aws-sdk-sagemaker 1.175.0 → 1.176.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +5 -0
- data/VERSION +1 -1
- data/lib/aws-sdk-sagemaker/client.rb +3 -1
- data/lib/aws-sdk-sagemaker/client_api.rb +2 -0
- data/lib/aws-sdk-sagemaker/types.rb +34 -172
- data/lib/aws-sdk-sagemaker.rb +1 -1
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: b11b07add56f85c6f243d0bb5625b83fb317f8c16b23c9835046f445246624d9
|
4
|
+
data.tar.gz: 1b437a3a9d8f8e23e313a2deb12267c5ea702d648cba09d8bea942787449734f
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: c4a2d3d9cee2273b34f4c4adce3aad3e2de44b6683ee7bf89273df96865a35ad29d62ebdb808635fcc1705c13d91bc95b56875e5325e3e8d135dd3de345fef38
|
7
|
+
data.tar.gz: c91d6b9501a9718817346a1e676582a914d70e4bfb2e6a0ed55b19eadaf141e97806132e871b3405f53987bfd3021da3cfd6cdef7192cfadfb7dabebcd854134
|
data/CHANGELOG.md
CHANGED
data/VERSION
CHANGED
@@ -1 +1 @@
|
|
1
|
-
1.
|
1
|
+
1.176.0
|
@@ -1280,6 +1280,7 @@ module Aws::SageMaker
|
|
1280
1280
|
# target_attribute_name: "TargetAttributeName", # required
|
1281
1281
|
# content_type: "ContentType",
|
1282
1282
|
# channel_type: "training", # accepts training, validation
|
1283
|
+
# sample_weight_attribute_name: "SampleWeightAttributeName",
|
1283
1284
|
# },
|
1284
1285
|
# ],
|
1285
1286
|
# output_data_config: { # required
|
@@ -9929,6 +9930,7 @@ module Aws::SageMaker
|
|
9929
9930
|
# resp.input_data_config[0].target_attribute_name #=> String
|
9930
9931
|
# resp.input_data_config[0].content_type #=> String
|
9931
9932
|
# resp.input_data_config[0].channel_type #=> String, one of "training", "validation"
|
9933
|
+
# resp.input_data_config[0].sample_weight_attribute_name #=> String
|
9932
9934
|
# resp.output_data_config.kms_key_id #=> String
|
9933
9935
|
# resp.output_data_config.s3_output_path #=> String
|
9934
9936
|
# resp.role_arn #=> String
|
@@ -23470,7 +23472,7 @@ module Aws::SageMaker
|
|
23470
23472
|
params: params,
|
23471
23473
|
config: config)
|
23472
23474
|
context[:gem_name] = 'aws-sdk-sagemaker'
|
23473
|
-
context[:gem_version] = '1.
|
23475
|
+
context[:gem_version] = '1.176.0'
|
23474
23476
|
Seahorse::Client::Request.new(handlers, context)
|
23475
23477
|
end
|
23476
23478
|
|
@@ -1648,6 +1648,7 @@ module Aws::SageMaker
|
|
1648
1648
|
SageMakerImageVersionAlias = Shapes::StringShape.new(name: 'SageMakerImageVersionAlias')
|
1649
1649
|
SageMakerImageVersionAliases = Shapes::ListShape.new(name: 'SageMakerImageVersionAliases')
|
1650
1650
|
SagemakerServicecatalogStatus = Shapes::StringShape.new(name: 'SagemakerServicecatalogStatus')
|
1651
|
+
SampleWeightAttributeName = Shapes::StringShape.new(name: 'SampleWeightAttributeName')
|
1651
1652
|
SamplingPercentage = Shapes::IntegerShape.new(name: 'SamplingPercentage')
|
1652
1653
|
ScheduleConfig = Shapes::StructureShape.new(name: 'ScheduleConfig')
|
1653
1654
|
ScheduleExpression = Shapes::StringShape.new(name: 'ScheduleExpression')
|
@@ -2235,6 +2236,7 @@ module Aws::SageMaker
|
|
2235
2236
|
AutoMLChannel.add_member(:target_attribute_name, Shapes::ShapeRef.new(shape: TargetAttributeName, required: true, location_name: "TargetAttributeName"))
|
2236
2237
|
AutoMLChannel.add_member(:content_type, Shapes::ShapeRef.new(shape: ContentType, location_name: "ContentType"))
|
2237
2238
|
AutoMLChannel.add_member(:channel_type, Shapes::ShapeRef.new(shape: AutoMLChannelType, location_name: "ChannelType"))
|
2239
|
+
AutoMLChannel.add_member(:sample_weight_attribute_name, Shapes::ShapeRef.new(shape: SampleWeightAttributeName, location_name: "SampleWeightAttributeName"))
|
2238
2240
|
AutoMLChannel.struct_class = Types::AutoMLChannel
|
2239
2241
|
|
2240
2242
|
AutoMLContainerDefinition.add_member(:image, Shapes::ShapeRef.new(shape: ContainerImage, required: true, location_name: "Image"))
|
@@ -1939,6 +1939,27 @@ module Aws::SageMaker
|
|
1939
1939
|
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-data-sources-training-or-validation
|
1940
1940
|
# @return [String]
|
1941
1941
|
#
|
1942
|
+
# @!attribute [rw] sample_weight_attribute_name
|
1943
|
+
# If specified, this column name indicates which column of the dataset
|
1944
|
+
# should be treated as sample weights for use by the objective metric
|
1945
|
+
# during the training, evaluation, and the selection of the best
|
1946
|
+
# model. This column is not considered as a predictive feature. For
|
1947
|
+
# more information on Autopilot metrics, see [Metrics and
|
1948
|
+
# validation][1].
|
1949
|
+
#
|
1950
|
+
# Sample weights should be numeric, non-negative, with larger values
|
1951
|
+
# indicating which rows are more important than others. Data points
|
1952
|
+
# that have invalid or no weight value are excluded.
|
1953
|
+
#
|
1954
|
+
# Support for sample weights is available in [Ensembling][2] mode
|
1955
|
+
# only.
|
1956
|
+
#
|
1957
|
+
#
|
1958
|
+
#
|
1959
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-metrics-validation.html
|
1960
|
+
# [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLAlgorithmConfig.html
|
1961
|
+
# @return [String]
|
1962
|
+
#
|
1942
1963
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLChannel AWS API Documentation
|
1943
1964
|
#
|
1944
1965
|
class AutoMLChannel < Struct.new(
|
@@ -1946,7 +1967,8 @@ module Aws::SageMaker
|
|
1946
1967
|
:compression_type,
|
1947
1968
|
:target_attribute_name,
|
1948
1969
|
:content_type,
|
1949
|
-
:channel_type
|
1970
|
+
:channel_type,
|
1971
|
+
:sample_weight_attribute_name)
|
1950
1972
|
SENSITIVE = []
|
1951
1973
|
include Aws::Structure
|
1952
1974
|
end
|
@@ -2217,177 +2239,13 @@ module Aws::SageMaker
|
|
2217
2239
|
#
|
2218
2240
|
# @!attribute [rw] metric_name
|
2219
2241
|
# The name of the objective metric used to measure the predictive
|
2220
|
-
# quality of a machine learning system.
|
2221
|
-
#
|
2222
|
-
#
|
2223
|
-
#
|
2224
|
-
#
|
2225
|
-
#
|
2226
|
-
#
|
2227
|
-
#
|
2228
|
-
# : The ratio of the number of correctly classified items to the total
|
2229
|
-
# number of (correctly and incorrectly) classified items. It is used
|
2230
|
-
# for both binary and multiclass classification. Accuracy measures
|
2231
|
-
# how close the predicted class values are to the actual values.
|
2232
|
-
# Values for accuracy metrics vary between zero (0) and one (1). A
|
2233
|
-
# value of 1 indicates perfect accuracy, and 0 indicates perfect
|
2234
|
-
# inaccuracy.
|
2235
|
-
#
|
2236
|
-
# AUC
|
2237
|
-
#
|
2238
|
-
# : The area under the curve (AUC) metric is used to compare and
|
2239
|
-
# evaluate binary classification by algorithms that return
|
2240
|
-
# probabilities, such as logistic regression. To map the
|
2241
|
-
# probabilities into classifications, these are compared against a
|
2242
|
-
# threshold value.
|
2243
|
-
#
|
2244
|
-
# The relevant curve is the receiver operating characteristic curve
|
2245
|
-
# (ROC curve). The ROC curve plots the true positive rate (TPR) of
|
2246
|
-
# predictions (or recall) against the false positive rate (FPR) as a
|
2247
|
-
# function of the threshold value, above which a prediction is
|
2248
|
-
# considered positive. Increasing the threshold results in fewer
|
2249
|
-
# false positives, but more false negatives.
|
2250
|
-
#
|
2251
|
-
# AUC is the area under this ROC curve. Therefore, AUC provides an
|
2252
|
-
# aggregated measure of the model performance across all possible
|
2253
|
-
# classification thresholds. AUC scores vary between 0 and 1. A
|
2254
|
-
# score of 1 indicates perfect accuracy, and a score of one half
|
2255
|
-
# (0.5) indicates that the prediction is not better than a random
|
2256
|
-
# classifier.
|
2257
|
-
#
|
2258
|
-
# BalancedAccuracy
|
2259
|
-
#
|
2260
|
-
# : `BalancedAccuracy` is a metric that measures the ratio of accurate
|
2261
|
-
# predictions to all predictions. This ratio is calculated after
|
2262
|
-
# normalizing true positives (TP) and true negatives (TN) by the
|
2263
|
-
# total number of positive (P) and negative (N) values. It is used
|
2264
|
-
# in both binary and multiclass classification and is defined as
|
2265
|
-
# follows: 0.5*((TP/P)+(TN/N)), with values ranging from 0 to 1.
|
2266
|
-
# `BalancedAccuracy` gives a better measure of accuracy when the
|
2267
|
-
# number of positives or negatives differ greatly from each other in
|
2268
|
-
# an imbalanced dataset. For example, when only 1% of email is spam.
|
2269
|
-
#
|
2270
|
-
# F1
|
2271
|
-
#
|
2272
|
-
# : The `F1` score is the harmonic mean of the precision and recall,
|
2273
|
-
# defined as follows: F1 = 2 * (precision * recall) / (precision +
|
2274
|
-
# recall). It is used for binary classification into classes
|
2275
|
-
# traditionally referred to as positive and negative. Predictions
|
2276
|
-
# are said to be true when they match their actual (correct) class,
|
2277
|
-
# and false when they do not.
|
2278
|
-
#
|
2279
|
-
# Precision is the ratio of the true positive predictions to all
|
2280
|
-
# positive predictions, and it includes the false positives in a
|
2281
|
-
# dataset. Precision measures the quality of the prediction when it
|
2282
|
-
# predicts the positive class.
|
2283
|
-
#
|
2284
|
-
# Recall (or sensitivity) is the ratio of the true positive
|
2285
|
-
# predictions to all actual positive instances. Recall measures how
|
2286
|
-
# completely a model predicts the actual class members in a dataset.
|
2287
|
-
#
|
2288
|
-
# F1 scores vary between 0 and 1. A score of 1 indicates the best
|
2289
|
-
# possible performance, and 0 indicates the worst.
|
2290
|
-
#
|
2291
|
-
# F1macro
|
2292
|
-
#
|
2293
|
-
# : The `F1macro` score applies F1 scoring to multiclass
|
2294
|
-
# classification problems. It does this by calculating the precision
|
2295
|
-
# and recall, and then taking their harmonic mean to calculate the
|
2296
|
-
# F1 score for each class. Lastly, the F1macro averages the
|
2297
|
-
# individual scores to obtain the `F1macro` score. `F1macro` scores
|
2298
|
-
# vary between 0 and 1. A score of 1 indicates the best possible
|
2299
|
-
# performance, and 0 indicates the worst.
|
2300
|
-
#
|
2301
|
-
# MAE
|
2302
|
-
#
|
2303
|
-
# : The mean absolute error (MAE) is a measure of how different the
|
2304
|
-
# predicted and actual values are, when they're averaged over all
|
2305
|
-
# values. MAE is commonly used in regression analysis to understand
|
2306
|
-
# model prediction error. If there is linear regression, MAE
|
2307
|
-
# represents the average distance from a predicted line to the
|
2308
|
-
# actual value. MAE is defined as the sum of absolute errors divided
|
2309
|
-
# by the number of observations. Values range from 0 to infinity,
|
2310
|
-
# with smaller numbers indicating a better model fit to the data.
|
2311
|
-
#
|
2312
|
-
# MSE
|
2313
|
-
#
|
2314
|
-
# : The mean squared error (MSE) is the average of the squared
|
2315
|
-
# differences between the predicted and actual values. It is used
|
2316
|
-
# for regression. MSE values are always positive. The better a model
|
2317
|
-
# is at predicting the actual values, the smaller the MSE value is
|
2318
|
-
#
|
2319
|
-
# Precision
|
2320
|
-
#
|
2321
|
-
# : Precision measures how well an algorithm predicts the true
|
2322
|
-
# positives (TP) out of all of the positives that it identifies. It
|
2323
|
-
# is defined as follows: Precision = TP/(TP+FP), with values ranging
|
2324
|
-
# from zero (0) to one (1), and is used in binary classification.
|
2325
|
-
# Precision is an important metric when the cost of a false positive
|
2326
|
-
# is high. For example, the cost of a false positive is very high if
|
2327
|
-
# an airplane safety system is falsely deemed safe to fly. A false
|
2328
|
-
# positive (FP) reflects a positive prediction that is actually
|
2329
|
-
# negative in the data.
|
2330
|
-
#
|
2331
|
-
# PrecisionMacro
|
2332
|
-
#
|
2333
|
-
# : The precision macro computes precision for multiclass
|
2334
|
-
# classification problems. It does this by calculating precision for
|
2335
|
-
# each class and averaging scores to obtain precision for several
|
2336
|
-
# classes. `PrecisionMacro` scores range from zero (0) to one (1).
|
2337
|
-
# Higher scores reflect the model's ability to predict true
|
2338
|
-
# positives (TP) out of all of the positives that it identifies,
|
2339
|
-
# averaged across multiple classes.
|
2340
|
-
#
|
2341
|
-
# R2
|
2342
|
-
#
|
2343
|
-
# : R2, also known as the coefficient of determination, is used in
|
2344
|
-
# regression to quantify how much a model can explain the variance
|
2345
|
-
# of a dependent variable. Values range from one (1) to negative one
|
2346
|
-
# (-1). Higher numbers indicate a higher fraction of explained
|
2347
|
-
# variability. `R2` values close to zero (0) indicate that very
|
2348
|
-
# little of the dependent variable can be explained by the model.
|
2349
|
-
# Negative values indicate a poor fit and that the model is
|
2350
|
-
# outperformed by a constant function. For linear regression, this
|
2351
|
-
# is a horizontal line.
|
2352
|
-
#
|
2353
|
-
# Recall
|
2354
|
-
#
|
2355
|
-
# : Recall measures how well an algorithm correctly predicts all of
|
2356
|
-
# the true positives (TP) in a dataset. A true positive is a
|
2357
|
-
# positive prediction that is also an actual positive value in the
|
2358
|
-
# data. Recall is defined as follows: Recall = TP/(TP+FN), with
|
2359
|
-
# values ranging from 0 to 1. Higher scores reflect a better ability
|
2360
|
-
# of the model to predict true positives (TP) in the data, and is
|
2361
|
-
# used in binary classification.
|
2362
|
-
#
|
2363
|
-
# Recall is important when testing for cancer because it's used to
|
2364
|
-
# find all of the true positives. A false positive (FP) reflects a
|
2365
|
-
# positive prediction that is actually negative in the data. It is
|
2366
|
-
# often insufficient to measure only recall, because predicting
|
2367
|
-
# every output as a true positive yield a perfect recall score.
|
2368
|
-
#
|
2369
|
-
# RecallMacro
|
2370
|
-
#
|
2371
|
-
# : The RecallMacro computes recall for multiclass classification
|
2372
|
-
# problems by calculating recall for each class and averaging scores
|
2373
|
-
# to obtain recall for several classes. RecallMacro scores range
|
2374
|
-
# from 0 to 1. Higher scores reflect the model's ability to predict
|
2375
|
-
# true positives (TP) in a dataset. Whereas, a true positive
|
2376
|
-
# reflects a positive prediction that is also an actual positive
|
2377
|
-
# value in the data. It is often insufficient to measure only
|
2378
|
-
# recall, because predicting every output as a true positive yields
|
2379
|
-
# a perfect recall score.
|
2380
|
-
#
|
2381
|
-
# RMSE
|
2382
|
-
#
|
2383
|
-
# : Root mean squared error (RMSE) measures the square root of the
|
2384
|
-
# squared difference between predicted and actual values, and it's
|
2385
|
-
# averaged over all values. It is used in regression analysis to
|
2386
|
-
# understand model prediction error. It's an important metric to
|
2387
|
-
# indicate the presence of large model errors and outliers. Values
|
2388
|
-
# range from zero (0) to infinity, with smaller numbers indicating a
|
2389
|
-
# better model fit to the data. RMSE is dependent on scale, and
|
2390
|
-
# should not be used to compare datasets of different sizes.
|
2242
|
+
# quality of a machine learning system. During training, the model's
|
2243
|
+
# parameters are updated iteratively to optimize its performance based
|
2244
|
+
# on the feedback provided by the objective metric when evaluating the
|
2245
|
+
# model on the validation dataset.
|
2246
|
+
#
|
2247
|
+
# For the list of all available metrics supported by Autopilot, see
|
2248
|
+
# [Autopilot metrics][1].
|
2391
2249
|
#
|
2392
2250
|
# If you do not specify a metric explicitly, the default behavior is
|
2393
2251
|
# to automatically use:
|
@@ -2397,6 +2255,10 @@ module Aws::SageMaker
|
|
2397
2255
|
# * `F1`: for binary classification
|
2398
2256
|
#
|
2399
2257
|
# * `Accuracy`: for multiclass classification.
|
2258
|
+
#
|
2259
|
+
#
|
2260
|
+
#
|
2261
|
+
# [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-metrics-validation.html#autopilot-metrics
|
2400
2262
|
# @return [String]
|
2401
2263
|
#
|
2402
2264
|
# @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobObjective AWS API Documentation
|
data/lib/aws-sdk-sagemaker.rb
CHANGED
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: aws-sdk-sagemaker
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 1.
|
4
|
+
version: 1.176.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Amazon Web Services
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2023-
|
11
|
+
date: 2023-05-02 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: aws-sdk-core
|