aws-sdk-sagemaker 1.138.0 → 1.139.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 289e07fa18ad373afbd8939e3fc8b3bf59bcb129e3f605a18604607e4389672a
4
- data.tar.gz: 12d3c4374927f455fe31c21e33ccb43e52645fc54fa911cad629dd20bc1d4c4d
3
+ metadata.gz: 7deb3524a9430ff017818162aedf6e3bd8043f7ba2b728f8c64efaac5a527c0c
4
+ data.tar.gz: fb76d74dc54301fb330152d44fd95643b9360ea1e0f0cfd42c08a8b16e4547e2
5
5
  SHA512:
6
- metadata.gz: 29108cd59a45026cf8c99f5917bf1ae9546dc8777275fc2273fcab251aad1652b055fe259d708f82ef60fd89f7d2c859496541ae279dfa6c6d23efaddf3f663a
7
- data.tar.gz: 6ee2ec14772d5fd21e1b4a0551a16c6b92d13bf4d715677fb7d6e0804750e695828082d6fd83ad83f46c42c11eee2a346a85b660b9d5080639f291ffe88fbb85
6
+ metadata.gz: 4ae359d7efd1f2ee6e89f8f7b0c915b6de05162569c528111ccf3266381ad26003c9577df84a892f695ed05172fa566c8afc22e5650a5caead70aa73185bd68e
7
+ data.tar.gz: 29f83537ae4e0c80aeee9aa286ec7de6af46bdf6c9472832ea96fd2223c2c1e737057dcd9aa3e95801be0e84b0f0d09aad1a9c1711ebd5ff6e2781f98bdeb689
data/CHANGELOG.md CHANGED
@@ -1,6 +1,11 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.139.0 (2022-09-08)
5
+ ------------------
6
+
7
+ * Feature - This release adds Mode to AutoMLJobConfig.
8
+
4
9
  1.138.0 (2022-09-07)
5
10
  ------------------
6
11
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.138.0
1
+ 1.139.0
@@ -1260,6 +1260,7 @@ module Aws::SageMaker
1260
1260
  # candidate_generation_config: {
1261
1261
  # feature_specification_s3_uri: "S3Uri",
1262
1262
  # },
1263
+ # mode: "AUTO", # accepts AUTO, ENSEMBLING, HYPERPARAMETER_TUNING
1263
1264
  # },
1264
1265
  # role_arn: "RoleArn", # required
1265
1266
  # generate_candidate_definitions_only: false,
@@ -5834,6 +5835,12 @@ module Aws::SageMaker
5834
5835
  # a list of hyperparameters for each training algorithm provided by
5835
5836
  # SageMaker, see [Algorithms][1].
5836
5837
  #
5838
+ # You must not include any security-sensitive information, such as
5839
+ # account access IDs, secrets, and tokens, in the dictionary for
5840
+ # configuring hyperparameters. SageMaker rejects the training job
5841
+ # request and returns an exception error for detected credentials, if
5842
+ # such user input is found.
5843
+ #
5837
5844
  # * `InputDataConfig` - Describes the training dataset and the Amazon
5838
5845
  # S3, EFS, or FSx location where it is stored.
5839
5846
  #
@@ -5886,6 +5893,12 @@ module Aws::SageMaker
5886
5893
  # is a key-value pair. Each key and value is limited to 256 characters,
5887
5894
  # as specified by the `Length Constraint`.
5888
5895
  #
5896
+ # You must not include any security-sensitive information, such as
5897
+ # account access IDs, secrets, and tokens, in the dictionary for
5898
+ # configuring hyperparameters. SageMaker rejects the training job
5899
+ # request and returns an exception error for detected credentials, if
5900
+ # such user input is found.
5901
+ #
5889
5902
  #
5890
5903
  #
5891
5904
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
@@ -8571,6 +8584,7 @@ module Aws::SageMaker
8571
8584
  # resp.auto_ml_job_config.security_config.vpc_config.subnets[0] #=> String
8572
8585
  # resp.auto_ml_job_config.data_split_config.validation_fraction #=> Float
8573
8586
  # resp.auto_ml_job_config.candidate_generation_config.feature_specification_s3_uri #=> String
8587
+ # resp.auto_ml_job_config.mode #=> String, one of "AUTO", "ENSEMBLING", "HYPERPARAMETER_TUNING"
8574
8588
  # resp.creation_time #=> Time
8575
8589
  # resp.end_time #=> Time
8576
8590
  # resp.last_modified_time #=> Time
@@ -20582,7 +20596,7 @@ module Aws::SageMaker
20582
20596
  params: params,
20583
20597
  config: config)
20584
20598
  context[:gem_name] = 'aws-sdk-sagemaker'
20585
- context[:gem_version] = '1.138.0'
20599
+ context[:gem_version] = '1.139.0'
20586
20600
  Seahorse::Client::Request.new(handlers, context)
20587
20601
  end
20588
20602
 
@@ -121,6 +121,7 @@ module Aws::SageMaker
121
121
  AutoMLMaxResults = Shapes::IntegerShape.new(name: 'AutoMLMaxResults')
122
122
  AutoMLMetricEnum = Shapes::StringShape.new(name: 'AutoMLMetricEnum')
123
123
  AutoMLMetricExtendedEnum = Shapes::StringShape.new(name: 'AutoMLMetricExtendedEnum')
124
+ AutoMLMode = Shapes::StringShape.new(name: 'AutoMLMode')
124
125
  AutoMLNameContains = Shapes::StringShape.new(name: 'AutoMLNameContains')
125
126
  AutoMLOutputDataConfig = Shapes::StructureShape.new(name: 'AutoMLOutputDataConfig')
126
127
  AutoMLPartialFailureReason = Shapes::StructureShape.new(name: 'AutoMLPartialFailureReason')
@@ -1952,6 +1953,7 @@ module Aws::SageMaker
1952
1953
  AutoMLJobConfig.add_member(:security_config, Shapes::ShapeRef.new(shape: AutoMLSecurityConfig, location_name: "SecurityConfig"))
1953
1954
  AutoMLJobConfig.add_member(:data_split_config, Shapes::ShapeRef.new(shape: AutoMLDataSplitConfig, location_name: "DataSplitConfig"))
1954
1955
  AutoMLJobConfig.add_member(:candidate_generation_config, Shapes::ShapeRef.new(shape: AutoMLCandidateGenerationConfig, location_name: "CandidateGenerationConfig"))
1956
+ AutoMLJobConfig.add_member(:mode, Shapes::ShapeRef.new(shape: AutoMLMode, location_name: "Mode"))
1955
1957
  AutoMLJobConfig.struct_class = Types::AutoMLJobConfig
1956
1958
 
1957
1959
  AutoMLJobObjective.add_member(:metric_name, Shapes::ShapeRef.new(shape: AutoMLMetricEnum, required: true, location_name: "MetricName"))
@@ -2338,6 +2338,7 @@ module Aws::SageMaker
2338
2338
  # candidate_generation_config: {
2339
2339
  # feature_specification_s3_uri: "S3Uri",
2340
2340
  # },
2341
+ # mode: "AUTO", # accepts AUTO, ENSEMBLING, HYPERPARAMETER_TUNING
2341
2342
  # }
2342
2343
  #
2343
2344
  # @!attribute [rw] completion_criteria
@@ -2361,13 +2362,43 @@ module Aws::SageMaker
2361
2362
  # (optional).
2362
2363
  # @return [Types::AutoMLCandidateGenerationConfig]
2363
2364
  #
2365
+ # @!attribute [rw] mode
2366
+ # The method that Autopilot uses to train the data. You can either
2367
+ # specify the mode manually or let Autopilot choose for you based on
2368
+ # the dataset size by selecting `AUTO`. In `AUTO` mode, Autopilot
2369
+ # chooses `ENSEMBLING` for datasets smaller than 100 MB, and
2370
+ # `HYPERPARAMETER_TUNING` for larger ones.
2371
+ #
2372
+ # The `ENSEMBLING` mode uses a multi-stack ensemble model to predict
2373
+ # classification and regression tasks directly from your dataset. This
2374
+ # machine learning mode combines several base models to produce an
2375
+ # optimal predictive model. It then uses a stacking ensemble method to
2376
+ # combine predictions from contributing members. A multi-stack
2377
+ # ensemble model can provide better performance over a single model by
2378
+ # combining the predictive capabilities of multiple models. See
2379
+ # [Autopilot algorithm support][1] for a list of algorithms supported
2380
+ # by `ENSEMBLING` mode.
2381
+ #
2382
+ # The `HYPERPARAMETER_TUNING` (HPO) mode uses the best hyperparameters
2383
+ # to train the best version of a model. HPO will automatically select
2384
+ # an algorithm for the type of problem you want to solve. Then HPO
2385
+ # finds the best hyperparameters according to your objective metric.
2386
+ # See [Autopilot algorithm support][1] for a list of algorithms
2387
+ # supported by `HYPERPARAMETER_TUNING` mode.
2388
+ #
2389
+ #
2390
+ #
2391
+ # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-suppprt
2392
+ # @return [String]
2393
+ #
2364
2394
  # @see http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/AutoMLJobConfig AWS API Documentation
2365
2395
  #
2366
2396
  class AutoMLJobConfig < Struct.new(
2367
2397
  :completion_criteria,
2368
2398
  :security_config,
2369
2399
  :data_split_config,
2370
- :candidate_generation_config)
2400
+ :candidate_generation_config,
2401
+ :mode)
2371
2402
  SENSITIVE = []
2372
2403
  include Aws::Structure
2373
2404
  end
@@ -4591,6 +4622,7 @@ module Aws::SageMaker
4591
4622
  # candidate_generation_config: {
4592
4623
  # feature_specification_s3_uri: "S3Uri",
4593
4624
  # },
4625
+ # mode: "AUTO", # accepts AUTO, ENSEMBLING, HYPERPARAMETER_TUNING
4594
4626
  # },
4595
4627
  # role_arn: "RoleArn", # required
4596
4628
  # generate_candidate_definitions_only: false,
@@ -9383,6 +9415,12 @@ module Aws::SageMaker
9383
9415
  # hyperparameter is a key-value pair. Each key and value is limited to
9384
9416
  # 256 characters, as specified by the `Length Constraint`.
9385
9417
  #
9418
+ # You must not include any security-sensitive information, such as
9419
+ # account access IDs, secrets, and tokens, in the dictionary for
9420
+ # configuring hyperparameters. SageMaker rejects the training job
9421
+ # request and returns an exception error for detected credentials, if
9422
+ # such user input is found.
9423
+ #
9386
9424
  #
9387
9425
  #
9388
9426
  # [1]: https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
@@ -34097,16 +34135,16 @@ module Aws::SageMaker
34097
34135
  # @return [Integer]
34098
34136
  #
34099
34137
  # @!attribute [rw] model_data_download_timeout_in_seconds
34100
- # The timeout value, in seconds, to download and extract customer
34101
- # model artifact from Amazon S3 to individual inference instance
34102
- # associated with this production variant.
34138
+ # The timeout value, in seconds, to download and extract the model
34139
+ # that you want to host from Amazon S3 to the individual inference
34140
+ # instance associated with this production variant.
34103
34141
  # @return [Integer]
34104
34142
  #
34105
34143
  # @!attribute [rw] container_startup_health_check_timeout_in_seconds
34106
- # The timeout value, in seconds, for the customer inference container
34107
- # to pass health check by SageMaker Hosting. For more information on
34108
- # health check, see [How Your Container Should Respond to Health Check
34109
- # (Ping) Requests][1].
34144
+ # The timeout value, in seconds, for your inference container to pass
34145
+ # health check by SageMaker Hosting. For more information about health
34146
+ # check, see [How Your Container Should Respond to Health Check (Ping)
34147
+ # Requests][1].
34110
34148
  #
34111
34149
  #
34112
34150
  #
@@ -49,6 +49,6 @@ require_relative 'aws-sdk-sagemaker/customizations'
49
49
  # @!group service
50
50
  module Aws::SageMaker
51
51
 
52
- GEM_VERSION = '1.138.0'
52
+ GEM_VERSION = '1.139.0'
53
53
 
54
54
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-sagemaker
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.138.0
4
+ version: 1.139.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2022-09-07 00:00:00.000000000 Z
11
+ date: 2022-09-08 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core