform moderately sized datasets, we
|
11383
|
+
# recommend using ml.m4.xlarge or `ml.m5.large`instance types.
|
11233
11384
|
# @return [String]
|
11234
11385
|
#
|
11235
11386
|
# @!attribute [rw] instance_count
|
11236
11387
|
# The number of ML compute instances to use in the transform job. For
|
11237
|
-
# distributed transform,
|
11238
|
-
# value is `1`.
|
11388
|
+
# distributed transform jobs, specify a value greater than 1. The
|
11389
|
+
# default value is `1`.
|
11239
11390
|
# @return [Integer]
|
11240
11391
|
#
|
11241
11392
|
# @!attribute [rw] volume_kms_key_id
|
@@ -11594,7 +11745,13 @@ module Aws::SageMaker
|
|
11594
11745
|
#
|
11595
11746
|
# @!attribute [rw] volume_size_in_gb
|
11596
11747
|
# The size, in GB, of the ML storage volume to attach to the notebook
|
11597
|
-
# instance. The default value is 5 GB.
|
11748
|
+
# instance. The default value is 5 GB. ML storage volumes are
|
11749
|
+
# encrypted, so Amazon SageMaker can't determine the amount of
|
11750
|
+
# available free space on the volume. Because of this, you can
|
11751
|
+
# increase the volume size when you update a notebook instance, but
|
11752
|
+
# you can't decrease the volume size. If you want to decrease the
|
11753
|
+
# size of the ML storage volume in use, create a new notebook instance
|
11754
|
+
# with the desired size.
|
11598
11755
|
# @return [Integer]
|
11599
11756
|
#
|
11600
11757
|
# @!attribute [rw] default_code_repository
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: aws-sdk-sagemaker
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 1.
|
4
|
+
version: 1.38.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Amazon Web Services
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2019-
|
11
|
+
date: 2019-06-11 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: aws-sdk-core
|