aws-sdk-sagemaker 1.37.0 → 1.38.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA1:
3
- metadata.gz: a3273982246d08fbc9bea9431614eb185a06b414
4
- data.tar.gz: 7a1af37037bd64e8c7c37075c2c056a7368d680e
3
+ metadata.gz: 021e6103c08986b3ce6d16c9b304862da80334a1
4
+ data.tar.gz: 00610c16334164df1821f4059bc54a3fd437a41e
5
5
  SHA512:
6
- metadata.gz: ac5419fde0f341fd89dd59c7cd6bd7038c0b4b4ca28cdb20fdec9a636eedd244ea6d96326b8ad5181943fdb51692cb7965110d77596f1fedd2d48d90d75a9e7a
7
- data.tar.gz: 147aa9755467604bab83c0bfbdf18df2af269509d86f3eb149163882e42ae935c23dc9c735bed4fc851b666b2ab5d3e9bce6b285a51c0ed108ec2a03f31b0010
6
+ metadata.gz: 13070718845326b45cf17a97e5c1e9719cbd7f3f9278a9c605e0e631fb28144caa7843c49050f16348601bc1e50625622f5d07c809fccbbeffefb35a96f013f9
7
+ data.tar.gz: a2a084aabeeccd690c970bb6312605b78d7fff3634e821acb7d8e48467d639254c243291ca4bd150a4dacfbd91b6ae93c94870c6230138e1e3115b7fe1a7ec51
@@ -43,6 +43,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
43
43
  # @service
44
44
  module Aws::SageMaker
45
45
 
46
- GEM_VERSION = '1.37.0'
46
+ GEM_VERSION = '1.38.0'
47
47
 
48
48
  end
@@ -665,7 +665,9 @@ module Aws::SageMaker
665
665
  # and the target device the model runs on.
666
666
  #
667
667
  # @option params [required, Types::StoppingCondition] :stopping_condition
668
- # The duration allowed for model compilation.
668
+ # Specifies a limit to how long a model compilation job can run. When
669
+ # the job reaches the time limit, Amazon SageMaker ends the compilation
670
+ # job. Use this API to cap model training costs.
669
671
  #
670
672
  # @return [Types::CreateCompilationJobResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
671
673
  #
@@ -683,7 +685,7 @@ module Aws::SageMaker
683
685
  # },
684
686
  # output_config: { # required
685
687
  # s3_output_location: "S3Uri", # required
686
- # target_device: "lambda", # required, accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, jetson_tx1, jetson_tx2, jetson_nano, rasp3b, deeplens, rk3399, rk3288
688
+ # target_device: "lambda", # required, accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, jetson_tx1, jetson_tx2, jetson_nano, rasp3b, deeplens, rk3399, rk3288, sbe_c
687
689
  # },
688
690
  # stopping_condition: { # required
689
691
  # max_runtime_in_seconds: 1,
@@ -1841,11 +1843,10 @@ module Aws::SageMaker
1841
1843
  # showing the Jupyter server home page from the notebook instance. The
1842
1844
  # console uses this API to get the URL and show the page.
1843
1845
  #
1844
- # You can restrict access to this API and to the URL that it returns to
1845
- # a list of IP addresses that you specify. To restrict access, attach an
1846
- # IAM policy that denies access to this API unless the call comes from
1847
- # an IP address in the specified list to every AWS Identity and Access
1848
- # Management user, group, or role used to access the notebook instance.
1846
+ # IAM authorization policies for this API are also enforced for every
1847
+ # HTTP request and WebSocket frame that attempts to connect to the
1848
+ # notebook instance.For example, you can restrict access to this API and
1849
+ # to the URL that it returns to a list of IP addresses that you specify.
1849
1850
  # Use the `NotIpAddress` condition operator and the `aws:SourceIP`
1850
1851
  # condition context key to specify the list of IP addresses that you
1851
1852
  # want to have access to the notebook instance. For more information,
@@ -1906,9 +1907,10 @@ module Aws::SageMaker
1906
1907
  # * `AlgorithmSpecification` - Identifies the training algorithm to use.
1907
1908
  #
1908
1909
  # * `HyperParameters` - Specify these algorithm-specific parameters to
1909
- # influence the quality of the final model. For a list of
1910
- # hyperparameters for each training algorithm provided by Amazon
1911
- # SageMaker, see [Algorithms][1].
1910
+ # enable the estimation of model parameters during training.
1911
+ # Hyperparameters can be tuned to optimize this learning process. For
1912
+ # a list of hyperparameters for each training algorithm provided by
1913
+ # Amazon SageMaker, see [Algorithms][1].
1912
1914
  #
1913
1915
  # * `InputDataConfig` - Describes the training dataset and the Amazon S3
1914
1916
  # location where it is stored.
@@ -1927,7 +1929,7 @@ module Aws::SageMaker
1927
1929
  # must grant this role the necessary permissions so that Amazon
1928
1930
  # SageMaker can successfully complete model training.
1929
1931
  #
1930
- # * `StoppingCondition` - Sets a duration for training. Use this
1932
+ # * `StoppingCondition` - Sets a time limit for training. Use this
1931
1933
  # parameter to cap model training costs.
1932
1934
  #
1933
1935
  # For more information about Amazon SageMaker, see [How It Works][2].
@@ -2030,17 +2032,14 @@ module Aws::SageMaker
2030
2032
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html
2031
2033
  #
2032
2034
  # @option params [required, Types::StoppingCondition] :stopping_condition
2033
- # Sets a duration for training. Use this parameter to cap model training
2034
- # costs. To stop a job, Amazon SageMaker sends the algorithm the
2035
- # `SIGTERM` signal, which delays job termination for 120 seconds.
2036
- # Algorithms might use this 120-second window to save the model
2037
- # artifacts.
2038
- #
2039
- # When Amazon SageMaker terminates a job because the stopping condition
2040
- # has been met, training algorithms provided by Amazon SageMaker save
2041
- # the intermediate results of the job. This intermediate data is a valid
2042
- # model artifact. You can use it to create a model using the
2043
- # `CreateModel` API.
2035
+ # Specifies a limit to how long a model training job can run. When the
2036
+ # job reaches the time limit, Amazon SageMaker ends the training job.
2037
+ # Use this API to cap model training costs.
2038
+ #
2039
+ # To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
2040
+ # signal, which delays job termination for 120 seconds. Algorithms can
2041
+ # use this 120-second window to save the model artifacts, so the results
2042
+ # of training are not lost.
2044
2043
  #
2045
2044
  # @option params [Array<Types::Tag>] :tags
2046
2045
  # An array of key-value pairs. For more information, see [Using Cost
@@ -2262,6 +2261,15 @@ module Aws::SageMaker
2262
2261
  # Describes the resources, including ML instance types and ML instance
2263
2262
  # count, to use for the transform job.
2264
2263
  #
2264
+ # @option params [Types::DataProcessing] :data_processing
2265
+ # The data structure used for combining the input data and inference in
2266
+ # the output file. For more information, see [Batch Transform I/O
2267
+ # Join][1].
2268
+ #
2269
+ #
2270
+ #
2271
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-io-join.html
2272
+ #
2265
2273
  # @option params [Array<Types::Tag>] :tags
2266
2274
  # (Optional) An array of key-value pairs. For more information, see
2267
2275
  # [Using Cost Allocation Tags][1] in the *AWS Billing and Cost
@@ -2308,6 +2316,11 @@ module Aws::SageMaker
2308
2316
  # instance_count: 1, # required
2309
2317
  # volume_kms_key_id: "KmsKeyId",
2310
2318
  # },
2319
+ # data_processing: {
2320
+ # input_filter: "JsonPath",
2321
+ # output_filter: "JsonPath",
2322
+ # join_source: "Input", # accepts Input, None
2323
+ # },
2311
2324
  # tags: [
2312
2325
  # {
2313
2326
  # key: "TagKey", # required
@@ -2898,7 +2911,7 @@ module Aws::SageMaker
2898
2911
  # resp.input_config.data_input_config #=> String
2899
2912
  # resp.input_config.framework #=> String, one of "TENSORFLOW", "MXNET", "ONNX", "PYTORCH", "XGBOOST"
2900
2913
  # resp.output_config.s3_output_location #=> String
2901
- # resp.output_config.target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "jetson_tx1", "jetson_tx2", "jetson_nano", "rasp3b", "deeplens", "rk3399", "rk3288"
2914
+ # resp.output_config.target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "jetson_tx1", "jetson_tx2", "jetson_nano", "rasp3b", "deeplens", "rk3399", "rk3288", "sbe_c"
2902
2915
  #
2903
2916
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeCompilationJob AWS API Documentation
2904
2917
  #
@@ -3657,6 +3670,7 @@ module Aws::SageMaker
3657
3670
  # * {Types::DescribeTransformJobResponse#transform_start_time #transform_start_time} => Time
3658
3671
  # * {Types::DescribeTransformJobResponse#transform_end_time #transform_end_time} => Time
3659
3672
  # * {Types::DescribeTransformJobResponse#labeling_job_arn #labeling_job_arn} => String
3673
+ # * {Types::DescribeTransformJobResponse#data_processing #data_processing} => Types::DataProcessing
3660
3674
  #
3661
3675
  # @example Request syntax with placeholder values
3662
3676
  #
@@ -3692,6 +3706,9 @@ module Aws::SageMaker
3692
3706
  # resp.transform_start_time #=> Time
3693
3707
  # resp.transform_end_time #=> Time
3694
3708
  # resp.labeling_job_arn #=> String
3709
+ # resp.data_processing.input_filter #=> String
3710
+ # resp.data_processing.output_filter #=> String
3711
+ # resp.data_processing.join_source #=> String, one of "Input", "None"
3695
3712
  #
3696
3713
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeTransformJob AWS API Documentation
3697
3714
  #
@@ -3999,7 +4016,7 @@ module Aws::SageMaker
3999
4016
  # resp.compilation_job_summaries[0].creation_time #=> Time
4000
4017
  # resp.compilation_job_summaries[0].compilation_start_time #=> Time
4001
4018
  # resp.compilation_job_summaries[0].compilation_end_time #=> Time
4002
- # resp.compilation_job_summaries[0].compilation_target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "jetson_tx1", "jetson_tx2", "jetson_nano", "rasp3b", "deeplens", "rk3399", "rk3288"
4019
+ # resp.compilation_job_summaries[0].compilation_target_device #=> String, one of "lambda", "ml_m4", "ml_m5", "ml_c4", "ml_c5", "ml_p2", "ml_p3", "jetson_tx1", "jetson_tx2", "jetson_nano", "rasp3b", "deeplens", "rk3399", "rk3288", "sbe_c"
4003
4020
  # resp.compilation_job_summaries[0].last_modified_time #=> Time
4004
4021
  # resp.compilation_job_summaries[0].compilation_job_status #=> String, one of "INPROGRESS", "COMPLETED", "FAILED", "STARTING", "STOPPING", "STOPPED"
4005
4022
  # resp.next_token #=> String
@@ -5694,7 +5711,12 @@ module Aws::SageMaker
5694
5711
  #
5695
5712
  # @option params [Integer] :volume_size_in_gb
5696
5713
  # The size, in GB, of the ML storage volume to attach to the notebook
5697
- # instance. The default value is 5 GB.
5714
+ # instance. The default value is 5 GB. ML storage volumes are encrypted,
5715
+ # so Amazon SageMaker can't determine the amount of available free
5716
+ # space on the volume. Because of this, you can increase the volume size
5717
+ # when you update a notebook instance, but you can't decrease the
5718
+ # volume size. If you want to decrease the size of the ML storage volume
5719
+ # in use, create a new notebook instance with the desired size.
5698
5720
  #
5699
5721
  # @option params [String] :default_code_repository
5700
5722
  # The Git repository to associate with the notebook instance as its
@@ -5910,7 +5932,7 @@ module Aws::SageMaker
5910
5932
  params: params,
5911
5933
  config: config)
5912
5934
  context[:gem_name] = 'aws-sdk-sagemaker'
5913
- context[:gem_version] = '1.37.0'
5935
+ context[:gem_version] = '1.38.0'
5914
5936
  Seahorse::Client::Request.new(handlers, context)
5915
5937
  end
5916
5938
 
@@ -107,6 +107,7 @@ module Aws::SageMaker
107
107
  CreateWorkteamResponse = Shapes::StructureShape.new(name: 'CreateWorkteamResponse')
108
108
  CreationTime = Shapes::TimestampShape.new(name: 'CreationTime')
109
109
  DataInputConfig = Shapes::StringShape.new(name: 'DataInputConfig')
110
+ DataProcessing = Shapes::StructureShape.new(name: 'DataProcessing')
110
111
  DataSource = Shapes::StructureShape.new(name: 'DataSource')
111
112
  DeleteAlgorithmInput = Shapes::StructureShape.new(name: 'DeleteAlgorithmInput')
112
113
  DeleteCodeRepositoryInput = Shapes::StructureShape.new(name: 'DeleteCodeRepositoryInput')
@@ -227,6 +228,8 @@ module Aws::SageMaker
227
228
  IntegerParameterRanges = Shapes::ListShape.new(name: 'IntegerParameterRanges')
228
229
  JobReferenceCode = Shapes::StringShape.new(name: 'JobReferenceCode')
229
230
  JobReferenceCodeContains = Shapes::StringShape.new(name: 'JobReferenceCodeContains')
231
+ JoinSource = Shapes::StringShape.new(name: 'JoinSource')
232
+ JsonPath = Shapes::StringShape.new(name: 'JsonPath')
230
233
  KmsKeyId = Shapes::StringShape.new(name: 'KmsKeyId')
231
234
  LabelAttributeName = Shapes::StringShape.new(name: 'LabelAttributeName')
232
235
  LabelCounter = Shapes::IntegerShape.new(name: 'LabelCounter')
@@ -811,6 +814,7 @@ module Aws::SageMaker
811
814
  CreateTransformJobRequest.add_member(:transform_input, Shapes::ShapeRef.new(shape: TransformInput, required: true, location_name: "TransformInput"))
812
815
  CreateTransformJobRequest.add_member(:transform_output, Shapes::ShapeRef.new(shape: TransformOutput, required: true, location_name: "TransformOutput"))
813
816
  CreateTransformJobRequest.add_member(:transform_resources, Shapes::ShapeRef.new(shape: TransformResources, required: true, location_name: "TransformResources"))
817
+ CreateTransformJobRequest.add_member(:data_processing, Shapes::ShapeRef.new(shape: DataProcessing, location_name: "DataProcessing"))
814
818
  CreateTransformJobRequest.add_member(:tags, Shapes::ShapeRef.new(shape: TagList, location_name: "Tags"))
815
819
  CreateTransformJobRequest.struct_class = Types::CreateTransformJobRequest
816
820
 
@@ -827,6 +831,11 @@ module Aws::SageMaker
827
831
  CreateWorkteamResponse.add_member(:workteam_arn, Shapes::ShapeRef.new(shape: WorkteamArn, location_name: "WorkteamArn"))
828
832
  CreateWorkteamResponse.struct_class = Types::CreateWorkteamResponse
829
833
 
834
+ DataProcessing.add_member(:input_filter, Shapes::ShapeRef.new(shape: JsonPath, location_name: "InputFilter"))
835
+ DataProcessing.add_member(:output_filter, Shapes::ShapeRef.new(shape: JsonPath, location_name: "OutputFilter"))
836
+ DataProcessing.add_member(:join_source, Shapes::ShapeRef.new(shape: JoinSource, location_name: "JoinSource"))
837
+ DataProcessing.struct_class = Types::DataProcessing
838
+
830
839
  DataSource.add_member(:s3_data_source, Shapes::ShapeRef.new(shape: S3DataSource, location_name: "S3DataSource"))
831
840
  DataSource.struct_class = Types::DataSource
832
841
 
@@ -1100,6 +1109,7 @@ module Aws::SageMaker
1100
1109
  DescribeTransformJobResponse.add_member(:transform_start_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "TransformStartTime"))
1101
1110
  DescribeTransformJobResponse.add_member(:transform_end_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "TransformEndTime"))
1102
1111
  DescribeTransformJobResponse.add_member(:labeling_job_arn, Shapes::ShapeRef.new(shape: LabelingJobArn, location_name: "LabelingJobArn"))
1112
+ DescribeTransformJobResponse.add_member(:data_processing, Shapes::ShapeRef.new(shape: DataProcessing, location_name: "DataProcessing"))
1103
1113
  DescribeTransformJobResponse.struct_class = Types::DescribeTransformJobResponse
1104
1114
 
1105
1115
  DescribeWorkteamRequest.add_member(:workteam_name, Shapes::ShapeRef.new(shape: WorkteamName, required: true, location_name: "WorkteamName"))
@@ -933,7 +933,8 @@ module Aws::SageMaker
933
933
  # @return [Hash<String,String>]
934
934
  #
935
935
  # @!attribute [rw] model_package_name
936
- # The name of the model package to use to create the model.
936
+ # The name or Amazon Resource Name (ARN) of the model package to use
937
+ # to create the model.
937
938
  # @return [String]
938
939
  #
939
940
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ContainerDefinition AWS API Documentation
@@ -992,7 +993,7 @@ module Aws::SageMaker
992
993
  #
993
994
  # Logarithmic
994
995
  #
995
- # : Hyperparemeter tuning searches the values in the hyperparameter
996
+ # : Hyperparameter tuning searches the values in the hyperparameter
996
997
  # range by using a logarithmic scale.
997
998
  #
998
999
  # Logarithmic scaling works only for ranges that have only values
@@ -1334,7 +1335,7 @@ module Aws::SageMaker
1334
1335
  # },
1335
1336
  # output_config: { # required
1336
1337
  # s3_output_location: "S3Uri", # required
1337
- # target_device: "lambda", # required, accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, jetson_tx1, jetson_tx2, jetson_nano, rasp3b, deeplens, rk3399, rk3288
1338
+ # target_device: "lambda", # required, accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, jetson_tx1, jetson_tx2, jetson_nano, rasp3b, deeplens, rk3399, rk3288, sbe_c
1338
1339
  # },
1339
1340
  # stopping_condition: { # required
1340
1341
  # max_runtime_in_seconds: 1,
@@ -1382,7 +1383,9 @@ module Aws::SageMaker
1382
1383
  # @return [Types::OutputConfig]
1383
1384
  #
1384
1385
  # @!attribute [rw] stopping_condition
1385
- # The duration allowed for model compilation.
1386
+ # Specifies a limit to how long a model compilation job can run. When
1387
+ # the job reaches the time limit, Amazon SageMaker ends the
1388
+ # compilation job. Use this API to cap model training costs.
1386
1389
  # @return [Types::StoppingCondition]
1387
1390
  #
1388
1391
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateCompilationJobRequest AWS API Documentation
@@ -2640,17 +2643,14 @@ module Aws::SageMaker
2640
2643
  # @return [Types::VpcConfig]
2641
2644
  #
2642
2645
  # @!attribute [rw] stopping_condition
2643
- # Sets a duration for training. Use this parameter to cap model
2644
- # training costs. To stop a job, Amazon SageMaker sends the algorithm
2645
- # the `SIGTERM` signal, which delays job termination for 120 seconds.
2646
- # Algorithms might use this 120-second window to save the model
2647
- # artifacts.
2646
+ # Specifies a limit to how long a model training job can run. When the
2647
+ # job reaches the time limit, Amazon SageMaker ends the training job.
2648
+ # Use this API to cap model training costs.
2648
2649
  #
2649
- # When Amazon SageMaker terminates a job because the stopping
2650
- # condition has been met, training algorithms provided by Amazon
2651
- # SageMaker save the intermediate results of the job. This
2652
- # intermediate data is a valid model artifact. You can use it to
2653
- # create a model using the `CreateModel` API.
2650
+ # To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
2651
+ # signal, which delays job termination for 120 seconds. Algorithms can
2652
+ # use this 120-second window to save the model artifacts, so the
2653
+ # results of training are not lost.
2654
2654
  # @return [Types::StoppingCondition]
2655
2655
  #
2656
2656
  # @!attribute [rw] tags
@@ -2756,6 +2756,11 @@ module Aws::SageMaker
2756
2756
  # instance_count: 1, # required
2757
2757
  # volume_kms_key_id: "KmsKeyId",
2758
2758
  # },
2759
+ # data_processing: {
2760
+ # input_filter: "JsonPath",
2761
+ # output_filter: "JsonPath",
2762
+ # join_source: "Input", # accepts Input, None
2763
+ # },
2759
2764
  # tags: [
2760
2765
  # {
2761
2766
  # key: "TagKey", # required
@@ -2843,6 +2848,16 @@ module Aws::SageMaker
2843
2848
  # count, to use for the transform job.
2844
2849
  # @return [Types::TransformResources]
2845
2850
  #
2851
+ # @!attribute [rw] data_processing
2852
+ # The data structure used for combining the input data and inference
2853
+ # in the output file. For more information, see [Batch Transform I/O
2854
+ # Join][1].
2855
+ #
2856
+ #
2857
+ #
2858
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-io-join.html
2859
+ # @return [Types::DataProcessing]
2860
+ #
2846
2861
  # @!attribute [rw] tags
2847
2862
  # (Optional) An array of key-value pairs. For more information, see
2848
2863
  # [Using Cost Allocation Tags][1] in the *AWS Billing and Cost
@@ -2865,6 +2880,7 @@ module Aws::SageMaker
2865
2880
  :transform_input,
2866
2881
  :transform_output,
2867
2882
  :transform_resources,
2883
+ :data_processing,
2868
2884
  :tags)
2869
2885
  include Aws::Structure
2870
2886
  end
@@ -2958,6 +2974,82 @@ module Aws::SageMaker
2958
2974
  include Aws::Structure
2959
2975
  end
2960
2976
 
2977
+ # The data structure used to combine the input data and transformed data
2978
+ # from the batch transform output into a joined dataset and to store it
2979
+ # in an output file. It also contains information on how to filter the
2980
+ # input data and the joined dataset. For more information, see [Batch
2981
+ # Transform I/O Join][1].
2982
+ #
2983
+ #
2984
+ #
2985
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-io-join.html
2986
+ #
2987
+ # @note When making an API call, you may pass DataProcessing
2988
+ # data as a hash:
2989
+ #
2990
+ # {
2991
+ # input_filter: "JsonPath",
2992
+ # output_filter: "JsonPath",
2993
+ # join_source: "Input", # accepts Input, None
2994
+ # }
2995
+ #
2996
+ # @!attribute [rw] input_filter
2997
+ # A JSONPath expression used to select a portion of the input data to
2998
+ # pass to the algorithm. Use the `InputFilter` parameter to exclude
2999
+ # fields, such as an ID column, from the input. If you want Amazon
3000
+ # SageMaker to pass the entire input dataset to the algorithm, accept
3001
+ # the default value `$`.
3002
+ #
3003
+ # Examples: `"$"`, `"$[1:]"`, `"$.features"`
3004
+ # @return [String]
3005
+ #
3006
+ # @!attribute [rw] output_filter
3007
+ # A JSONPath expression used to select a portion of the joined dataset
3008
+ # to save in the output file for a batch transform job. If you want
3009
+ # Amazon SageMaker to store the entire input dataset in the output
3010
+ # file, leave the default value, `$`. If you specify indexes that
3011
+ # aren't within the dimension size of the joined dataset, you get an
3012
+ # error.
3013
+ #
3014
+ # Examples: `"$"`, `"$[0,5:]"`, `"$.['id','SageMakerOutput']"`
3015
+ # @return [String]
3016
+ #
3017
+ # @!attribute [rw] join_source
3018
+ # Specifies the source of the data to join with the transformed data.
3019
+ # The valid values are `None` and `Input` The default value is `None`
3020
+ # which specifies not to join the input with the transformed data. If
3021
+ # you want the batch transform job to join the original input data
3022
+ # with the transformed data, set `JoinSource` to `Input`. To join
3023
+ # input and output, the batch transform job must satisfy the
3024
+ # [Requirements for Using Batch Transform I/O Join][1].
3025
+ #
3026
+ # For JSON or JSONLines objects, such as a JSON array, Amazon
3027
+ # SageMaker adds the transformed data to the input JSON object in an
3028
+ # attribute called `SageMakerOutput`. The joined result for JSON must
3029
+ # be a key-value pair object. If the input is not a key-value pair
3030
+ # object, Amazon SageMaker creates a new JSON file. In the new JSON
3031
+ # file, and the input data is stored under the `SageMakerInput` key
3032
+ # and the results are stored in `SageMakerOutput`.
3033
+ #
3034
+ # For CSV files, Amazon SageMaker combines the transformed data with
3035
+ # the input data at the end of the input data and stores it in the
3036
+ # output file. The joined data has the joined input data followed by
3037
+ # the transformed data and the output is a CSV file.
3038
+ #
3039
+ #
3040
+ #
3041
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-io-join.html#batch-transform-io-join-requirements
3042
+ # @return [String]
3043
+ #
3044
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DataProcessing AWS API Documentation
3045
+ #
3046
+ class DataProcessing < Struct.new(
3047
+ :input_filter,
3048
+ :output_filter,
3049
+ :join_source)
3050
+ include Aws::Structure
3051
+ end
3052
+
2961
3053
  # Describes the location of the channel data.
2962
3054
  #
2963
3055
  # @note When making an API call, you may pass DataSource
@@ -3409,7 +3501,9 @@ module Aws::SageMaker
3409
3501
  # @return [Time]
3410
3502
  #
3411
3503
  # @!attribute [rw] stopping_condition
3412
- # The duration allowed for model compilation.
3504
+ # Specifies a limit to how long a model compilation job can run. When
3505
+ # the job reaches the time limit, Amazon SageMaker ends the
3506
+ # compilation job. Use this API to cap model training costs.
3413
3507
  # @return [Types::StoppingCondition]
3414
3508
  #
3415
3509
  # @!attribute [rw] creation_time
@@ -4474,7 +4568,14 @@ module Aws::SageMaker
4474
4568
  # @return [Types::VpcConfig]
4475
4569
  #
4476
4570
  # @!attribute [rw] stopping_condition
4477
- # The condition under which to stop the training job.
4571
+ # Specifies a limit to how long a model training job can run. When the
4572
+ # job reaches the time limit, Amazon SageMaker ends the training job.
4573
+ # Use this API to cap model training costs.
4574
+ #
4575
+ # To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
4576
+ # signal, which delays job termination for 120 seconds. Algorithms can
4577
+ # use this 120-second window to save the model artifacts, so the
4578
+ # results of training are not lost.
4478
4579
  # @return [Types::StoppingCondition]
4479
4580
  #
4480
4581
  # @!attribute [rw] creation_time
@@ -4535,7 +4636,7 @@ module Aws::SageMaker
4535
4636
  # distributed training, choose `True`. Encryption provides greater
4536
4637
  # security for distributed training, but training might take longer.
4537
4638
  # How long it takes depends on the amount of communication between
4538
- # compute instances, especially if you use a deep learning algorithm
4639
+ # compute instances, especially if you use a deep learning algorithms
4539
4640
  # in distributed training.
4540
4641
  # @return [Boolean]
4541
4642
  #
@@ -4676,6 +4777,18 @@ module Aws::SageMaker
4676
4777
  # labeling job that created the transform or training job.
4677
4778
  # @return [String]
4678
4779
  #
4780
+ # @!attribute [rw] data_processing
4781
+ # The data structure used to combine the input data and transformed
4782
+ # data from the batch transform output into a joined dataset and to
4783
+ # store it in an output file. It also contains information on how to
4784
+ # filter the input data and the joined dataset. For more information,
4785
+ # see [Batch Transform I/O Join][1].
4786
+ #
4787
+ #
4788
+ #
4789
+ # [1]: http://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform-io-join.html
4790
+ # @return [Types::DataProcessing]
4791
+ #
4679
4792
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeTransformJobResponse AWS API Documentation
4680
4793
  #
4681
4794
  class DescribeTransformJobResponse < Struct.new(
@@ -4694,7 +4807,8 @@ module Aws::SageMaker
4694
4807
  :creation_time,
4695
4808
  :transform_start_time,
4696
4809
  :transform_end_time,
4697
- :labeling_job_arn)
4810
+ :labeling_job_arn,
4811
+ :data_processing)
4698
4812
  include Aws::Structure
4699
4813
  end
4700
4814
 
@@ -5199,7 +5313,7 @@ module Aws::SageMaker
5199
5313
  #
5200
5314
  # * `arn:aws:lambda:eu-west-1:568282634449:function:PRE-TextMultiClass`
5201
5315
  #
5202
- # **Asia Pacific (Tokyo (ap-northeast-1):**
5316
+ # **Asia Pacific (Tokyo) (ap-northeast-1):**
5203
5317
  #
5204
5318
  # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-BoundingBox`
5205
5319
  #
@@ -5209,7 +5323,7 @@ module Aws::SageMaker
5209
5323
  #
5210
5324
  # * `arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-TextMultiClass`
5211
5325
  #
5212
- # **Asia Pacific (Sydney (ap-southeast-1):**
5326
+ # **Asia Pacific (Sydney) (ap-southeast-1):**
5213
5327
  #
5214
5328
  # * `arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-BoundingBox`
5215
5329
  #
@@ -5538,16 +5652,9 @@ module Aws::SageMaker
5538
5652
  # @return [Types::ResourceConfig]
5539
5653
  #
5540
5654
  # @!attribute [rw] stopping_condition
5541
- # Sets a maximum duration for the training jobs that the tuning job
5542
- # launches. Use this parameter to limit model training costs.
5543
- #
5544
- # To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
5545
- # signal. This delays job termination for 120 seconds. Algorithms
5546
- # might use this 120-second window to save the model artifacts.
5547
- #
5548
- # When Amazon SageMaker terminates a job because the stopping
5549
- # condition has been met, training algorithms provided by Amazon
5550
- # SageMaker save the intermediate results of the job.
5655
+ # Specifies a limit to how long a model hyperparameter training job
5656
+ # can run. When the job reaches the time limit, Amazon SageMaker ends
5657
+ # the training job. Use this API to cap model training costs.
5551
5658
  # @return [Types::StoppingCondition]
5552
5659
  #
5553
5660
  # @!attribute [rw] enable_network_isolation
@@ -6475,6 +6582,28 @@ module Aws::SageMaker
6475
6582
  # @!attribute [rw] kms_key_id
6476
6583
  # The AWS Key Management Service ID of the key used to encrypt the
6477
6584
  # output data, if any.
6585
+ #
6586
+ # If you use a KMS key ID or an alias of your master key, the Amazon
6587
+ # SageMaker execution role must include permissions to call
6588
+ # `kms:Encrypt`. If you don't provide a KMS key ID, Amazon SageMaker
6589
+ # uses the default KMS key for Amazon S3 for your role's account.
6590
+ # Amazon SageMaker uses server-side encryption with KMS-managed keys
6591
+ # for `LabelingJobOutputConfig`. If you use a bucket policy with an
6592
+ # `s3:PutObject` permission that only allows objects with server-side
6593
+ # encryption, set the condition key of
6594
+ # `s3:x-amz-server-side-encryption` to `"aws:kms"`. For more
6595
+ # information, see [KMS-Managed Encryption Keys][1] in the *Amazon
6596
+ # Simple Storage Service Developer Guide.*
6597
+ #
6598
+ # The KMS key policy must grant permission to the IAM role that you
6599
+ # specify in your `CreateLabelingJob` request. For more information,
6600
+ # see [Using Key Policies in AWS KMS][2] in the *AWS Key Management
6601
+ # Service Developer Guide*.
6602
+ #
6603
+ #
6604
+ #
6605
+ # [1]: https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html
6606
+ # [2]: http://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
6478
6607
  # @return [String]
6479
6608
  #
6480
6609
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/LabelingJobOutputConfig AWS API Documentation
@@ -8855,7 +8984,7 @@ module Aws::SageMaker
8855
8984
  #
8856
8985
  # {
8857
8986
  # s3_output_location: "S3Uri", # required
8858
- # target_device: "lambda", # required, accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, jetson_tx1, jetson_tx2, jetson_nano, rasp3b, deeplens, rk3399, rk3288
8987
+ # target_device: "lambda", # required, accepts lambda, ml_m4, ml_m5, ml_c4, ml_c5, ml_p2, ml_p3, jetson_tx1, jetson_tx2, jetson_nano, rasp3b, deeplens, rk3399, rk3288, sbe_c
8859
8988
  # }
8860
8989
  #
8861
8990
  # @!attribute [rw] s3_output_location
@@ -8909,14 +9038,22 @@ module Aws::SageMaker
8909
9038
  #
8910
9039
  # `"arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"`
8911
9040
  #
8912
- # If you don't provide a KMS key ID, Amazon SageMaker uses the
8913
- # default KMS key for Amazon S3 for your role's account. For more
9041
+ # If you use a KMS key ID or an alias of your master key, the Amazon
9042
+ # SageMaker execution role must include permissions to call
9043
+ # `kms:Encrypt`. If you don't provide a KMS key ID, Amazon SageMaker
9044
+ # uses the default KMS key for Amazon S3 for your role's account.
9045
+ # Amazon SageMaker uses server-side encryption with KMS-managed keys
9046
+ # for `OutputDataConfig`. If you use a bucket policy with an
9047
+ # `s3:PutObject` permission that only allows objects with server-side
9048
+ # encryption, set the condition key of
9049
+ # `s3:x-amz-server-side-encryption` to `"aws:kms"`. For more
8914
9050
  # information, see [KMS-Managed Encryption Keys][1] in the *Amazon
8915
9051
  # Simple Storage Service Developer Guide.*
8916
9052
  #
8917
9053
  # The KMS key policy must grant permission to the IAM role that you
8918
- # specify in your `CreateTramsformJob` request. For more information,
8919
- # see [Using Key Policies in AWS KMS][2] in the *AWS Key Management
9054
+ # specify in your `CreateTrainingJob`, `CreateTransformJob`, or
9055
+ # `CreateHyperParameterTuningJob` requests. For more information, see
9056
+ # [Using Key Policies in AWS KMS][2] in the *AWS Key Management
8920
9057
  # Service Developer Guide*.
8921
9058
  #
8922
9059
  #
@@ -9977,10 +10114,9 @@ module Aws::SageMaker
9977
10114
  # examples, don't use status messages in if statements.
9978
10115
  #
9979
10116
  # To have an overview of your training job's progress, view
9980
- # `TrainingJobStatus` and `SecondaryStatus` in
9981
- # DescribeTrainingJobResponse, and `StatusMessage` together. For
9982
- # example, at the start of a training job, you might see the
9983
- # following:
10117
+ # `TrainingJobStatus` and `SecondaryStatus` in DescribeTrainingJob,
10118
+ # and `StatusMessage` together. For example, at the start of a
10119
+ # training job, you might see the following:
9984
10120
  #
9985
10121
  # * `TrainingJobStatus` - InProgress
9986
10122
  #
@@ -10219,20 +10355,28 @@ module Aws::SageMaker
10219
10355
  include Aws::Structure
10220
10356
  end
10221
10357
 
10222
- # Specifies how long model training can run. When model training reaches
10223
- # the limit, Amazon SageMaker ends the training job. Use this API to cap
10224
- # model training cost.
10358
+ # Specifies a limit to how long a model training or compilation job can
10359
+ # run. When the job reaches the time limit, Amazon SageMaker ends the
10360
+ # training or compilation job. Use this API to cap model training costs.
10225
10361
  #
10226
10362
  # To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
10227
- # signal, which delays job termination for120 seconds. Algorithms might
10363
+ # signal, which delays job termination for 120 seconds. Algorithms can
10228
10364
  # use this 120-second window to save the model artifacts, so the results
10229
- # of training is not lost.
10365
+ # of training are not lost.
10366
+ #
10367
+ # The training algorithms provided by Amazon SageMaker automatically
10368
+ # save the intermediate results of a model training job when possible.
10369
+ # This attempt to save artifacts is only a best effort case as model
10370
+ # might not be in a state from which it can be saved. For example, if
10371
+ # training has just started, the model might not be ready to save. When
10372
+ # saved, this intermediate data is a valid model artifact. You can use
10373
+ # it to create a model with `CreateModel`.
10374
+ #
10375
+ # <note markdown="1"> The Neural Topic Model (NTM) currently does not support saving
10376
+ # intermediate model artifacts. When training NTMs, make sure that the
10377
+ # maximum runtime is sufficient for the training job to complete.
10230
10378
  #
10231
- # Training algorithms provided by Amazon SageMaker automatically saves
10232
- # the intermediate results of a model training job (it is best effort
10233
- # case, as model might not be ready to save as some stages, for example
10234
- # training just started). This intermediate data is a valid model
10235
- # artifact. You can use it to create a model (`CreateModel`).
10379
+ # </note>
10236
10380
  #
10237
10381
  # @note When making an API call, you may pass StoppingCondition
10238
10382
  # data as a hash:
@@ -10242,10 +10386,10 @@ module Aws::SageMaker
10242
10386
  # }
10243
10387
  #
10244
10388
  # @!attribute [rw] max_runtime_in_seconds
10245
- # The maximum length of time, in seconds, that the training job can
10246
- # run. If model training does not complete during this time, Amazon
10247
- # SageMaker ends the job. If value is not specified, default value is
10248
- # 1 day. Maximum value is 28 days.
10389
+ # The maximum length of time, in seconds, that the training or
10390
+ # compilation job can run. If job does not complete during this time,
10391
+ # Amazon SageMaker ends the job. If value is not specified, default
10392
+ # value is 1 day. The maximum value is 28 days.
10249
10393
  # @return [Integer]
10250
10394
  #
10251
10395
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/StoppingCondition AWS API Documentation
@@ -10483,7 +10627,14 @@ module Aws::SageMaker
10483
10627
  # @return [Types::VpcConfig]
10484
10628
  #
10485
10629
  # @!attribute [rw] stopping_condition
10486
- # The condition under which to stop the training job.
10630
+ # Specifies a limit to how long a model training job can run. When the
10631
+ # job reaches the time limit, Amazon SageMaker ends the training job.
10632
+ # Use this API to cap model training costs.
10633
+ #
10634
+ # To stop a job, Amazon SageMaker sends the algorithm the `SIGTERM`
10635
+ # signal, which delays job termination for 120 seconds. Algorithms can
10636
+ # use this 120-second window to save the model artifacts, so the
10637
+ # results of training are not lost.
10487
10638
  # @return [Types::StoppingCondition]
10488
10639
  #
10489
10640
  # @!attribute [rw] creation_time
@@ -10661,12 +10812,13 @@ module Aws::SageMaker
10661
10812
  # @return [Types::ResourceConfig]
10662
10813
  #
10663
10814
  # @!attribute [rw] stopping_condition
10664
- # Sets a duration for training. Use this parameter to cap model
10665
- # training costs.
10815
+ # Specifies a limit to how long a model training job can run. When the
10816
+ # job reaches the time limit, Amazon SageMaker ends the training job.
10817
+ # Use this API to cap model training costs.
10666
10818
  #
10667
10819
  # To stop a job, Amazon SageMaker sends the algorithm the SIGTERM
10668
- # signal, which delays job termination for 120 seconds. Algorithms
10669
- # might use this 120-second window to save the model artifacts.
10820
+ # signal, which delays job termination for 120 seconds. Algorithms can
10821
+ # use this 120-second window to save the model artifacts.
10670
10822
  # @return [Types::StoppingCondition]
10671
10823
  #
10672
10824
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/TrainingJobDefinition AWS API Documentation
@@ -11226,16 +11378,15 @@ module Aws::SageMaker
11226
11378
  # }
11227
11379
  #
11228
11380
  # @!attribute [rw] instance_type
11229
- # The ML compute instance type for the transform job. For using
11230
- # built-in algorithms to transform moderately sized datasets,
11231
- # ml.m4.xlarge or `ml.m5.large` should suffice. There is no default
11232
- # value for `InstanceType`.
11381
+ # The ML compute instance type for the transform job. If you are using
11382
+ # built-in algorithms to transform moderately sized datasets, we
11383
+ # recommend using ml.m4.xlarge or `ml.m5.large`instance types.
11233
11384
  # @return [String]
11234
11385
  #
11235
11386
  # @!attribute [rw] instance_count
11236
11387
  # The number of ML compute instances to use in the transform job. For
11237
- # distributed transform, provide a value greater than 1. The default
11238
- # value is `1`.
11388
+ # distributed transform jobs, specify a value greater than 1. The
11389
+ # default value is `1`.
11239
11390
  # @return [Integer]
11240
11391
  #
11241
11392
  # @!attribute [rw] volume_kms_key_id
@@ -11594,7 +11745,13 @@ module Aws::SageMaker
11594
11745
  #
11595
11746
  # @!attribute [rw] volume_size_in_gb
11596
11747
  # The size, in GB, of the ML storage volume to attach to the notebook
11597
- # instance. The default value is 5 GB.
11748
+ # instance. The default value is 5 GB. ML storage volumes are
11749
+ # encrypted, so Amazon SageMaker can't determine the amount of
11750
+ # available free space on the volume. Because of this, you can
11751
+ # increase the volume size when you update a notebook instance, but
11752
+ # you can't decrease the volume size. If you want to decrease the
11753
+ # size of the ML storage volume in use, create a new notebook instance
11754
+ # with the desired size.
11598
11755
  # @return [Integer]
11599
11756
  #
11600
11757
  # @!attribute [rw] default_code_repository
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-sagemaker
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.37.0
4
+ version: 1.38.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2019-05-21 00:00:00.000000000 Z
11
+ date: 2019-06-11 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core