aws-sdk-rekognition 1.31.0 → 1.32.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA1:
3
- metadata.gz: 4175be83c7517e7157ab7b8231ec430c9b574e0b
4
- data.tar.gz: b4808a84e5b10fb3d7ca2323f6cec9b747ee28ac
3
+ metadata.gz: f88df947d010d4e4f6f23ddb3275063422b232c1
4
+ data.tar.gz: 4fb28d5dc55cbc5c057706a248047e3543c8ff31
5
5
  SHA512:
6
- metadata.gz: 497a008ac620a46a76094a4bddda196505ff7a9069778e25ab4bed20dcb95f992193341eb1332db091a912383193a327fb4a8c4c0ac44dab0758fcd8d79b766d
7
- data.tar.gz: 41d952d25f7114fe6efa99cc5dfd8f3800211c8d424ec4555a41c78f735fb8b75fe74f24bf2a83e3b4e98b198e25fc7396f0ed2870fc78014e01e18e821a7776
6
+ metadata.gz: e1abdd86e56212e4c23ab773d10e21d83b25c952bd75d0540a695c39b9d486aa0ca322c19dc5172ffbb2889583799c8853be3df10c75d09f5b8134b3c4d78a93
7
+ data.tar.gz: e750ce1b80b67746276fb4ff373eca36b6b6b56164e3881c5e4db00f8f3417cf1f2d1a1b9c15a0344417d1a7966a3f9a450be396c51a9ba55f931e0432ea6af5
@@ -42,6 +42,6 @@ require_relative 'aws-sdk-rekognition/customizations'
42
42
  # @service
43
43
  module Aws::Rekognition
44
44
 
45
- GEM_VERSION = '1.31.0'
45
+ GEM_VERSION = '1.32.0'
46
46
 
47
47
  end
@@ -298,6 +298,20 @@ module Aws::Rekognition
298
298
  # information about the face in the source image, including the bounding
299
299
  # box of the face and confidence value.
300
300
  #
301
+ # The `QualityFilter` input parameter allows you to filter out detected
302
+ # faces that don’t meet a required quality bar. The quality bar is based
303
+ # on a variety of common use cases. By default, `CompareFaces` chooses
304
+ # the quality bar that's used to filter faces. You can also explicitly
305
+ # choose the quality bar. Use `QualityFilter`, to set the quality bar by
306
+ # specifying `LOW`, `MEDIUM`, or `HIGH`. If you do not want to filter
307
+ # detected faces, specify `NONE`.
308
+ #
309
+ # <note markdown="1"> To use quality filtering, you need a collection associated with
310
+ # version 3 of the face model or higher. To get the version of the face
311
+ # model associated with a collection, call DescribeCollection.
312
+ #
313
+ # </note>
314
+ #
301
315
  # If the image doesn't contain Exif metadata, `CompareFaces` returns
302
316
  # orientation information for the source and target images. Use these
303
317
  # values to display the images with the correct image orientation.
@@ -340,6 +354,21 @@ module Aws::Rekognition
340
354
  # The minimum level of confidence in the face matches that a match must
341
355
  # meet to be included in the `FaceMatches` array.
342
356
  #
357
+ # @option params [String] :quality_filter
358
+ # A filter that specifies a quality bar for how much filtering is done
359
+ # to identify faces. Filtered faces aren't compared. If you specify
360
+ # `AUTO`, Amazon Rekognition chooses the quality bar. If you specify
361
+ # `LOW`, `MEDIUM`, or `HIGH`, filtering removes all faces that don’t
362
+ # meet the chosen quality bar. The default value is `AUTO`. The quality
363
+ # bar is based on a variety of common use cases. Low-quality detections
364
+ # can occur for a number of reasons. Some examples are an object that's
365
+ # misidentified as a face, a face that's too blurry, or a face with a
366
+ # pose that's too extreme to use. If you specify `NONE`, no filtering
367
+ # is performed.
368
+ #
369
+ # To use quality filtering, the collection you are using must be
370
+ # associated with version 3 of the face model or higher.
371
+ #
343
372
  # @return [Types::CompareFacesResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
344
373
  #
345
374
  # * {Types::CompareFacesResponse#source_image_face #source_image_face} => Types::ComparedSourceImageFace
@@ -416,6 +445,7 @@ module Aws::Rekognition
416
445
  # },
417
446
  # },
418
447
  # similarity_threshold: 1.0,
448
+ # quality_filter: "NONE", # accepts NONE, AUTO, LOW, MEDIUM, HIGH
419
449
  # })
420
450
  #
421
451
  # @example Response structure
@@ -823,8 +853,8 @@ module Aws::Rekognition
823
853
  # face detected, the operation returns face details. These details
824
854
  # include a bounding box of the face, a confidence value (that the
825
855
  # bounding box contains a face), and a fixed set of attributes such as
826
- # facial landmarks (for example, coordinates of eye and mouth), gender,
827
- # presence of beard, sunglasses, and so on.
856
+ # facial landmarks (for example, coordinates of eye and mouth), presence
857
+ # of beard, sunglasses, and so on.
828
858
  #
829
859
  # The face-detection algorithm is most effective on frontal faces. For
830
860
  # non-frontal or obscured faces, the algorithm might not detect the
@@ -2174,16 +2204,16 @@ module Aws::Rekognition
2174
2204
  # as those belonging to people standing in the background.
2175
2205
  #
2176
2206
  # The `QualityFilter` input parameter allows you to filter out detected
2177
- # faces that don’t meet the required quality bar chosen by Amazon
2178
- # Rekognition. The quality bar is based on a variety of common use
2179
- # cases. By default, `IndexFaces` filters detected faces. You can also
2180
- # explicitly filter detected faces by specifying `AUTO` for the value of
2181
- # `QualityFilter`. If you do not want to filter detected faces, specify
2182
- # `NONE`.
2207
+ # faces that don’t meet a required quality bar. The quality bar is based
2208
+ # on a variety of common use cases. By default, `IndexFaces` chooses the
2209
+ # quality bar that's used to filter faces. You can also explicitly
2210
+ # choose the quality bar. Use `QualityFilter`, to set the quality bar by
2211
+ # specifying `LOW`, `MEDIUM`, or `HIGH`. If you do not want to filter
2212
+ # detected faces, specify `NONE`.
2183
2213
  #
2184
2214
  # <note markdown="1"> To use quality filtering, you need a collection associated with
2185
- # version 3 of the face model. To get the version of the face model
2186
- # associated with a collection, call DescribeCollection.
2215
+ # version 3 of the face model or higher. To get the version of the face
2216
+ # model associated with a collection, call DescribeCollection.
2187
2217
  #
2188
2218
  # </note>
2189
2219
  #
@@ -2202,6 +2232,8 @@ module Aws::Rekognition
2202
2232
  #
2203
2233
  # * The face has an extreme pose.
2204
2234
  #
2235
+ # * The face doesn’t have enough detail to be suitable for face search.
2236
+ #
2205
2237
  # In response, the `IndexFaces` operation returns an array of metadata
2206
2238
  # for all detected faces, `FaceRecords`. This includes:
2207
2239
  #
@@ -2218,10 +2250,10 @@ module Aws::Rekognition
2218
2250
  # If you request all facial attributes (by using the
2219
2251
  # `detectionAttributes` parameter), Amazon Rekognition returns detailed
2220
2252
  # facial attributes, such as facial landmarks (for example, location of
2221
- # eye and mouth) and other facial attributes like gender. If you provide
2222
- # the same image, specify the same collection, and use the same external
2223
- # ID in the `IndexFaces` operation, Amazon Rekognition doesn't save
2224
- # duplicate face metadata.
2253
+ # eye and mouth) and other facial attributes. If you provide the same
2254
+ # image, specify the same collection, and use the same external ID in
2255
+ # the `IndexFaces` operation, Amazon Rekognition doesn't save duplicate
2256
+ # face metadata.
2225
2257
  #
2226
2258
  #
2227
2259
  #
@@ -2283,18 +2315,19 @@ module Aws::Rekognition
2283
2315
  # of the face model.
2284
2316
  #
2285
2317
  # @option params [String] :quality_filter
2286
- # A filter that specifies how much filtering is done to identify faces
2287
- # that are detected with low quality. Filtered faces aren't indexed. If
2288
- # you specify `AUTO`, filtering prioritizes the identification of faces
2289
- # that don’t meet the required quality bar chosen by Amazon Rekognition.
2290
- # The quality bar is based on a variety of common use cases. Low-quality
2291
- # detections can occur for a number of reasons. Some examples are an
2292
- # object that's misidentified as a face, a face that's too blurry, or
2293
- # a face with a pose that's too extreme to use. If you specify `NONE`,
2294
- # no filtering is performed. The default value is AUTO.
2318
+ # A filter that specifies a quality bar for how much filtering is done
2319
+ # to identify faces. Filtered faces aren't indexed. If you specify
2320
+ # `AUTO`, Amazon Rekognition chooses the quality bar. If you specify
2321
+ # `LOW`, `MEDIUM`, or `HIGH`, filtering removes all faces that don’t
2322
+ # meet the chosen quality bar. The default value is `AUTO`. The quality
2323
+ # bar is based on a variety of common use cases. Low-quality detections
2324
+ # can occur for a number of reasons. Some examples are an object that's
2325
+ # misidentified as a face, a face that's too blurry, or a face with a
2326
+ # pose that's too extreme to use. If you specify `NONE`, no filtering
2327
+ # is performed.
2295
2328
  #
2296
2329
  # To use quality filtering, the collection you are using must be
2297
- # associated with version 3 of the face model.
2330
+ # associated with version 3 of the face model or higher.
2298
2331
  #
2299
2332
  # @return [Types::IndexFacesResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
2300
2333
  #
@@ -2459,7 +2492,7 @@ module Aws::Rekognition
2459
2492
  # external_image_id: "ExternalImageId",
2460
2493
  # detection_attributes: ["DEFAULT"], # accepts DEFAULT, ALL
2461
2494
  # max_faces: 1,
2462
- # quality_filter: "NONE", # accepts NONE, AUTO
2495
+ # quality_filter: "NONE", # accepts NONE, AUTO, LOW, MEDIUM, HIGH
2463
2496
  # })
2464
2497
  #
2465
2498
  # @example Response structure
@@ -2512,7 +2545,7 @@ module Aws::Rekognition
2512
2545
  # resp.face_model_version #=> String
2513
2546
  # resp.unindexed_faces #=> Array
2514
2547
  # resp.unindexed_faces[0].reasons #=> Array
2515
- # resp.unindexed_faces[0].reasons[0] #=> String, one of "EXCEEDS_MAX_FACES", "EXTREME_POSE", "LOW_BRIGHTNESS", "LOW_SHARPNESS", "LOW_CONFIDENCE", "SMALL_BOUNDING_BOX"
2548
+ # resp.unindexed_faces[0].reasons[0] #=> String, one of "EXCEEDS_MAX_FACES", "EXTREME_POSE", "LOW_BRIGHTNESS", "LOW_SHARPNESS", "LOW_CONFIDENCE", "SMALL_BOUNDING_BOX", "LOW_FACE_QUALITY"
2516
2549
  # resp.unindexed_faces[0].face_detail.bounding_box.width #=> Float
2517
2550
  # resp.unindexed_faces[0].face_detail.bounding_box.height #=> Float
2518
2551
  # resp.unindexed_faces[0].face_detail.bounding_box.left #=> Float
@@ -3126,6 +3159,20 @@ module Aws::Rekognition
3126
3159
  # For an example, Searching for a Face Using an Image in the Amazon
3127
3160
  # Rekognition Developer Guide.
3128
3161
  #
3162
+ # The `QualityFilter` input parameter allows you to filter out detected
3163
+ # faces that don’t meet a required quality bar. The quality bar is based
3164
+ # on a variety of common use cases. By default, Amazon Rekognition
3165
+ # chooses the quality bar that's used to filter faces. You can also
3166
+ # explicitly choose the quality bar. Use `QualityFilter`, to set the
3167
+ # quality bar for filtering by specifying `LOW`, `MEDIUM`, or `HIGH`. If
3168
+ # you do not want to filter detected faces, specify `NONE`.
3169
+ #
3170
+ # <note markdown="1"> To use quality filtering, you need a collection associated with
3171
+ # version 3 of the face model or higher. To get the version of the face
3172
+ # model associated with a collection, call DescribeCollection.
3173
+ #
3174
+ # </note>
3175
+ #
3129
3176
  # This operation requires permissions to perform the
3130
3177
  # `rekognition:SearchFacesByImage` action.
3131
3178
  #
@@ -3151,6 +3198,21 @@ module Aws::Rekognition
3151
3198
  # return. For example, don't return any matches where confidence in
3152
3199
  # matches is less than 70%. The default value is 80%.
3153
3200
  #
3201
+ # @option params [String] :quality_filter
3202
+ # A filter that specifies a quality bar for how much filtering is done
3203
+ # to identify faces. Filtered faces aren't searched for in the
3204
+ # collection. If you specify `AUTO`, Amazon Rekognition chooses the
3205
+ # quality bar. If you specify `LOW`, `MEDIUM`, or `HIGH`, filtering
3206
+ # removes all faces that don’t meet the chosen quality bar. The default
3207
+ # value is `AUTO`. The quality bar is based on a variety of common use
3208
+ # cases. Low-quality detections can occur for a number of reasons. Some
3209
+ # examples are an object that's misidentified as a face, a face that's
3210
+ # too blurry, or a face with a pose that's too extreme to use. If you
3211
+ # specify `NONE`, no filtering is performed.
3212
+ #
3213
+ # To use quality filtering, the collection you are using must be
3214
+ # associated with version 3 of the face model or higher.
3215
+ #
3154
3216
  # @return [Types::SearchFacesByImageResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
3155
3217
  #
3156
3218
  # * {Types::SearchFacesByImageResponse#searched_face_bounding_box #searched_face_bounding_box} => Types::BoundingBox
@@ -3216,6 +3278,7 @@ module Aws::Rekognition
3216
3278
  # },
3217
3279
  # max_faces: 1,
3218
3280
  # face_match_threshold: 1.0,
3281
+ # quality_filter: "NONE", # accepts NONE, AUTO, LOW, MEDIUM, HIGH
3219
3282
  # })
3220
3283
  #
3221
3284
  # @example Response structure
@@ -3767,7 +3830,7 @@ module Aws::Rekognition
3767
3830
  params: params,
3768
3831
  config: config)
3769
3832
  context[:gem_name] = 'aws-sdk-rekognition'
3770
- context[:gem_version] = '1.31.0'
3833
+ context[:gem_version] = '1.32.0'
3771
3834
  Seahorse::Client::Request.new(handlers, context)
3772
3835
  end
3773
3836
 
@@ -276,6 +276,7 @@ module Aws::Rekognition
276
276
  CompareFacesRequest.add_member(:source_image, Shapes::ShapeRef.new(shape: Image, required: true, location_name: "SourceImage"))
277
277
  CompareFacesRequest.add_member(:target_image, Shapes::ShapeRef.new(shape: Image, required: true, location_name: "TargetImage"))
278
278
  CompareFacesRequest.add_member(:similarity_threshold, Shapes::ShapeRef.new(shape: Percent, location_name: "SimilarityThreshold"))
279
+ CompareFacesRequest.add_member(:quality_filter, Shapes::ShapeRef.new(shape: QualityFilter, location_name: "QualityFilter"))
279
280
  CompareFacesRequest.struct_class = Types::CompareFacesRequest
280
281
 
281
282
  CompareFacesResponse.add_member(:source_image_face, Shapes::ShapeRef.new(shape: ComparedSourceImageFace, location_name: "SourceImageFace"))
@@ -714,6 +715,7 @@ module Aws::Rekognition
714
715
  SearchFacesByImageRequest.add_member(:image, Shapes::ShapeRef.new(shape: Image, required: true, location_name: "Image"))
715
716
  SearchFacesByImageRequest.add_member(:max_faces, Shapes::ShapeRef.new(shape: MaxFaces, location_name: "MaxFaces"))
716
717
  SearchFacesByImageRequest.add_member(:face_match_threshold, Shapes::ShapeRef.new(shape: Percent, location_name: "FaceMatchThreshold"))
718
+ SearchFacesByImageRequest.add_member(:quality_filter, Shapes::ShapeRef.new(shape: QualityFilter, location_name: "QualityFilter"))
717
719
  SearchFacesByImageRequest.struct_class = Types::SearchFacesByImageRequest
718
720
 
719
721
  SearchFacesByImageResponse.add_member(:searched_face_bounding_box, Shapes::ShapeRef.new(shape: BoundingBox, location_name: "SearchedFaceBoundingBox"))
@@ -231,6 +231,7 @@ module Aws::Rekognition
231
231
  # },
232
232
  # },
233
233
  # similarity_threshold: 1.0,
234
+ # quality_filter: "NONE", # accepts NONE, AUTO, LOW, MEDIUM, HIGH
234
235
  # }
235
236
  #
236
237
  # @!attribute [rw] source_image
@@ -260,10 +261,27 @@ module Aws::Rekognition
260
261
  # must meet to be included in the `FaceMatches` array.
261
262
  # @return [Float]
262
263
  #
264
+ # @!attribute [rw] quality_filter
265
+ # A filter that specifies a quality bar for how much filtering is done
266
+ # to identify faces. Filtered faces aren't compared. If you specify
267
+ # `AUTO`, Amazon Rekognition chooses the quality bar. If you specify
268
+ # `LOW`, `MEDIUM`, or `HIGH`, filtering removes all faces that don’t
269
+ # meet the chosen quality bar. The default value is `AUTO`. The
270
+ # quality bar is based on a variety of common use cases. Low-quality
271
+ # detections can occur for a number of reasons. Some examples are an
272
+ # object that's misidentified as a face, a face that's too blurry,
273
+ # or a face with a pose that's too extreme to use. If you specify
274
+ # `NONE`, no filtering is performed.
275
+ #
276
+ # To use quality filtering, the collection you are using must be
277
+ # associated with version 3 of the face model or higher.
278
+ # @return [String]
279
+ #
263
280
  class CompareFacesRequest < Struct.new(
264
281
  :source_image,
265
282
  :target_image,
266
- :similarity_threshold)
283
+ :similarity_threshold,
284
+ :quality_filter)
267
285
  include Aws::Structure
268
286
  end
269
287
 
@@ -1093,7 +1111,7 @@ module Aws::Rekognition
1093
1111
  # @return [Types::Sunglasses]
1094
1112
  #
1095
1113
  # @!attribute [rw] gender
1096
- # Gender of the face and the confidence level in the determination.
1114
+ # The predicted gender of a detected face.
1097
1115
  # @return [Types::Gender]
1098
1116
  #
1099
1117
  # @!attribute [rw] beard
@@ -1249,14 +1267,30 @@ module Aws::Rekognition
1249
1267
  include Aws::Structure
1250
1268
  end
1251
1269
 
1252
- # Gender of the face and the confidence level in the determination.
1270
+ # The predicted gender of a detected face.
1271
+ #
1272
+ # Amazon Rekognition makes gender binary (male/female) predictions based
1273
+ # on the physical appearance of a face in a particular image. This kind
1274
+ # of prediction is not designed to categorize a person’s gender
1275
+ # identity, and you shouldn't use Amazon Rekognition to make such a
1276
+ # determination. For example, a male actor wearing a long-haired wig and
1277
+ # earrings for a role might be predicted as female.
1278
+ #
1279
+ # Using Amazon Rekognition to make gender binary predictions is best
1280
+ # suited for use cases where aggregate gender distribution statistics
1281
+ # need to be analyzed without identifying specific users. For example,
1282
+ # the percentage of female users compared to male users on a social
1283
+ # media platform.
1284
+ #
1285
+ # We don't recommend using gender binary predictions to make decisions
1286
+ # that impact
 an individual's rights, privacy, or access to services.
1253
1287
  #
1254
1288
  # @!attribute [rw] value
1255
- # Gender of the face.
1289
+ # The predicted gender of the face.
1256
1290
  # @return [String]
1257
1291
  #
1258
1292
  # @!attribute [rw] confidence
1259
- # Level of confidence in the determination.
1293
+ # Level of confidence in the prediction.
1260
1294
  # @return [Float]
1261
1295
  #
1262
1296
  class Gender < Struct.new(
@@ -1894,7 +1928,7 @@ module Aws::Rekognition
1894
1928
  # external_image_id: "ExternalImageId",
1895
1929
  # detection_attributes: ["DEFAULT"], # accepts DEFAULT, ALL
1896
1930
  # max_faces: 1,
1897
- # quality_filter: "NONE", # accepts NONE, AUTO
1931
+ # quality_filter: "NONE", # accepts NONE, AUTO, LOW, MEDIUM, HIGH
1898
1932
  # }
1899
1933
  #
1900
1934
  # @!attribute [rw] collection_id
@@ -1953,19 +1987,19 @@ module Aws::Rekognition
1953
1987
  # @return [Integer]
1954
1988
  #
1955
1989
  # @!attribute [rw] quality_filter
1956
- # A filter that specifies how much filtering is done to identify faces
1957
- # that are detected with low quality. Filtered faces aren't indexed.
1958
- # If you specify `AUTO`, filtering prioritizes the identification of
1959
- # faces that don’t meet the required quality bar chosen by Amazon
1960
- # Rekognition. The quality bar is based on a variety of common use
1961
- # cases. Low-quality detections can occur for a number of reasons.
1962
- # Some examples are an object that's misidentified as a face, a face
1963
- # that's too blurry, or a face with a pose that's too extreme to
1964
- # use. If you specify `NONE`, no filtering is performed. The default
1965
- # value is AUTO.
1990
+ # A filter that specifies a quality bar for how much filtering is done
1991
+ # to identify faces. Filtered faces aren't indexed. If you specify
1992
+ # `AUTO`, Amazon Rekognition chooses the quality bar. If you specify
1993
+ # `LOW`, `MEDIUM`, or `HIGH`, filtering removes all faces that don’t
1994
+ # meet the chosen quality bar. The default value is `AUTO`. The
1995
+ # quality bar is based on a variety of common use cases. Low-quality
1996
+ # detections can occur for a number of reasons. Some examples are an
1997
+ # object that's misidentified as a face, a face that's too blurry,
1998
+ # or a face with a pose that's too extreme to use. If you specify
1999
+ # `NONE`, no filtering is performed.
1966
2000
  #
1967
2001
  # To use quality filtering, the collection you are using must be
1968
- # associated with version 3 of the face model.
2002
+ # associated with version 3 of the face model or higher.
1969
2003
  # @return [String]
1970
2004
  #
1971
2005
  class IndexFacesRequest < Struct.new(
@@ -2653,6 +2687,7 @@ module Aws::Rekognition
2653
2687
  # },
2654
2688
  # max_faces: 1,
2655
2689
  # face_match_threshold: 1.0,
2690
+ # quality_filter: "NONE", # accepts NONE, AUTO, LOW, MEDIUM, HIGH
2656
2691
  # }
2657
2692
  #
2658
2693
  # @!attribute [rw] collection_id
@@ -2681,11 +2716,28 @@ module Aws::Rekognition
2681
2716
  # matches is less than 70%. The default value is 80%.
2682
2717
  # @return [Float]
2683
2718
  #
2719
+ # @!attribute [rw] quality_filter
2720
+ # A filter that specifies a quality bar for how much filtering is done
2721
+ # to identify faces. Filtered faces aren't searched for in the
2722
+ # collection. If you specify `AUTO`, Amazon Rekognition chooses the
2723
+ # quality bar. If you specify `LOW`, `MEDIUM`, or `HIGH`, filtering
2724
+ # removes all faces that don’t meet the chosen quality bar. The
2725
+ # default value is `AUTO`. The quality bar is based on a variety of
2726
+ # common use cases. Low-quality detections can occur for a number of
2727
+ # reasons. Some examples are an object that's misidentified as a
2728
+ # face, a face that's too blurry, or a face with a pose that's too
2729
+ # extreme to use. If you specify `NONE`, no filtering is performed.
2730
+ #
2731
+ # To use quality filtering, the collection you are using must be
2732
+ # associated with version 3 of the face model or higher.
2733
+ # @return [String]
2734
+ #
2684
2735
  class SearchFacesByImageRequest < Struct.new(
2685
2736
  :collection_id,
2686
2737
  :image,
2687
2738
  :max_faces,
2688
- :face_match_threshold)
2739
+ :face_match_threshold,
2740
+ :quality_filter)
2689
2741
  include Aws::Structure
2690
2742
  end
2691
2743
 
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-rekognition
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.31.0
4
+ version: 1.32.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2019-10-23 00:00:00.000000000 Z
11
+ date: 2019-11-22 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core