aws-sdk-sagemaker 1.175.0 → 1.176.0

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: ded8df879b09c28afc104def41071b5cc2e6a71203a6e22f6690b57a64b0090d
4
- data.tar.gz: beee8a7492809d230e990f7a9ffaa19e0660c1581a550c9e414cb47ccdb7d20b
3
+ metadata.gz: b11b07add56f85c6f243d0bb5625b83fb317f8c16b23c9835046f445246624d9
4
+ data.tar.gz: 1b437a3a9d8f8e23e313a2deb12267c5ea702d648cba09d8bea942787449734f
5
5
  SHA512:
6
- metadata.gz: 3f5ce239b868319df2f30e6b1d728b49c5e318926f8b7fddde04ab1daff32a1a8dde545fe31cd87547665717906c16b60dcae549ab8f820e81a37b5d137f05e3
7
- data.tar.gz: e703f72d9a827260db39b0ef1a92feac98f487778d5f6b791d787f3628feb077d86af02724d3b4a3ee97f00e48753fd16e81783bf1e2a924d75abfa644db54ce
6
+ metadata.gz: c4a2d3d9cee2273b34f4c4adce3aad3e2de44b6683ee7bf89273df96865a35ad29d62ebdb808635fcc1705c13d91bc95b56875e5325e3e8d135dd3de345fef38
7
+ data.tar.gz: c91d6b9501a9718817346a1e676582a914d70e4bfb2e6a0ed55b19eadaf141e97806132e871b3405f53987bfd3021da3cfd6cdef7192cfadfb7dabebcd854134
data/CHANGELOG.md CHANGED
@@ -1,6 +1,11 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.176.0 (2023-05-02)
5
+ ------------------
6
+
7
+ * Feature - Amazon Sagemaker Autopilot supports training models with sample weights and additional objective metrics.
8
+
4
9
  1.175.0 (2023-04-27)
5
10
  ------------------
6
11
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.175.0
1
+ 1.176.0
@@ -1280,6 +1280,7 @@ module Aws::SageMaker
1280
1280
  # target_attribute_name: "TargetAttributeName", # required
1281
1281
  # content_type: "ContentType",
1282
1282
  # channel_type: "training", # accepts training, validation
1283
+ # sample_weight_attribute_name: "SampleWeightAttributeName",
1283
1284
  # },
1284
1285
  # ],
1285
1286
  # output_data_config: { # required
@@ -9929,6 +9930,7 @@ module Aws::SageMaker
9929
9930
  # resp.input_data_config[0].target_attribute_name #=> String
9930
9931
  # resp.input_data_config[0].content_type #=> String
9931
9932
  # resp.input_data_config[0].channel_type #=> String, one of "training", "validation"
9933
+ # resp.input_data_config[0].sample_weight_attribute_name #=> String
9932
9934
  # resp.output_data_config.kms_key_id #=> String
9933
9935
  # resp.output_data_config.s3_output_path #=> String
9934
9936
  # resp.role_arn #=> String
@@ -23470,7 +23472,7 @@ module Aws::SageMaker
23470
23472
  params: params,
23471
23473
  config: config)
23472
23474
  context[:gem_name] = 'aws-sdk-sagemaker'
23473
- context[:gem_version] = '1.175.0'
23475
+ context[:gem_version] = '1.176.0'
23474
23476
  Seahorse::Client::Request.new(handlers, context)
23475
23477
  end
23476
23478
 
@@ -1648,6 +1648,7 @@ module Aws::SageMaker
1648
1648
  SageMakerImageVersionAlias = Shapes::StringShape.new(name: 'SageMakerImageVersionAlias')
1649
1649
  SageMakerImageVersionAliases = Shapes::ListShape.new(name: 'SageMakerImageVersionAliases')
1650
1650
  SagemakerServicecatalogStatus = Shapes::StringShape.new(name: 'SagemakerServicecatalogStatus')
1651
+ SampleWeightAttributeName = Shapes::StringShape.new(name: 'SampleWeightAttributeName')
1651
1652
  SamplingPercentage = Shapes::IntegerShape.new(name: 'SamplingPercentage')
1652
1653
  ScheduleConfig = Shapes::StructureShape.new(name: 'ScheduleConfig')
1653
1654
  ScheduleExpression = Shapes::StringShape.new(name: 'ScheduleExpression')
@@ -2235,6 +2236,7 @@ module Aws::SageMaker
2235
2236
  AutoMLChannel.add_member(:target_attribute_name, Shapes::ShapeRef.new(shape: TargetAttributeName, required: true, location_name: "TargetAttributeName"))
2236
2237
  AutoMLChannel.add_member(:content_type, Shapes::ShapeRef.new(shape: ContentType, location_name: "ContentType"))
2237
2238
  AutoMLChannel.add_member(:channel_type, Shapes::ShapeRef.new(shape: AutoMLChannelType, location_name: "ChannelType"))
2239
+ AutoMLChannel.add_member(:sample_weight_attribute_name, Shapes::ShapeRef.new(shape: SampleWeightAttributeName, location_name: "SampleWeightAttributeName"))
2238
2240
  AutoMLChannel.struct_class = Types::AutoMLChannel
2239
2241
 
2240
2242
  AutoMLContainerDefinition.add_member(:image, Shapes::ShapeRef.new(shape: ContainerImage, required: true, location_name: "Image"))
@@ -1939,6 +1939,27 @@ module Aws::SageMaker
1939
1939
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-datasets-problem-types.html#autopilot-data-sources-training-or-validation
1940
1940
  # @return [String]
1941
1941
  #
1942
+ # @!attribute [rw] sample_weight_attribute_name
1943
+ # If specified, this column name indicates which column of the dataset
1944
+ # should be treated as sample weights for use by the objective metric
1945
+ # during the training, evaluation, and the selection of the best
1946
+ # model. This column is not considered as a predictive feature. For
1947
+ # more information on Autopilot metrics, see [Metrics and
1948
+ # validation][1].
1949
+ #
1950
+ # Sample weights should be numeric, non-negative, with larger values
1951
+ # indicating which rows are more important than others. Data points
1952
+ # that have invalid or no weight value are excluded.
1953
+ #
1954
+ # Support for sample weights is available in [Ensembling][2] mode
1955
+ # only.
1956
+ #
1957
+ #
1958
+ #
1959
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-metrics-validation.html
1960
+ # [2]: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLAlgorithmConfig.html
1961
+ # @return [String]
1962
+ #
1942
1963
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLChannel AWS API Documentation
1943
1964
  #
1944
1965
  class AutoMLChannel < Struct.new(
@@ -1946,7 +1967,8 @@ module Aws::SageMaker
1946
1967
  :compression_type,
1947
1968
  :target_attribute_name,
1948
1969
  :content_type,
1949
- :channel_type)
1970
+ :channel_type,
1971
+ :sample_weight_attribute_name)
1950
1972
  SENSITIVE = []
1951
1973
  include Aws::Structure
1952
1974
  end
@@ -2217,177 +2239,13 @@ module Aws::SageMaker
2217
2239
  #
2218
2240
  # @!attribute [rw] metric_name
2219
2241
  # The name of the objective metric used to measure the predictive
2220
- # quality of a machine learning system. This metric is optimized
2221
- # during training to provide the best estimate for model parameter
2222
- # values from data.
2223
- #
2224
- # Here are the options:
2225
- #
2226
- # Accuracy
2227
- #
2228
- # : The ratio of the number of correctly classified items to the total
2229
- # number of (correctly and incorrectly) classified items. It is used
2230
- # for both binary and multiclass classification. Accuracy measures
2231
- # how close the predicted class values are to the actual values.
2232
- # Values for accuracy metrics vary between zero (0) and one (1). A
2233
- # value of 1 indicates perfect accuracy, and 0 indicates perfect
2234
- # inaccuracy.
2235
- #
2236
- # AUC
2237
- #
2238
- # : The area under the curve (AUC) metric is used to compare and
2239
- # evaluate binary classification by algorithms that return
2240
- # probabilities, such as logistic regression. To map the
2241
- # probabilities into classifications, these are compared against a
2242
- # threshold value.
2243
- #
2244
- # The relevant curve is the receiver operating characteristic curve
2245
- # (ROC curve). The ROC curve plots the true positive rate (TPR) of
2246
- # predictions (or recall) against the false positive rate (FPR) as a
2247
- # function of the threshold value, above which a prediction is
2248
- # considered positive. Increasing the threshold results in fewer
2249
- # false positives, but more false negatives.
2250
- #
2251
- # AUC is the area under this ROC curve. Therefore, AUC provides an
2252
- # aggregated measure of the model performance across all possible
2253
- # classification thresholds. AUC scores vary between 0 and 1. A
2254
- # score of 1 indicates perfect accuracy, and a score of one half
2255
- # (0.5) indicates that the prediction is not better than a random
2256
- # classifier.
2257
- #
2258
- # BalancedAccuracy
2259
- #
2260
- # : `BalancedAccuracy` is a metric that measures the ratio of accurate
2261
- # predictions to all predictions. This ratio is calculated after
2262
- # normalizing true positives (TP) and true negatives (TN) by the
2263
- # total number of positive (P) and negative (N) values. It is used
2264
- # in both binary and multiclass classification and is defined as
2265
- # follows: 0.5*((TP/P)+(TN/N)), with values ranging from 0 to 1.
2266
- # `BalancedAccuracy` gives a better measure of accuracy when the
2267
- # number of positives or negatives differ greatly from each other in
2268
- # an imbalanced dataset. For example, when only 1% of email is spam.
2269
- #
2270
- # F1
2271
- #
2272
- # : The `F1` score is the harmonic mean of the precision and recall,
2273
- # defined as follows: F1 = 2 * (precision * recall) / (precision +
2274
- # recall). It is used for binary classification into classes
2275
- # traditionally referred to as positive and negative. Predictions
2276
- # are said to be true when they match their actual (correct) class,
2277
- # and false when they do not.
2278
- #
2279
- # Precision is the ratio of the true positive predictions to all
2280
- # positive predictions, and it includes the false positives in a
2281
- # dataset. Precision measures the quality of the prediction when it
2282
- # predicts the positive class.
2283
- #
2284
- # Recall (or sensitivity) is the ratio of the true positive
2285
- # predictions to all actual positive instances. Recall measures how
2286
- # completely a model predicts the actual class members in a dataset.
2287
- #
2288
- # F1 scores vary between 0 and 1. A score of 1 indicates the best
2289
- # possible performance, and 0 indicates the worst.
2290
- #
2291
- # F1macro
2292
- #
2293
- # : The `F1macro` score applies F1 scoring to multiclass
2294
- # classification problems. It does this by calculating the precision
2295
- # and recall, and then taking their harmonic mean to calculate the
2296
- # F1 score for each class. Lastly, the F1macro averages the
2297
- # individual scores to obtain the `F1macro` score. `F1macro` scores
2298
- # vary between 0 and 1. A score of 1 indicates the best possible
2299
- # performance, and 0 indicates the worst.
2300
- #
2301
- # MAE
2302
- #
2303
- # : The mean absolute error (MAE) is a measure of how different the
2304
- # predicted and actual values are, when they're averaged over all
2305
- # values. MAE is commonly used in regression analysis to understand
2306
- # model prediction error. If there is linear regression, MAE
2307
- # represents the average distance from a predicted line to the
2308
- # actual value. MAE is defined as the sum of absolute errors divided
2309
- # by the number of observations. Values range from 0 to infinity,
2310
- # with smaller numbers indicating a better model fit to the data.
2311
- #
2312
- # MSE
2313
- #
2314
- # : The mean squared error (MSE) is the average of the squared
2315
- # differences between the predicted and actual values. It is used
2316
- # for regression. MSE values are always positive. The better a model
2317
- # is at predicting the actual values, the smaller the MSE value is
2318
- #
2319
- # Precision
2320
- #
2321
- # : Precision measures how well an algorithm predicts the true
2322
- # positives (TP) out of all of the positives that it identifies. It
2323
- # is defined as follows: Precision = TP/(TP+FP), with values ranging
2324
- # from zero (0) to one (1), and is used in binary classification.
2325
- # Precision is an important metric when the cost of a false positive
2326
- # is high. For example, the cost of a false positive is very high if
2327
- # an airplane safety system is falsely deemed safe to fly. A false
2328
- # positive (FP) reflects a positive prediction that is actually
2329
- # negative in the data.
2330
- #
2331
- # PrecisionMacro
2332
- #
2333
- # : The precision macro computes precision for multiclass
2334
- # classification problems. It does this by calculating precision for
2335
- # each class and averaging scores to obtain precision for several
2336
- # classes. `PrecisionMacro` scores range from zero (0) to one (1).
2337
- # Higher scores reflect the model's ability to predict true
2338
- # positives (TP) out of all of the positives that it identifies,
2339
- # averaged across multiple classes.
2340
- #
2341
- # R2
2342
- #
2343
- # : R2, also known as the coefficient of determination, is used in
2344
- # regression to quantify how much a model can explain the variance
2345
- # of a dependent variable. Values range from one (1) to negative one
2346
- # (-1). Higher numbers indicate a higher fraction of explained
2347
- # variability. `R2` values close to zero (0) indicate that very
2348
- # little of the dependent variable can be explained by the model.
2349
- # Negative values indicate a poor fit and that the model is
2350
- # outperformed by a constant function. For linear regression, this
2351
- # is a horizontal line.
2352
- #
2353
- # Recall
2354
- #
2355
- # : Recall measures how well an algorithm correctly predicts all of
2356
- # the true positives (TP) in a dataset. A true positive is a
2357
- # positive prediction that is also an actual positive value in the
2358
- # data. Recall is defined as follows: Recall = TP/(TP+FN), with
2359
- # values ranging from 0 to 1. Higher scores reflect a better ability
2360
- # of the model to predict true positives (TP) in the data, and is
2361
- # used in binary classification.
2362
- #
2363
- # Recall is important when testing for cancer because it's used to
2364
- # find all of the true positives. A false positive (FP) reflects a
2365
- # positive prediction that is actually negative in the data. It is
2366
- # often insufficient to measure only recall, because predicting
2367
- # every output as a true positive yield a perfect recall score.
2368
- #
2369
- # RecallMacro
2370
- #
2371
- # : The RecallMacro computes recall for multiclass classification
2372
- # problems by calculating recall for each class and averaging scores
2373
- # to obtain recall for several classes. RecallMacro scores range
2374
- # from 0 to 1. Higher scores reflect the model's ability to predict
2375
- # true positives (TP) in a dataset. Whereas, a true positive
2376
- # reflects a positive prediction that is also an actual positive
2377
- # value in the data. It is often insufficient to measure only
2378
- # recall, because predicting every output as a true positive yields
2379
- # a perfect recall score.
2380
- #
2381
- # RMSE
2382
- #
2383
- # : Root mean squared error (RMSE) measures the square root of the
2384
- # squared difference between predicted and actual values, and it's
2385
- # averaged over all values. It is used in regression analysis to
2386
- # understand model prediction error. It's an important metric to
2387
- # indicate the presence of large model errors and outliers. Values
2388
- # range from zero (0) to infinity, with smaller numbers indicating a
2389
- # better model fit to the data. RMSE is dependent on scale, and
2390
- # should not be used to compare datasets of different sizes.
2242
+ # quality of a machine learning system. During training, the model's
2243
+ # parameters are updated iteratively to optimize its performance based
2244
+ # on the feedback provided by the objective metric when evaluating the
2245
+ # model on the validation dataset.
2246
+ #
2247
+ # For the list of all available metrics supported by Autopilot, see
2248
+ # [Autopilot metrics][1].
2391
2249
  #
2392
2250
  # If you do not specify a metric explicitly, the default behavior is
2393
2251
  # to automatically use:
@@ -2397,6 +2255,10 @@ module Aws::SageMaker
2397
2255
  # * `F1`: for binary classification
2398
2256
  #
2399
2257
  # * `Accuracy`: for multiclass classification.
2258
+ #
2259
+ #
2260
+ #
2261
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-metrics-validation.html#autopilot-metrics
2400
2262
  # @return [String]
2401
2263
  #
2402
2264
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobObjective AWS API Documentation
@@ -53,6 +53,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
53
53
  # @!group service
54
54
  module Aws::SageMaker
55
55
 
56
- GEM_VERSION = '1.175.0'
56
+ GEM_VERSION = '1.176.0'
57
57
 
58
58
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-sagemaker
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.175.0
4
+ version: 1.176.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2023-04-27 00:00:00.000000000 Z
11
+ date: 2023-05-02 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core