aws-sdk-sagemaker 1.154.0 → 1.155.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 40a3968d304413d8a5157190f3d65265edcd78190a8a2401d4e29e51f28ae8f0
4
- data.tar.gz: f6dbeb97296ae50726b9490d78ae06fc48fb0f6f99b5c474160e622923dcb356
3
+ metadata.gz: 542b1ce33743bd2de5e708e210fec2a895401096ae057e4a5e5167497c514d1d
4
+ data.tar.gz: d7b71512de000c7445e1ff235cd0c35734d03d91ea7f83984f1b393a1f5bebf5
5
5
  SHA512:
6
- metadata.gz: a8eaca682257d3fd18aa088eedd78138ea45ff8cf49be6c1640a90d831482ece403a0a8b4fc66b2c91d79f0e01f34233be0d469bf186feb2dff82fac83a45b3b
7
- data.tar.gz: f6cec82479bfb110d2438174d680af47d8c5030eeb05fcac3ecc4c780b4937cc16bd522811158846673886c7f16165de0311cfd58969a5f0d7e1f259d8739eb4
6
+ metadata.gz: 78d37f4a4ee5052970e061c195d14f2818ba2c8c0a6bc07f8ecce0530cf89d3608a10a4ec107e30c0ec4a931c0bc85ae0a44c9faa5724f0660815c49a23db93e
7
+ data.tar.gz: 47e033757ed9217148e651e1b340637c5c530c04fb4858f08f882e0ff36926a0a0c4fd7e07d5a16b1b271df01d6f9b92d68960641ca60007ebc47e49908b25ca
data/CHANGELOG.md CHANGED
@@ -1,6 +1,11 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.155.0 (2022-12-15)
5
+ ------------------
6
+
7
+ * Feature - SageMaker Inference Recommender now allows customers to load tests their models on various instance types using private VPC.
8
+
4
9
  1.154.0 (2022-11-30)
5
10
  ------------------
6
11
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.154.0
1
+ 1.155.0
@@ -2487,7 +2487,7 @@ module Aws::SageMaker
2487
2487
  # CreateEndpoint request.
2488
2488
  #
2489
2489
  # @option params [required, Array<Types::ProductionVariant>] :production_variants
2490
- # An list of `ProductionVariant` objects, one for each model that you
2490
+ # An array of `ProductionVariant` objects, one for each model that you
2491
2491
  # want to host at this endpoint.
2492
2492
  #
2493
2493
  # @option params [Types::DataCaptureConfig] :data_capture_config
@@ -2562,10 +2562,10 @@ module Aws::SageMaker
2562
2562
  # A member of `CreateEndpointConfig` that enables explainers.
2563
2563
  #
2564
2564
  # @option params [Array<Types::ProductionVariant>] :shadow_production_variants
2565
- # Array of `ProductionVariant` objects. There is one for each model that
2566
- # you want to host at this endpoint in shadow mode with production
2567
- # traffic replicated from the model specified on `ProductionVariants`.If
2568
- # you use this field, you can only specify one variant for
2565
+ # An array of `ProductionVariant` objects, one for each model that you
2566
+ # want to host at this endpoint in shadow mode with production traffic
2567
+ # replicated from the model specified on `ProductionVariants`. If you
2568
+ # use this field, you can only specify one variant for
2569
2569
  # `ProductionVariants` and one variant for `ShadowProductionVariants`.
2570
2570
  #
2571
2571
  # @return [Types::CreateEndpointConfigOutput] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
@@ -2876,11 +2876,15 @@ module Aws::SageMaker
2876
2876
  # defining your [bucket-level key][1] for SSE, you can reduce Amazon
2877
2877
  # Web Services KMS requests costs by up to 99 percent.
2878
2878
  #
2879
+ # * Format for the offline store table. Supported formats are Glue
2880
+ # (Default) and [Apache Iceberg][2].
2881
+ #
2879
2882
  # To learn more about this parameter, see OfflineStoreConfig.
2880
2883
  #
2881
2884
  #
2882
2885
  #
2883
2886
  # [1]: https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucket-key.html
2887
+ # [2]: https://iceberg.apache.org/
2884
2888
  #
2885
2889
  # @option params [String] :role_arn
2886
2890
  # The Amazon Resource Name (ARN) of the IAM execution role used to
@@ -3669,9 +3673,9 @@ module Aws::SageMaker
3669
3673
  # Creates an inference experiment using the configurations specified in
3670
3674
  # the request.
3671
3675
  #
3672
- # Use this API to schedule an experiment to compare model variants on a
3673
- # Amazon SageMaker inference endpoint. For more information about
3674
- # inference experiments, see [Shadow tests][1].
3676
+ # Use this API to setup and schedule an experiment to compare model
3677
+ # variants on a Amazon SageMaker inference endpoint. For more
3678
+ # information about inference experiments, see [Shadow tests][1].
3675
3679
  #
3676
3680
  # Amazon SageMaker begins your experiment at the scheduled time and
3677
3681
  # routes traffic to your endpoint's model variants based on your
@@ -3704,39 +3708,44 @@ module Aws::SageMaker
3704
3708
  #
3705
3709
  # @option params [Types::InferenceExperimentSchedule] :schedule
3706
3710
  # The duration for which you want the inference experiment to run. If
3707
- # you don't specify this field, the experiment automatically concludes
3708
- # after 7 days.
3711
+ # you don't specify this field, the experiment automatically starts
3712
+ # immediately upon creation and concludes after 7 days.
3709
3713
  #
3710
3714
  # @option params [String] :description
3711
3715
  # A description for the inference experiment.
3712
3716
  #
3713
3717
  # @option params [required, String] :role_arn
3714
3718
  # The ARN of the IAM role that Amazon SageMaker can assume to access
3715
- # model artifacts and container images.
3719
+ # model artifacts and container images, and manage Amazon SageMaker
3720
+ # Inference endpoints for model deployment.
3716
3721
  #
3717
3722
  # @option params [required, String] :endpoint_name
3718
3723
  # The name of the Amazon SageMaker endpoint on which you want to run the
3719
3724
  # inference experiment.
3720
3725
  #
3721
3726
  # @option params [required, Array<Types::ModelVariantConfig>] :model_variants
3722
- # Array of `ModelVariantConfigSummary` objects. There is one for each
3723
- # variant in the inference experiment. Each `ModelVariantConfigSummary`
3724
- # object in the array describes the infrastructure configuration for the
3727
+ # An array of `ModelVariantConfig` objects. There is one for each
3728
+ # variant in the inference experiment. Each `ModelVariantConfig` object
3729
+ # in the array describes the infrastructure configuration for the
3725
3730
  # corresponding variant.
3726
3731
  #
3727
3732
  # @option params [Types::InferenceExperimentDataStorageConfig] :data_storage_config
3728
- # The storage configuration for the inference experiment. This is an
3729
- # optional parameter that you can use for data capture. For more
3730
- # information, see [Capture data][1].
3733
+ # The Amazon S3 location and configuration for storing inference request
3734
+ # and response data.
3735
+ #
3736
+ # This is an optional parameter that you can use for data capture. For
3737
+ # more information, see [Capture data][1].
3731
3738
  #
3732
3739
  #
3733
3740
  #
3734
3741
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor-data-capture.html
3735
3742
  #
3736
3743
  # @option params [required, Types::ShadowModeConfig] :shadow_mode_config
3737
- # Shows which variant is the production variant and which variant is the
3738
- # shadow variant. For the shadow variant, also shows the sampling
3739
- # percentage.
3744
+ # The configuration of `ShadowMode` inference experiment type. Use this
3745
+ # field to specify a production variant which takes all the inference
3746
+ # requests, and a shadow variant to which Amazon SageMaker replicates a
3747
+ # percentage of the inference requests. For the shadow variant also
3748
+ # specify the percentage of requests that Amazon SageMaker replicates.
3740
3749
  #
3741
3750
  # @option params [String] :kms_key
3742
3751
  # The Amazon Web Services Key Management Service (Amazon Web Services
@@ -3963,6 +3972,10 @@ module Aws::SageMaker
3963
3972
  # endpoint_name: "EndpointName", # required
3964
3973
  # },
3965
3974
  # ],
3975
+ # vpc_config: {
3976
+ # security_group_ids: ["RecommendationJobVpcSecurityGroupId"], # required
3977
+ # subnets: ["RecommendationJobVpcSubnetId"], # required
3978
+ # },
3966
3979
  # },
3967
3980
  # job_description: "RecommendationJobDescription",
3968
3981
  # stopping_conditions: {
@@ -11362,6 +11375,10 @@ module Aws::SageMaker
11362
11375
  # resp.input_config.container_config.supported_instance_types[0] #=> String
11363
11376
  # resp.input_config.endpoints #=> Array
11364
11377
  # resp.input_config.endpoints[0].endpoint_name #=> String
11378
+ # resp.input_config.vpc_config.security_group_ids #=> Array
11379
+ # resp.input_config.vpc_config.security_group_ids[0] #=> String
11380
+ # resp.input_config.vpc_config.subnets #=> Array
11381
+ # resp.input_config.vpc_config.subnets[0] #=> String
11365
11382
  # resp.stopping_conditions.max_invocations #=> Integer
11366
11383
  # resp.stopping_conditions.model_latency_thresholds #=> Array
11367
11384
  # resp.stopping_conditions.model_latency_thresholds[0].percentile #=> String
@@ -19948,10 +19965,10 @@ module Aws::SageMaker
19948
19965
  # * `Retain` - Keep the variant as it is
19949
19966
  #
19950
19967
  # @option params [Array<Types::ModelVariantConfig>] :desired_model_variants
19951
- # Array of `ModelVariantConfig` objects. There is one for each variant
19952
- # that you want to deploy after the inference experiment stops. Each
19953
- # `ModelVariantConfig` describes the infrastructure configuration for
19954
- # deploying the corresponding variant.
19968
+ # An array of `ModelVariantConfig` objects. There is one for each
19969
+ # variant that you want to deploy after the inference experiment stops.
19970
+ # Each `ModelVariantConfig` describes the infrastructure configuration
19971
+ # for deploying the corresponding variant.
19955
19972
  #
19956
19973
  # @option params [String] :desired_state
19957
19974
  # The desired state of the experiment after stopping. The possible
@@ -21082,14 +21099,19 @@ module Aws::SageMaker
21082
21099
  # The description of the inference experiment.
21083
21100
  #
21084
21101
  # @option params [Array<Types::ModelVariantConfig>] :model_variants
21085
- # Array of `ModelVariantConfigSummary` objects. There is one for each
21102
+ # An array of `ModelVariantConfig` objects. There is one for each
21086
21103
  # variant, whose infrastructure configuration you want to update.
21087
21104
  #
21088
21105
  # @option params [Types::InferenceExperimentDataStorageConfig] :data_storage_config
21089
- # The Amazon S3 storage configuration for the inference experiment.
21106
+ # The Amazon S3 location and configuration for storing inference request
21107
+ # and response data.
21090
21108
  #
21091
21109
  # @option params [Types::ShadowModeConfig] :shadow_mode_config
21092
- # The Amazon S3 storage configuration for the inference experiment.
21110
+ # The configuration of `ShadowMode` inference experiment type. Use this
21111
+ # field to specify a production variant which takes all the inference
21112
+ # requests, and a shadow variant to which Amazon SageMaker replicates a
21113
+ # percentage of the inference requests. For the shadow variant also
21114
+ # specify the percentage of requests that Amazon SageMaker replicates.
21093
21115
  #
21094
21116
  # @return [Types::UpdateInferenceExperimentResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
21095
21117
  #
@@ -22441,7 +22463,7 @@ module Aws::SageMaker
22441
22463
  params: params,
22442
22464
  config: config)
22443
22465
  context[:gem_name] = 'aws-sdk-sagemaker'
22444
- context[:gem_version] = '1.154.0'
22466
+ context[:gem_version] = '1.155.0'
22445
22467
  Seahorse::Client::Request.new(handlers, context)
22446
22468
  end
22447
22469
 
@@ -1546,6 +1546,11 @@ module Aws::SageMaker
1546
1546
  RecommendationJobSupportedContentTypes = Shapes::ListShape.new(name: 'RecommendationJobSupportedContentTypes')
1547
1547
  RecommendationJobSupportedInstanceTypes = Shapes::ListShape.new(name: 'RecommendationJobSupportedInstanceTypes')
1548
1548
  RecommendationJobType = Shapes::StringShape.new(name: 'RecommendationJobType')
1549
+ RecommendationJobVpcConfig = Shapes::StructureShape.new(name: 'RecommendationJobVpcConfig')
1550
+ RecommendationJobVpcSecurityGroupId = Shapes::StringShape.new(name: 'RecommendationJobVpcSecurityGroupId')
1551
+ RecommendationJobVpcSecurityGroupIds = Shapes::ListShape.new(name: 'RecommendationJobVpcSecurityGroupIds')
1552
+ RecommendationJobVpcSubnetId = Shapes::StringShape.new(name: 'RecommendationJobVpcSubnetId')
1553
+ RecommendationJobVpcSubnets = Shapes::ListShape.new(name: 'RecommendationJobVpcSubnets')
1549
1554
  RecommendationMetrics = Shapes::StructureShape.new(name: 'RecommendationMetrics')
1550
1555
  RecommendationStepType = Shapes::StringShape.new(name: 'RecommendationStepType')
1551
1556
  RecordWrapper = Shapes::StringShape.new(name: 'RecordWrapper')
@@ -7541,6 +7546,7 @@ module Aws::SageMaker
7541
7546
  RecommendationJobInputConfig.add_member(:volume_kms_key_id, Shapes::ShapeRef.new(shape: KmsKeyId, location_name: "VolumeKmsKeyId"))
7542
7547
  RecommendationJobInputConfig.add_member(:container_config, Shapes::ShapeRef.new(shape: RecommendationJobContainerConfig, location_name: "ContainerConfig"))
7543
7548
  RecommendationJobInputConfig.add_member(:endpoints, Shapes::ShapeRef.new(shape: Endpoints, location_name: "Endpoints"))
7549
+ RecommendationJobInputConfig.add_member(:vpc_config, Shapes::ShapeRef.new(shape: RecommendationJobVpcConfig, location_name: "VpcConfig"))
7544
7550
  RecommendationJobInputConfig.struct_class = Types::RecommendationJobInputConfig
7545
7551
 
7546
7552
  RecommendationJobOutputConfig.add_member(:kms_key_id, Shapes::ShapeRef.new(shape: KmsKeyId, location_name: "KmsKeyId"))
@@ -7563,6 +7569,14 @@ module Aws::SageMaker
7563
7569
 
7564
7570
  RecommendationJobSupportedInstanceTypes.member = Shapes::ShapeRef.new(shape: String)
7565
7571
 
7572
+ RecommendationJobVpcConfig.add_member(:security_group_ids, Shapes::ShapeRef.new(shape: RecommendationJobVpcSecurityGroupIds, required: true, location_name: "SecurityGroupIds"))
7573
+ RecommendationJobVpcConfig.add_member(:subnets, Shapes::ShapeRef.new(shape: RecommendationJobVpcSubnets, required: true, location_name: "Subnets"))
7574
+ RecommendationJobVpcConfig.struct_class = Types::RecommendationJobVpcConfig
7575
+
7576
+ RecommendationJobVpcSecurityGroupIds.member = Shapes::ShapeRef.new(shape: RecommendationJobVpcSecurityGroupId)
7577
+
7578
+ RecommendationJobVpcSubnets.member = Shapes::ShapeRef.new(shape: RecommendationJobVpcSubnetId)
7579
+
7566
7580
  RecommendationMetrics.add_member(:cost_per_hour, Shapes::ShapeRef.new(shape: Float, required: true, location_name: "CostPerHour"))
7567
7581
  RecommendationMetrics.add_member(:cost_per_inference, Shapes::ShapeRef.new(shape: Float, required: true, location_name: "CostPerInference"))
7568
7582
  RecommendationMetrics.add_member(:max_invocations, Shapes::ShapeRef.new(shape: Integer, required: true, location_name: "MaxInvocations"))
@@ -50,78 +50,76 @@ IHRoaXMgcmVxdWVzdCIsInR5cGUiOiJTdHJpbmcifX0sInJ1bGVzIjpbeyJj
50
50
  b25kaXRpb25zIjpbeyJmbiI6ImF3cy5wYXJ0aXRpb24iLCJhcmd2IjpbeyJy
51
51
  ZWYiOiJSZWdpb24ifV0sImFzc2lnbiI6IlBhcnRpdGlvblJlc3VsdCJ9XSwi
52
52
  dHlwZSI6InRyZWUiLCJydWxlcyI6W3siY29uZGl0aW9ucyI6W3siZm4iOiJp
53
- c1NldCIsImFyZ3YiOlt7InJlZiI6IkVuZHBvaW50In1dfSx7ImZuIjoicGFy
54
- c2VVUkwiLCJhcmd2IjpbeyJyZWYiOiJFbmRwb2ludCJ9XSwiYXNzaWduIjoi
55
- dXJsIn1dLCJ0eXBlIjoidHJlZSIsInJ1bGVzIjpbeyJjb25kaXRpb25zIjpb
56
- eyJmbiI6ImJvb2xlYW5FcXVhbHMiLCJhcmd2IjpbeyJyZWYiOiJVc2VGSVBT
57
- In0sdHJ1ZV19XSwiZXJyb3IiOiJJbnZhbGlkIENvbmZpZ3VyYXRpb246IEZJ
58
- UFMgYW5kIGN1c3RvbSBlbmRwb2ludCBhcmUgbm90IHN1cHBvcnRlZCIsInR5
59
- cGUiOiJlcnJvciJ9LHsiY29uZGl0aW9ucyI6W10sInR5cGUiOiJ0cmVlIiwi
60
- cnVsZXMiOlt7ImNvbmRpdGlvbnMiOlt7ImZuIjoiYm9vbGVhbkVxdWFscyIs
61
- ImFyZ3YiOlt7InJlZiI6IlVzZUR1YWxTdGFjayJ9LHRydWVdfV0sImVycm9y
62
- IjoiSW52YWxpZCBDb25maWd1cmF0aW9uOiBEdWFsc3RhY2sgYW5kIGN1c3Rv
63
- bSBlbmRwb2ludCBhcmUgbm90IHN1cHBvcnRlZCIsInR5cGUiOiJlcnJvciJ9
64
- LHsiY29uZGl0aW9ucyI6W10sImVuZHBvaW50Ijp7InVybCI6eyJyZWYiOiJF
65
- bmRwb2ludCJ9LCJwcm9wZXJ0aWVzIjp7fSwiaGVhZGVycyI6e319LCJ0eXBl
66
- IjoiZW5kcG9pbnQifV19XX0seyJjb25kaXRpb25zIjpbeyJmbiI6ImJvb2xl
67
- YW5FcXVhbHMiLCJhcmd2IjpbeyJyZWYiOiJVc2VGSVBTIn0sdHJ1ZV19LHsi
68
- Zm4iOiJib29sZWFuRXF1YWxzIiwiYXJndiI6W3sicmVmIjoiVXNlRHVhbFN0
69
- YWNrIn0sdHJ1ZV19XSwidHlwZSI6InRyZWUiLCJydWxlcyI6W3siY29uZGl0
70
- aW9ucyI6W3siZm4iOiJib29sZWFuRXF1YWxzIiwiYXJndiI6W3RydWUseyJm
71
- biI6ImdldEF0dHIiLCJhcmd2IjpbeyJyZWYiOiJQYXJ0aXRpb25SZXN1bHQi
72
- fSwic3VwcG9ydHNGSVBTIl19XX0seyJmbiI6ImJvb2xlYW5FcXVhbHMiLCJh
73
- cmd2IjpbdHJ1ZSx7ImZuIjoiZ2V0QXR0ciIsImFyZ3YiOlt7InJlZiI6IlBh
74
- cnRpdGlvblJlc3VsdCJ9LCJzdXBwb3J0c0R1YWxTdGFjayJdfV19XSwidHlw
75
- ZSI6InRyZWUiLCJydWxlcyI6W3siY29uZGl0aW9ucyI6W10sImVuZHBvaW50
76
- Ijp7InVybCI6Imh0dHBzOi8vYXBpLnNhZ2VtYWtlci1maXBzLntSZWdpb259
77
- LntQYXJ0aXRpb25SZXN1bHQjZHVhbFN0YWNrRG5zU3VmZml4fSIsInByb3Bl
78
- cnRpZXMiOnt9LCJoZWFkZXJzIjp7fX0sInR5cGUiOiJlbmRwb2ludCJ9XX0s
79
- eyJjb25kaXRpb25zIjpbXSwiZXJyb3IiOiJGSVBTIGFuZCBEdWFsU3RhY2sg
80
- YXJlIGVuYWJsZWQsIGJ1dCB0aGlzIHBhcnRpdGlvbiBkb2VzIG5vdCBzdXBw
81
- b3J0IG9uZSBvciBib3RoIiwidHlwZSI6ImVycm9yIn1dfSx7ImNvbmRpdGlv
82
- bnMiOlt7ImZuIjoiYm9vbGVhbkVxdWFscyIsImFyZ3YiOlt7InJlZiI6IlVz
83
- ZUZJUFMifSx0cnVlXX1dLCJ0eXBlIjoidHJlZSIsInJ1bGVzIjpbeyJjb25k
84
- aXRpb25zIjpbeyJmbiI6ImJvb2xlYW5FcXVhbHMiLCJhcmd2IjpbdHJ1ZSx7
85
- ImZuIjoiZ2V0QXR0ciIsImFyZ3YiOlt7InJlZiI6IlBhcnRpdGlvblJlc3Vs
86
- dCJ9LCJzdXBwb3J0c0ZJUFMiXX1dfV0sInR5cGUiOiJ0cmVlIiwicnVsZXMi
87
- Olt7ImNvbmRpdGlvbnMiOltdLCJ0eXBlIjoidHJlZSIsInJ1bGVzIjpbeyJj
88
- b25kaXRpb25zIjpbeyJmbiI6InN0cmluZ0VxdWFscyIsImFyZ3YiOlsiYXdz
89
- Iix7ImZuIjoiZ2V0QXR0ciIsImFyZ3YiOlt7InJlZiI6IlBhcnRpdGlvblJl
90
- c3VsdCJ9LCJuYW1lIl19XX1dLCJlbmRwb2ludCI6eyJ1cmwiOiJodHRwczov
91
- L2FwaS1maXBzLnNhZ2VtYWtlci57UmVnaW9ufS57UGFydGl0aW9uUmVzdWx0
92
- I2Ruc1N1ZmZpeH0iLCJwcm9wZXJ0aWVzIjp7fSwiaGVhZGVycyI6e319LCJ0
93
- eXBlIjoiZW5kcG9pbnQifSx7ImNvbmRpdGlvbnMiOlt7ImZuIjoic3RyaW5n
94
- RXF1YWxzIiwiYXJndiI6W3sicmVmIjoiUmVnaW9uIn0sInVzLWdvdi13ZXN0
95
- LTEtc2Vjb25kYXJ5Il19XSwiZW5kcG9pbnQiOnsidXJsIjoiaHR0cHM6Ly9h
96
- cGkuc2FnZW1ha2VyLnVzLWdvdi13ZXN0LTEuYW1hem9uYXdzLmNvbSIsInBy
97
- b3BlcnRpZXMiOnt9LCJoZWFkZXJzIjp7fX0sInR5cGUiOiJlbmRwb2ludCJ9
98
- LHsiY29uZGl0aW9ucyI6W3siZm4iOiJzdHJpbmdFcXVhbHMiLCJhcmd2Ijpb
99
- ImF3cy11cy1nb3YiLHsiZm4iOiJnZXRBdHRyIiwiYXJndiI6W3sicmVmIjoi
100
- UGFydGl0aW9uUmVzdWx0In0sIm5hbWUiXX1dfV0sImVuZHBvaW50Ijp7InVy
101
- bCI6Imh0dHBzOi8vYXBpLWZpcHMuc2FnZW1ha2VyLntSZWdpb259LntQYXJ0
102
- aXRpb25SZXN1bHQjZG5zU3VmZml4fSIsInByb3BlcnRpZXMiOnt9LCJoZWFk
103
- ZXJzIjp7fX0sInR5cGUiOiJlbmRwb2ludCJ9LHsiY29uZGl0aW9ucyI6W10s
104
- ImVuZHBvaW50Ijp7InVybCI6Imh0dHBzOi8vYXBpLnNhZ2VtYWtlci1maXBz
105
- LntSZWdpb259LntQYXJ0aXRpb25SZXN1bHQjZG5zU3VmZml4fSIsInByb3Bl
53
+ c1NldCIsImFyZ3YiOlt7InJlZiI6IkVuZHBvaW50In1dfV0sInR5cGUiOiJ0
54
+ cmVlIiwicnVsZXMiOlt7ImNvbmRpdGlvbnMiOlt7ImZuIjoiYm9vbGVhbkVx
55
+ dWFscyIsImFyZ3YiOlt7InJlZiI6IlVzZUZJUFMifSx0cnVlXX1dLCJlcnJv
56
+ ciI6IkludmFsaWQgQ29uZmlndXJhdGlvbjogRklQUyBhbmQgY3VzdG9tIGVu
57
+ ZHBvaW50IGFyZSBub3Qgc3VwcG9ydGVkIiwidHlwZSI6ImVycm9yIn0seyJj
58
+ b25kaXRpb25zIjpbXSwidHlwZSI6InRyZWUiLCJydWxlcyI6W3siY29uZGl0
59
+ aW9ucyI6W3siZm4iOiJib29sZWFuRXF1YWxzIiwiYXJndiI6W3sicmVmIjoi
60
+ VXNlRHVhbFN0YWNrIn0sdHJ1ZV19XSwiZXJyb3IiOiJJbnZhbGlkIENvbmZp
61
+ Z3VyYXRpb246IER1YWxzdGFjayBhbmQgY3VzdG9tIGVuZHBvaW50IGFyZSBu
62
+ b3Qgc3VwcG9ydGVkIiwidHlwZSI6ImVycm9yIn0seyJjb25kaXRpb25zIjpb
63
+ XSwiZW5kcG9pbnQiOnsidXJsIjp7InJlZiI6IkVuZHBvaW50In0sInByb3Bl
106
64
  cnRpZXMiOnt9LCJoZWFkZXJzIjp7fX0sInR5cGUiOiJlbmRwb2ludCJ9XX1d
107
- fSx7ImNvbmRpdGlvbnMiOltdLCJlcnJvciI6IkZJUFMgaXMgZW5hYmxlZCBi
108
- dXQgdGhpcyBwYXJ0aXRpb24gZG9lcyBub3Qgc3VwcG9ydCBGSVBTIiwidHlw
109
- ZSI6ImVycm9yIn1dfSx7ImNvbmRpdGlvbnMiOlt7ImZuIjoiYm9vbGVhbkVx
110
- dWFscyIsImFyZ3YiOlt7InJlZiI6IlVzZUR1YWxTdGFjayJ9LHRydWVdfV0s
65
+ fSx7ImNvbmRpdGlvbnMiOlt7ImZuIjoiYm9vbGVhbkVxdWFscyIsImFyZ3Yi
66
+ Olt7InJlZiI6IlVzZUZJUFMifSx0cnVlXX0seyJmbiI6ImJvb2xlYW5FcXVh
67
+ bHMiLCJhcmd2IjpbeyJyZWYiOiJVc2VEdWFsU3RhY2sifSx0cnVlXX1dLCJ0
68
+ eXBlIjoidHJlZSIsInJ1bGVzIjpbeyJjb25kaXRpb25zIjpbeyJmbiI6ImJv
69
+ b2xlYW5FcXVhbHMiLCJhcmd2IjpbdHJ1ZSx7ImZuIjoiZ2V0QXR0ciIsImFy
70
+ Z3YiOlt7InJlZiI6IlBhcnRpdGlvblJlc3VsdCJ9LCJzdXBwb3J0c0ZJUFMi
71
+ XX1dfSx7ImZuIjoiYm9vbGVhbkVxdWFscyIsImFyZ3YiOlt0cnVlLHsiZm4i
72
+ OiJnZXRBdHRyIiwiYXJndiI6W3sicmVmIjoiUGFydGl0aW9uUmVzdWx0In0s
73
+ InN1cHBvcnRzRHVhbFN0YWNrIl19XX1dLCJ0eXBlIjoidHJlZSIsInJ1bGVz
74
+ IjpbeyJjb25kaXRpb25zIjpbXSwiZW5kcG9pbnQiOnsidXJsIjoiaHR0cHM6
75
+ Ly9hcGkuc2FnZW1ha2VyLWZpcHMue1JlZ2lvbn0ue1BhcnRpdGlvblJlc3Vs
76
+ dCNkdWFsU3RhY2tEbnNTdWZmaXh9IiwicHJvcGVydGllcyI6e30sImhlYWRl
77
+ cnMiOnt9fSwidHlwZSI6ImVuZHBvaW50In1dfSx7ImNvbmRpdGlvbnMiOltd
78
+ LCJlcnJvciI6IkZJUFMgYW5kIER1YWxTdGFjayBhcmUgZW5hYmxlZCwgYnV0
79
+ IHRoaXMgcGFydGl0aW9uIGRvZXMgbm90IHN1cHBvcnQgb25lIG9yIGJvdGgi
80
+ LCJ0eXBlIjoiZXJyb3IifV19LHsiY29uZGl0aW9ucyI6W3siZm4iOiJib29s
81
+ ZWFuRXF1YWxzIiwiYXJndiI6W3sicmVmIjoiVXNlRklQUyJ9LHRydWVdfV0s
111
82
  InR5cGUiOiJ0cmVlIiwicnVsZXMiOlt7ImNvbmRpdGlvbnMiOlt7ImZuIjoi
112
83
  Ym9vbGVhbkVxdWFscyIsImFyZ3YiOlt0cnVlLHsiZm4iOiJnZXRBdHRyIiwi
113
- YXJndiI6W3sicmVmIjoiUGFydGl0aW9uUmVzdWx0In0sInN1cHBvcnRzRHVh
114
- bFN0YWNrIl19XX1dLCJ0eXBlIjoidHJlZSIsInJ1bGVzIjpbeyJjb25kaXRp
115
- b25zIjpbXSwiZW5kcG9pbnQiOnsidXJsIjoiaHR0cHM6Ly9hcGkuc2FnZW1h
116
- a2VyLntSZWdpb259LntQYXJ0aXRpb25SZXN1bHQjZHVhbFN0YWNrRG5zU3Vm
117
- Zml4fSIsInByb3BlcnRpZXMiOnt9LCJoZWFkZXJzIjp7fX0sInR5cGUiOiJl
118
- bmRwb2ludCJ9XX0seyJjb25kaXRpb25zIjpbXSwiZXJyb3IiOiJEdWFsU3Rh
119
- Y2sgaXMgZW5hYmxlZCBidXQgdGhpcyBwYXJ0aXRpb24gZG9lcyBub3Qgc3Vw
120
- cG9ydCBEdWFsU3RhY2siLCJ0eXBlIjoiZXJyb3IifV19LHsiY29uZGl0aW9u
121
- cyI6W10sImVuZHBvaW50Ijp7InVybCI6Imh0dHBzOi8vYXBpLnNhZ2VtYWtl
122
- ci57UmVnaW9ufS57UGFydGl0aW9uUmVzdWx0I2Ruc1N1ZmZpeH0iLCJwcm9w
123
- ZXJ0aWVzIjp7fSwiaGVhZGVycyI6e319LCJ0eXBlIjoiZW5kcG9pbnQifV19
124
- XX0=
84
+ YXJndiI6W3sicmVmIjoiUGFydGl0aW9uUmVzdWx0In0sInN1cHBvcnRzRklQ
85
+ UyJdfV19XSwidHlwZSI6InRyZWUiLCJydWxlcyI6W3siY29uZGl0aW9ucyI6
86
+ W10sInR5cGUiOiJ0cmVlIiwicnVsZXMiOlt7ImNvbmRpdGlvbnMiOlt7ImZu
87
+ Ijoic3RyaW5nRXF1YWxzIiwiYXJndiI6WyJhd3MiLHsiZm4iOiJnZXRBdHRy
88
+ IiwiYXJndiI6W3sicmVmIjoiUGFydGl0aW9uUmVzdWx0In0sIm5hbWUiXX1d
89
+ fV0sImVuZHBvaW50Ijp7InVybCI6Imh0dHBzOi8vYXBpLWZpcHMuc2FnZW1h
90
+ a2VyLntSZWdpb259LntQYXJ0aXRpb25SZXN1bHQjZG5zU3VmZml4fSIsInBy
91
+ b3BlcnRpZXMiOnt9LCJoZWFkZXJzIjp7fX0sInR5cGUiOiJlbmRwb2ludCJ9
92
+ LHsiY29uZGl0aW9ucyI6W3siZm4iOiJzdHJpbmdFcXVhbHMiLCJhcmd2Ijpb
93
+ eyJyZWYiOiJSZWdpb24ifSwidXMtZ292LXdlc3QtMS1zZWNvbmRhcnkiXX1d
94
+ LCJlbmRwb2ludCI6eyJ1cmwiOiJodHRwczovL2FwaS5zYWdlbWFrZXIudXMt
95
+ Z292LXdlc3QtMS5hbWF6b25hd3MuY29tIiwicHJvcGVydGllcyI6e30sImhl
96
+ YWRlcnMiOnt9fSwidHlwZSI6ImVuZHBvaW50In0seyJjb25kaXRpb25zIjpb
97
+ eyJmbiI6InN0cmluZ0VxdWFscyIsImFyZ3YiOlsiYXdzLXVzLWdvdiIseyJm
98
+ biI6ImdldEF0dHIiLCJhcmd2IjpbeyJyZWYiOiJQYXJ0aXRpb25SZXN1bHQi
99
+ fSwibmFtZSJdfV19XSwiZW5kcG9pbnQiOnsidXJsIjoiaHR0cHM6Ly9hcGkt
100
+ Zmlwcy5zYWdlbWFrZXIue1JlZ2lvbn0ue1BhcnRpdGlvblJlc3VsdCNkbnNT
101
+ dWZmaXh9IiwicHJvcGVydGllcyI6e30sImhlYWRlcnMiOnt9fSwidHlwZSI6
102
+ ImVuZHBvaW50In0seyJjb25kaXRpb25zIjpbXSwiZW5kcG9pbnQiOnsidXJs
103
+ IjoiaHR0cHM6Ly9hcGkuc2FnZW1ha2VyLWZpcHMue1JlZ2lvbn0ue1BhcnRp
104
+ dGlvblJlc3VsdCNkbnNTdWZmaXh9IiwicHJvcGVydGllcyI6e30sImhlYWRl
105
+ cnMiOnt9fSwidHlwZSI6ImVuZHBvaW50In1dfV19LHsiY29uZGl0aW9ucyI6
106
+ W10sImVycm9yIjoiRklQUyBpcyBlbmFibGVkIGJ1dCB0aGlzIHBhcnRpdGlv
107
+ biBkb2VzIG5vdCBzdXBwb3J0IEZJUFMiLCJ0eXBlIjoiZXJyb3IifV19LHsi
108
+ Y29uZGl0aW9ucyI6W3siZm4iOiJib29sZWFuRXF1YWxzIiwiYXJndiI6W3si
109
+ cmVmIjoiVXNlRHVhbFN0YWNrIn0sdHJ1ZV19XSwidHlwZSI6InRyZWUiLCJy
110
+ dWxlcyI6W3siY29uZGl0aW9ucyI6W3siZm4iOiJib29sZWFuRXF1YWxzIiwi
111
+ YXJndiI6W3RydWUseyJmbiI6ImdldEF0dHIiLCJhcmd2IjpbeyJyZWYiOiJQ
112
+ YXJ0aXRpb25SZXN1bHQifSwic3VwcG9ydHNEdWFsU3RhY2siXX1dfV0sInR5
113
+ cGUiOiJ0cmVlIiwicnVsZXMiOlt7ImNvbmRpdGlvbnMiOltdLCJlbmRwb2lu
114
+ dCI6eyJ1cmwiOiJodHRwczovL2FwaS5zYWdlbWFrZXIue1JlZ2lvbn0ue1Bh
115
+ cnRpdGlvblJlc3VsdCNkdWFsU3RhY2tEbnNTdWZmaXh9IiwicHJvcGVydGll
116
+ cyI6e30sImhlYWRlcnMiOnt9fSwidHlwZSI6ImVuZHBvaW50In1dfSx7ImNv
117
+ bmRpdGlvbnMiOltdLCJlcnJvciI6IkR1YWxTdGFjayBpcyBlbmFibGVkIGJ1
118
+ dCB0aGlzIHBhcnRpdGlvbiBkb2VzIG5vdCBzdXBwb3J0IER1YWxTdGFjayIs
119
+ InR5cGUiOiJlcnJvciJ9XX0seyJjb25kaXRpb25zIjpbXSwiZW5kcG9pbnQi
120
+ OnsidXJsIjoiaHR0cHM6Ly9hcGkuc2FnZW1ha2VyLntSZWdpb259LntQYXJ0
121
+ aXRpb25SZXN1bHQjZG5zU3VmZml4fSIsInByb3BlcnRpZXMiOnt9LCJoZWFk
122
+ ZXJzIjp7fX0sInR5cGUiOiJlbmRwb2ludCJ9XX1dfQ==
125
123
 
126
124
  JSON
127
125
  end
@@ -4766,7 +4766,7 @@ module Aws::SageMaker
4766
4766
  # @return [String]
4767
4767
  #
4768
4768
  # @!attribute [rw] production_variants
4769
- # An list of `ProductionVariant` objects, one for each model that you
4769
+ # An array of `ProductionVariant` objects, one for each model that you
4770
4770
  # want to host at this endpoint.
4771
4771
  # @return [Array<Types::ProductionVariant>]
4772
4772
  #
@@ -4848,12 +4848,11 @@ module Aws::SageMaker
4848
4848
  # @return [Types::ExplainerConfig]
4849
4849
  #
4850
4850
  # @!attribute [rw] shadow_production_variants
4851
- # Array of `ProductionVariant` objects. There is one for each model
4852
- # that you want to host at this endpoint in shadow mode with
4853
- # production traffic replicated from the model specified on
4854
- # `ProductionVariants`.If you use this field, you can only specify one
4855
- # variant for `ProductionVariants` and one variant for
4856
- # `ShadowProductionVariants`.
4851
+ # An array of `ProductionVariant` objects, one for each model that you
4852
+ # want to host at this endpoint in shadow mode with production traffic
4853
+ # replicated from the model specified on `ProductionVariants`. If you
4854
+ # use this field, you can only specify one variant for
4855
+ # `ProductionVariants` and one variant for `ShadowProductionVariants`.
4857
4856
  # @return [Array<Types::ProductionVariant>]
4858
4857
  #
4859
4858
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/CreateEndpointConfigInput AWS API Documentation
@@ -5067,11 +5066,15 @@ module Aws::SageMaker
5067
5066
  # defining your [bucket-level key][1] for SSE, you can reduce Amazon
5068
5067
  # Web Services KMS requests costs by up to 99 percent.
5069
5068
  #
5069
+ # * Format for the offline store table. Supported formats are Glue
5070
+ # (Default) and [Apache Iceberg][2].
5071
+ #
5070
5072
  # To learn more about this parameter, see OfflineStoreConfig.
5071
5073
  #
5072
5074
  #
5073
5075
  #
5074
5076
  # [1]: https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucket-key.html
5077
+ # [2]: https://iceberg.apache.org/
5075
5078
  # @return [Types::OfflineStoreConfig]
5076
5079
  #
5077
5080
  # @!attribute [rw] role_arn
@@ -5472,8 +5475,8 @@ module Aws::SageMaker
5472
5475
  #
5473
5476
  # @!attribute [rw] schedule
5474
5477
  # The duration for which you want the inference experiment to run. If
5475
- # you don't specify this field, the experiment automatically
5476
- # concludes after 7 days.
5478
+ # you don't specify this field, the experiment automatically starts
5479
+ # immediately upon creation and concludes after 7 days.
5477
5480
  # @return [Types::InferenceExperimentSchedule]
5478
5481
  #
5479
5482
  # @!attribute [rw] description
@@ -5482,7 +5485,8 @@ module Aws::SageMaker
5482
5485
  #
5483
5486
  # @!attribute [rw] role_arn
5484
5487
  # The ARN of the IAM role that Amazon SageMaker can assume to access
5485
- # model artifacts and container images.
5488
+ # model artifacts and container images, and manage Amazon SageMaker
5489
+ # Inference endpoints for model deployment.
5486
5490
  # @return [String]
5487
5491
  #
5488
5492
  # @!attribute [rw] endpoint_name
@@ -5491,16 +5495,18 @@ module Aws::SageMaker
5491
5495
  # @return [String]
5492
5496
  #
5493
5497
  # @!attribute [rw] model_variants
5494
- # Array of `ModelVariantConfigSummary` objects. There is one for each
5495
- # variant in the inference experiment. Each
5496
- # `ModelVariantConfigSummary` object in the array describes the
5497
- # infrastructure configuration for the corresponding variant.
5498
+ # An array of `ModelVariantConfig` objects. There is one for each
5499
+ # variant in the inference experiment. Each `ModelVariantConfig`
5500
+ # object in the array describes the infrastructure configuration for
5501
+ # the corresponding variant.
5498
5502
  # @return [Array<Types::ModelVariantConfig>]
5499
5503
  #
5500
5504
  # @!attribute [rw] data_storage_config
5501
- # The storage configuration for the inference experiment. This is an
5502
- # optional parameter that you can use for data capture. For more
5503
- # information, see [Capture data][1].
5505
+ # The Amazon S3 location and configuration for storing inference
5506
+ # request and response data.
5507
+ #
5508
+ # This is an optional parameter that you can use for data capture. For
5509
+ # more information, see [Capture data][1].
5504
5510
  #
5505
5511
  #
5506
5512
  #
@@ -5508,9 +5514,12 @@ module Aws::SageMaker
5508
5514
  # @return [Types::InferenceExperimentDataStorageConfig]
5509
5515
  #
5510
5516
  # @!attribute [rw] shadow_mode_config
5511
- # Shows which variant is the production variant and which variant is
5512
- # the shadow variant. For the shadow variant, also shows the sampling
5513
- # percentage.
5517
+ # The configuration of `ShadowMode` inference experiment type. Use
5518
+ # this field to specify a production variant which takes all the
5519
+ # inference requests, and a shadow variant to which Amazon SageMaker
5520
+ # replicates a percentage of the inference requests. For the shadow
5521
+ # variant also specify the percentage of requests that Amazon
5522
+ # SageMaker replicates.
5514
5523
  # @return [Types::ShadowModeConfig]
5515
5524
  #
5516
5525
  # @!attribute [rw] kms_key
@@ -8008,9 +8017,8 @@ module Aws::SageMaker
8008
8017
  #
8009
8018
  # @!attribute [rw] kms_key_id
8010
8019
  # The Amazon Resource Name (ARN) of a Amazon Web Services Key
8011
- # Management Service key that SageMaker uses to encrypt data on the
8012
- # storage volume attached to the ML compute instance that hosts the
8013
- # endpoint.
8020
+ # Management Service key that SageMaker uses to encrypt the captured
8021
+ # data at rest using Amazon S3 server-side encryption.
8014
8022
  #
8015
8023
  # The KmsKeyId can be any of the following formats:
8016
8024
  #
@@ -10818,12 +10826,9 @@ module Aws::SageMaker
10818
10826
  # @return [Types::ExplainerConfig]
10819
10827
  #
10820
10828
  # @!attribute [rw] shadow_production_variants
10821
- # Array of `ProductionVariant` objects. There is one for each model
10822
- # that you want to host at this endpoint in shadow mode with
10823
- # production traffic replicated from the model specified on
10824
- # `ProductionVariants`.If you use this field, you can only specify one
10825
- # variant for `ProductionVariants` and one variant for
10826
- # `ShadowProductionVariants`.
10829
+ # An array of `ProductionVariant` objects, one for each model that you
10830
+ # want to host at this endpoint in shadow mode with production traffic
10831
+ # replicated from the model specified on `ProductionVariants`.
10827
10832
  # @return [Array<Types::ProductionVariant>]
10828
10833
  #
10829
10834
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeEndpointConfigOutput AWS API Documentation
@@ -10949,12 +10954,10 @@ module Aws::SageMaker
10949
10954
  # @return [Types::ExplainerConfig]
10950
10955
  #
10951
10956
  # @!attribute [rw] shadow_production_variants
10952
- # Array of `ProductionVariant` objects. There is one for each model
10957
+ # An array of ProductionVariantSummary objects, one for each model
10953
10958
  # that you want to host at this endpoint in shadow mode with
10954
10959
  # production traffic replicated from the model specified on
10955
- # `ProductionVariants`.If you use this field, you can only specify one
10956
- # variant for `ProductionVariants` and one variant for
10957
- # `ShadowProductionVariants`.
10960
+ # `ProductionVariants`.
10958
10961
  # @return [Array<Types::ProductionVariantSummary>]
10959
10962
  #
10960
10963
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DescribeEndpointOutput AWS API Documentation
@@ -11103,14 +11106,24 @@ module Aws::SageMaker
11103
11106
  # @return [Types::OnlineStoreConfig]
11104
11107
  #
11105
11108
  # @!attribute [rw] offline_store_config
11106
- # The configuration of the `OfflineStore`, inducing the S3 location of
11107
- # the `OfflineStore`, Amazon Web Services Glue or Amazon Web Services
11108
- # Hive data catalogue configurations, and the security configuration.
11109
+ # The configuration of the offline store. It includes the following
11110
+ # configurations:
11111
+ #
11112
+ # * Amazon S3 location of the offline store.
11113
+ #
11114
+ # * Configuration of the Glue data catalog.
11115
+ #
11116
+ # * Table format of the offline store.
11117
+ #
11118
+ # * Option to disable the automatic creation of a Glue table for the
11119
+ # offline store.
11120
+ #
11121
+ # * Encryption configuration.
11109
11122
  # @return [Types::OfflineStoreConfig]
11110
11123
  #
11111
11124
  # @!attribute [rw] role_arn
11112
11125
  # The Amazon Resource Name (ARN) of the IAM execution role used to
11113
- # persist data into the `OfflineStore` if an `OfflineStoreConfig` is
11126
+ # persist data into the OfflineStore if an OfflineStoreConfig is
11114
11127
  # provided.
11115
11128
  # @return [String]
11116
11129
  #
@@ -11830,8 +11843,8 @@ module Aws::SageMaker
11830
11843
  #
11831
11844
  # * `Creating` - Amazon SageMaker is creating your experiment.
11832
11845
  #
11833
- # * `Created` - Amazon SageMaker has finished creating your experiment
11834
- # and it will begin at the scheduled time.
11846
+ # * `Created` - Amazon SageMaker has finished the creation of your
11847
+ # experiment and will begin the experiment at the scheduled time.
11835
11848
  #
11836
11849
  # * `Updating` - When you make changes to your experiment, your
11837
11850
  # experiment shows as updating.
@@ -11844,12 +11857,15 @@ module Aws::SageMaker
11844
11857
  #
11845
11858
  # * `Completed` - Your experiment has completed.
11846
11859
  #
11847
- # * `Cancelled` - When you conclude your experiment early, it shows as
11848
- # canceled.
11860
+ # * `Cancelled` - When you conclude your experiment early using the
11861
+ # StopInferenceExperiment API, or if any operation fails with an
11862
+ # unexpected error, it shows as cancelled.
11849
11863
  # @return [String]
11850
11864
  #
11851
11865
  # @!attribute [rw] status_reason
11852
- # The error message for the inference experiment status result.
11866
+ # The error message or client-specified `Reason` from the
11867
+ # StopInferenceExperiment API, that explains the status of the
11868
+ # inference experiment.
11853
11869
  # @return [String]
11854
11870
  #
11855
11871
  # @!attribute [rw] description
@@ -11861,8 +11877,7 @@ module Aws::SageMaker
11861
11877
  # @return [Time]
11862
11878
  #
11863
11879
  # @!attribute [rw] completion_time
11864
- # The timestamp at which the inference experiment was completed or
11865
- # will complete.
11880
+ # The timestamp at which the inference experiment was completed.
11866
11881
  # @return [Time]
11867
11882
  #
11868
11883
  # @!attribute [rw] last_modified_time
@@ -11871,7 +11886,8 @@ module Aws::SageMaker
11871
11886
  #
11872
11887
  # @!attribute [rw] role_arn
11873
11888
  # The ARN of the IAM role that Amazon SageMaker can assume to access
11874
- # model artifacts and container images.
11889
+ # model artifacts and container images, and manage Amazon SageMaker
11890
+ # Inference endpoints for model deployment.
11875
11891
  # @return [String]
11876
11892
  #
11877
11893
  # @!attribute [rw] endpoint_metadata
@@ -11879,21 +11895,24 @@ module Aws::SageMaker
11879
11895
  # @return [Types::EndpointMetadata]
11880
11896
  #
11881
11897
  # @!attribute [rw] model_variants
11882
- # Array of `ModelVariantConfigSummary` objects. There is one for each
11883
- # variant in the inference experiment. Each
11898
+ # An array of `ModelVariantConfigSummary` objects. There is one for
11899
+ # each variant in the inference experiment. Each
11884
11900
  # `ModelVariantConfigSummary` object in the array describes the
11885
11901
  # infrastructure configuration for deploying the corresponding
11886
11902
  # variant.
11887
11903
  # @return [Array<Types::ModelVariantConfigSummary>]
11888
11904
  #
11889
11905
  # @!attribute [rw] data_storage_config
11890
- # The Amazon S3 storage configuration for the inference experiment.
11906
+ # The Amazon S3 location and configuration for storing inference
11907
+ # request and response data.
11891
11908
  # @return [Types::InferenceExperimentDataStorageConfig]
11892
11909
  #
11893
11910
  # @!attribute [rw] shadow_mode_config
11894
- # Shows which variant is a production variant and which variant is a
11895
- # shadow variant. For shadow variants, also shows the sampling
11896
- # percentage.
11911
+ # The configuration of `ShadowMode` inference experiment type, which
11912
+ # shows the production variant that takes all the inference requests,
11913
+ # and the shadow variant to which Amazon SageMaker replicates a
11914
+ # percentage of the inference requests. For the shadow variant it also
11915
+ # shows the percentage of requests that Amazon SageMaker replicates.
11897
11916
  # @return [Types::ShadowModeConfig]
11898
11917
  #
11899
11918
  # @!attribute [rw] kms_key
@@ -14978,6 +14997,8 @@ module Aws::SageMaker
14978
14997
  include Aws::Structure
14979
14998
  end
14980
14999
 
15000
+ # @api private
15001
+ #
14981
15002
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/DisableSagemakerServicecatalogPortfolioInput AWS API Documentation
14982
15003
  #
14983
15004
  class DisableSagemakerServicecatalogPortfolioInput < Aws::EmptyStructure; end
@@ -15670,6 +15691,8 @@ module Aws::SageMaker
15670
15691
  include Aws::Structure
15671
15692
  end
15672
15693
 
15694
+ # @api private
15695
+ #
15673
15696
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/EnableSagemakerServicecatalogPortfolioInput AWS API Documentation
15674
15697
  #
15675
15698
  class EnableSagemakerServicecatalogPortfolioInput < Aws::EmptyStructure; end
@@ -15738,11 +15761,9 @@ module Aws::SageMaker
15738
15761
  # @return [Array<Types::Tag>]
15739
15762
  #
15740
15763
  # @!attribute [rw] shadow_production_variants
15741
- # Array of `ProductionVariant` objects, one for each model that you
15742
- # want to host at this endpoint in shadow mode with production traffic
15743
- # replicated from the model specified on `ProductionVariants`.If you
15744
- # use this field, you can only specify one variant for
15745
- # `ProductionVariants` and one variant for `ShadowProductionVariants`.
15764
+ # A list of the shadow variants hosted on the endpoint. Each shadow
15765
+ # variant is a model in shadow mode with production traffic replicated
15766
+ # from the proudction variant.
15746
15767
  # @return [Array<Types::ProductionVariantSummary>]
15747
15768
  #
15748
15769
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/Endpoint AWS API Documentation
@@ -15923,8 +15944,9 @@ module Aws::SageMaker
15923
15944
  # @return [String]
15924
15945
  #
15925
15946
  # @!attribute [rw] failure_reason
15926
- # If the status of the endpoint is `Failed`, this provides the reason
15927
- # why it failed.
15947
+ # If the status of the endpoint is `Failed`, or the status is
15948
+ # `InService` but update operation fails, this provides the reason why
15949
+ # it failed.
15928
15950
  # @return [String]
15929
15951
  #
15930
15952
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/EndpointMetadata AWS API Documentation
@@ -17036,6 +17058,8 @@ module Aws::SageMaker
17036
17058
  include Aws::Structure
17037
17059
  end
17038
17060
 
17061
+ # @api private
17062
+ #
17039
17063
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/GetSagemakerServicecatalogPortfolioStatusInput AWS API Documentation
17040
17064
  #
17041
17065
  class GetSagemakerServicecatalogPortfolioStatusInput < Aws::EmptyStructure; end
@@ -19222,12 +19246,16 @@ module Aws::SageMaker
19222
19246
 
19223
19247
  # The configuration of resources, including compute instances and
19224
19248
  # storage volumes for use in training jobs launched by hyperparameter
19225
- # tuning jobs. Specify one or more instance type and count and the
19226
- # allocation strategy for instance selection.
19249
+ # tuning jobs. `HyperParameterTuningResourceConfig` is similar to
19250
+ # `ResourceConfig`, but has the additional `InstanceConfigs` and
19251
+ # `AllocationStrategy` fields to allow for flexible instance management.
19252
+ # Specify one or more instance types, count, and the allocation strategy
19253
+ # for instance selection.
19227
19254
  #
19228
- # <note markdown="1"> `HyperParameterTuningResourceConfig` supports all of the capabilities
19229
- # of ResourceConfig with added functionality for flexible instance
19230
- # management.
19255
+ # <note markdown="1"> `HyperParameterTuningResourceConfig` supports the capabilities of
19256
+ # `ResourceConfig` with the exception of `KeepAlivePeriodInSeconds`.
19257
+ # Hyperparameter tuning jobs use warm pools by default, which reuse
19258
+ # clusters between training jobs.
19231
19259
  #
19232
19260
  # </note>
19233
19261
  #
@@ -19623,17 +19651,18 @@ module Aws::SageMaker
19623
19651
  include Aws::Structure
19624
19652
  end
19625
19653
 
19626
- # The Amazon S3 location and configuration for storing inference
19627
- # experiment data.
19654
+ # The Amazon S3 location and configuration for storing inference request
19655
+ # and response data.
19628
19656
  #
19629
19657
  # @!attribute [rw] destination
19630
- # The Amazon S3 bucket where the inference experiment data is stored.
19658
+ # The Amazon S3 bucket where the inference request and response data
19659
+ # is stored.
19631
19660
  # @return [String]
19632
19661
  #
19633
19662
  # @!attribute [rw] kms_key
19634
- # The Amazon Resource Name (ARN) of a Amazon Web Services Key
19635
- # Management Service key that Amazon SageMaker uses to encrypt
19636
- # captured data when uploading to Amazon S3.
19663
+ # The Amazon Web Services Key Management Service key that Amazon
19664
+ # SageMaker uses to encrypt captured data at rest using Amazon S3
19665
+ # server-side encryption.
19637
19666
  # @return [String]
19638
19667
  #
19639
19668
  # @!attribute [rw] content_type
@@ -19718,7 +19747,8 @@ module Aws::SageMaker
19718
19747
  #
19719
19748
  # @!attribute [rw] role_arn
19720
19749
  # The ARN of the IAM role that Amazon SageMaker can assume to access
19721
- # model artifacts and container images.
19750
+ # model artifacts and container images, and manage Amazon SageMaker
19751
+ # Inference endpoints for model deployment.
19722
19752
  # @return [String]
19723
19753
  #
19724
19754
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/InferenceExperimentSummary AWS API Documentation
@@ -27859,7 +27889,7 @@ module Aws::SageMaker
27859
27889
  # Contains information about the deployment options of a model.
27860
27890
  #
27861
27891
  # @!attribute [rw] model_name
27862
- # The name of the model.
27892
+ # The name of the Amazon SageMaker Model entity.
27863
27893
  # @return [String]
27864
27894
  #
27865
27895
  # @!attribute [rw] variant_name
@@ -27884,7 +27914,7 @@ module Aws::SageMaker
27884
27914
  # Summary of the deployment configuration of a model.
27885
27915
  #
27886
27916
  # @!attribute [rw] model_name
27887
- # The name of the model.
27917
+ # The name of the Amazon SageMaker Model entity.
27888
27918
  # @return [String]
27889
27919
  #
27890
27920
  # @!attribute [rw] variant_name
@@ -27897,7 +27927,24 @@ module Aws::SageMaker
27897
27927
  # @return [Types::ModelInfrastructureConfig]
27898
27928
  #
27899
27929
  # @!attribute [rw] status
27900
- # The status of the deployment.
27930
+ # The status of deployment for the model variant on the hosted
27931
+ # inference endpoint.
27932
+ #
27933
+ # * `Creating` - Amazon SageMaker is preparing the model variant on
27934
+ # the hosted inference endpoint.
27935
+ #
27936
+ # * `InService` - The model variant is running on the hosted inference
27937
+ # endpoint.
27938
+ #
27939
+ # * `Updating` - Amazon SageMaker is updating the model variant on the
27940
+ # hosted inference endpoint.
27941
+ #
27942
+ # * `Deleting` - Amazon SageMaker is deleting the model variant on the
27943
+ # hosted inference endpoint.
27944
+ #
27945
+ # * `Deleted` - The model variant has been deleted on the hosted
27946
+ # inference endpoint. This can only happen after stopping the
27947
+ # experiment.
27901
27948
  # @return [String]
27902
27949
  #
27903
27950
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ModelVariantConfigSummary AWS API Documentation
@@ -28437,6 +28484,8 @@ module Aws::SageMaker
28437
28484
  # Represents the Parquet dataset format used when running a monitoring
28438
28485
  # job.
28439
28486
  #
28487
+ # @api private
28488
+ #
28440
28489
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/MonitoringParquetDatasetFormat AWS API Documentation
28441
28490
  #
28442
28491
  class MonitoringParquetDatasetFormat < Aws::EmptyStructure; end
@@ -29041,8 +29090,12 @@ module Aws::SageMaker
29041
29090
  # @return [Types::DataCatalogConfig]
29042
29091
  #
29043
29092
  # @!attribute [rw] table_format
29044
- # Format for the offline store feature group. `Iceberg` is the optimal
29045
- # format for feature groups shared between offline and online stores.
29093
+ # Format for the offline store table. Supported formats are Glue
29094
+ # (Default) and [Apache Iceberg][1].
29095
+ #
29096
+ #
29097
+ #
29098
+ # [1]: https://iceberg.apache.org/
29046
29099
  # @return [String]
29047
29100
  #
29048
29101
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/OfflineStoreConfig AWS API Documentation
@@ -29715,7 +29768,8 @@ module Aws::SageMaker
29715
29768
  # @return [String]
29716
29769
  #
29717
29770
  # @!attribute [rw] production_variants
29718
- # List of `PendingProductionVariantSummary` objects.
29771
+ # An array of PendingProductionVariantSummary objects, one for each
29772
+ # model hosted behind this endpoint for the in-progress deployment.
29719
29773
  # @return [Array<Types::PendingProductionVariantSummary>]
29720
29774
  #
29721
29775
  # @!attribute [rw] start_time
@@ -29723,11 +29777,10 @@ module Aws::SageMaker
29723
29777
  # @return [Time]
29724
29778
  #
29725
29779
  # @!attribute [rw] shadow_production_variants
29726
- # Array of `ProductionVariant` objects, one for each model that you
29727
- # want to host at this endpoint in shadow mode with production traffic
29728
- # replicated from the model specified on `ProductionVariants`.If you
29729
- # use this field, you can only specify one variant for
29730
- # `ProductionVariants` and one variant for `ShadowProductionVariants`.
29780
+ # An array of PendingProductionVariantSummary objects, one for each
29781
+ # model hosted behind this endpoint in shadow mode with production
29782
+ # traffic replicated from the model specified on `ProductionVariants`
29783
+ # for the in-progress deployment.
29731
29784
  # @return [Array<Types::PendingProductionVariantSummary>]
29732
29785
  #
29733
29786
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/PendingDeploymentSummary AWS API Documentation
@@ -32061,15 +32114,15 @@ module Aws::SageMaker
32061
32114
  include Aws::Structure
32062
32115
  end
32063
32116
 
32064
- # The infrastructure configuration for deploying the model to real-time
32065
- # inference.
32117
+ # The infrastructure configuration for deploying the model to a
32118
+ # real-time inference endpoint.
32066
32119
  #
32067
32120
  # @!attribute [rw] instance_type
32068
- # The number of instances of the type specified by `InstanceType`.
32121
+ # The instance type the model is deployed to.
32069
32122
  # @return [String]
32070
32123
  #
32071
32124
  # @!attribute [rw] instance_count
32072
- # The instance type the model is deployed to.
32125
+ # The number of instances of the type specified by `InstanceType`.
32073
32126
  # @return [Integer]
32074
32127
  #
32075
32128
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/RealTimeInferenceConfig AWS API Documentation
@@ -32274,6 +32327,11 @@ module Aws::SageMaker
32274
32327
  # job.
32275
32328
  # @return [Array<Types::EndpointInfo>]
32276
32329
  #
32330
+ # @!attribute [rw] vpc_config
32331
+ # Inference Recommender provisions SageMaker endpoints with access to
32332
+ # VPC in the inference recommendation job.
32333
+ # @return [Types::RecommendationJobVpcConfig]
32334
+ #
32277
32335
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/RecommendationJobInputConfig AWS API Documentation
32278
32336
  #
32279
32337
  class RecommendationJobInputConfig < Struct.new(
@@ -32284,7 +32342,8 @@ module Aws::SageMaker
32284
32342
  :endpoint_configurations,
32285
32343
  :volume_kms_key_id,
32286
32344
  :container_config,
32287
- :endpoints)
32345
+ :endpoints,
32346
+ :vpc_config)
32288
32347
  SENSITIVE = []
32289
32348
  include Aws::Structure
32290
32349
  end
@@ -32405,6 +32464,29 @@ module Aws::SageMaker
32405
32464
  include Aws::Structure
32406
32465
  end
32407
32466
 
32467
+ # Inference Recommender provisions SageMaker endpoints with access to
32468
+ # VPC in the inference recommendation job.
32469
+ #
32470
+ # @!attribute [rw] security_group_ids
32471
+ # The VPC security group IDs. IDs have the form of `sg-xxxxxxxx`.
32472
+ # Specify the security groups for the VPC that is specified in the
32473
+ # `Subnets` field.
32474
+ # @return [Array<String>]
32475
+ #
32476
+ # @!attribute [rw] subnets
32477
+ # The ID of the subnets in the VPC to which you want to connect your
32478
+ # model.
32479
+ # @return [Array<String>]
32480
+ #
32481
+ # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/RecommendationJobVpcConfig AWS API Documentation
32482
+ #
32483
+ class RecommendationJobVpcConfig < Struct.new(
32484
+ :security_group_ids,
32485
+ :subnets)
32486
+ SENSITIVE = []
32487
+ include Aws::Structure
32488
+ end
32489
+
32408
32490
  # The metrics of recommendations.
32409
32491
  #
32410
32492
  # @!attribute [rw] cost_per_hour
@@ -32673,11 +32755,37 @@ module Aws::SageMaker
32673
32755
  include Aws::Structure
32674
32756
  end
32675
32757
 
32676
- # Describes the resources, including ML compute instances and ML storage
32677
- # volumes, to use for model training.
32758
+ # Describes the resources, including machine learning (ML) compute
32759
+ # instances and ML storage volumes, to use for model training.
32678
32760
  #
32679
32761
  # @!attribute [rw] instance_type
32680
32762
  # The ML compute instance type.
32763
+ #
32764
+ # <note markdown="1"> SageMaker Training on Amazon Elastic Compute Cloud (EC2) P4de
32765
+ # instances is in preview release starting December 9th, 2022.
32766
+ #
32767
+ # [Amazon EC2 P4de instances][1] (currently in preview) are powered by
32768
+ # 8 NVIDIA A100 GPUs with 80GB high-performance HBM2e GPU memory,
32769
+ # which accelerate the speed of training ML models that need to be
32770
+ # trained on large datasets of high-resolution data. In this preview
32771
+ # release, Amazon SageMaker supports ML training jobs on P4de
32772
+ # instances (`ml.p4de.24xlarge`) to reduce model training time. The
32773
+ # `ml.p4de.24xlarge` instances are available in the following Amazon
32774
+ # Web Services Regions.
32775
+ #
32776
+ # * US East (N. Virginia) (us-east-1)
32777
+ #
32778
+ # * US West (Oregon) (us-west-2)
32779
+ #
32780
+ # To request quota limit increase and start using P4de instances,
32781
+ # contact the SageMaker Training service team through your account
32782
+ # team.
32783
+ #
32784
+ # </note>
32785
+ #
32786
+ #
32787
+ #
32788
+ # [1]: http://aws.amazon.com/ec2/instance-types/p4/
32681
32789
  # @return [String]
32682
32790
  #
32683
32791
  # @!attribute [rw] instance_count
@@ -33692,12 +33800,15 @@ module Aws::SageMaker
33692
33800
  include Aws::Structure
33693
33801
  end
33694
33802
 
33695
- # Shows which variant is a production variant and which variant is a
33696
- # shadow variant. For shadow variants, also shows the sampling
33697
- # percentages.
33803
+ # The configuration of `ShadowMode` inference experiment type, which
33804
+ # specifies a production variant to take all the inference requests, and
33805
+ # a shadow variant to which Amazon SageMaker replicates a percentage of
33806
+ # the inference requests. For the shadow variant it also specifies the
33807
+ # percentage of requests that Amazon SageMaker replicates.
33698
33808
  #
33699
33809
  # @!attribute [rw] source_model_variant_name
33700
- # The name of the production variant.
33810
+ # The name of the production variant, which takes all the inference
33811
+ # requests.
33701
33812
  # @return [String]
33702
33813
  #
33703
33814
  # @!attribute [rw] shadow_model_variants
@@ -33720,8 +33831,8 @@ module Aws::SageMaker
33720
33831
  # @return [String]
33721
33832
  #
33722
33833
  # @!attribute [rw] sampling_percentage
33723
- # The percentage of inference requests that are replicated to the
33724
- # shadow variant.
33834
+ # The percentage of inference requests that Amazon SageMaker
33835
+ # replicates from the production variant to the shadow variant.
33725
33836
  # @return [Integer]
33726
33837
  #
33727
33838
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ShadowModelVariantConfig AWS API Documentation
@@ -34127,10 +34238,10 @@ module Aws::SageMaker
34127
34238
  # @return [Hash<String,String>]
34128
34239
  #
34129
34240
  # @!attribute [rw] desired_model_variants
34130
- # Array of `ModelVariantConfig` objects. There is one for each variant
34131
- # that you want to deploy after the inference experiment stops. Each
34132
- # `ModelVariantConfig` describes the infrastructure configuration for
34133
- # deploying the corresponding variant.
34241
+ # An array of `ModelVariantConfig` objects. There is one for each
34242
+ # variant that you want to deploy after the inference experiment
34243
+ # stops. Each `ModelVariantConfig` describes the infrastructure
34244
+ # configuration for deploying the corresponding variant.
34134
34245
  # @return [Array<Types::ModelVariantConfig>]
34135
34246
  #
34136
34247
  # @!attribute [rw] desired_state
@@ -37148,16 +37259,22 @@ module Aws::SageMaker
37148
37259
  # @return [String]
37149
37260
  #
37150
37261
  # @!attribute [rw] model_variants
37151
- # Array of `ModelVariantConfigSummary` objects. There is one for each
37262
+ # An array of `ModelVariantConfig` objects. There is one for each
37152
37263
  # variant, whose infrastructure configuration you want to update.
37153
37264
  # @return [Array<Types::ModelVariantConfig>]
37154
37265
  #
37155
37266
  # @!attribute [rw] data_storage_config
37156
- # The Amazon S3 storage configuration for the inference experiment.
37267
+ # The Amazon S3 location and configuration for storing inference
37268
+ # request and response data.
37157
37269
  # @return [Types::InferenceExperimentDataStorageConfig]
37158
37270
  #
37159
37271
  # @!attribute [rw] shadow_mode_config
37160
- # The Amazon S3 storage configuration for the inference experiment.
37272
+ # The configuration of `ShadowMode` inference experiment type. Use
37273
+ # this field to specify a production variant which takes all the
37274
+ # inference requests, and a shadow variant to which Amazon SageMaker
37275
+ # replicates a percentage of the inference requests. For the shadow
37276
+ # variant also specify the percentage of requests that Amazon
37277
+ # SageMaker replicates.
37161
37278
  # @return [Types::ShadowModeConfig]
37162
37279
  #
37163
37280
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/UpdateInferenceExperimentRequest AWS API Documentation
@@ -53,6 +53,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
53
53
  # @!group service
54
54
  module Aws::SageMaker
55
55
 
56
- GEM_VERSION = '1.154.0'
56
+ GEM_VERSION = '1.155.0'
57
57
 
58
58
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-sagemaker
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.154.0
4
+ version: 1.155.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2022-11-30 00:00:00.000000000 Z
11
+ date: 2022-12-15 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core