aws-sdk-personalize 1.91.0 → 1.92.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: b0f38e833632a473d00595cbf4983907ddb7c16d7714804d0037f36392ee0e37
4
- data.tar.gz: 666959b8c0b588e77743a71ea04b8687f6289e88941f21c0da6a43f7f4291e9d
3
+ metadata.gz: 3161fc8dad5973388a83a0d4bef633b8ad3d18526c9749852a80a6deaf57a3fa
4
+ data.tar.gz: c4cd3473446515935b0e926f0d777149a307dca9057523aaf7dc5205536010a0
5
5
  SHA512:
6
- metadata.gz: d75e20fc17323c6f72739e1b7bc7db803f30083bb7cc8a8a8c97b98f9f7bfb9d637dc075685a28633907e471d5582a32ce7068f33b4bd689c8f223be89f6bff3
7
- data.tar.gz: 536f3538ca445c969a1f70b8a4502df282642e8306e9f715c16d1ce7e6ca430510d01fb206f937af60d230c696ade0cdfcbde4ec9314db33c5a199944f70e0cc
6
+ metadata.gz: 20161c2399e6dcca22da5a3bd52f661b840fecbe3d3fecbe3d29b19ad5499065c1be3ce2191ad019fbcabc91eaa31cd28590310207d274fe190dd1133fdec1a6
7
+ data.tar.gz: e7010e1bce5e3270c700bb7c338c596e3cdc5e37d1321d164a96c9f7698ddc618e7ef84049c2e0f2038196a59a9654ca159ec46597ab82d2ae12caa31df9ead9
data/CHANGELOG.md CHANGED
@@ -1,6 +1,11 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.92.0 (2025-12-01)
5
+ ------------------
6
+
7
+ * Feature - This release adds support for includedDatasetColumns and performIncrementalUpdate in solution APIs, and rankingInfluence in campaign and batch inference APIs.
8
+
4
9
  1.91.0 (2025-11-21)
5
10
  ------------------
6
11
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.91.0
1
+ 1.92.0
@@ -601,6 +601,9 @@ module Aws::Personalize
601
601
  # item_exploration_config: {
602
602
  # "ParameterName" => "ParameterValue",
603
603
  # },
604
+ # ranking_influence: {
605
+ # "POPULARITY" => 1.0,
606
+ # },
604
607
  # },
605
608
  # tags: [
606
609
  # {
@@ -854,6 +857,9 @@ module Aws::Personalize
854
857
  # },
855
858
  # enable_metadata_with_recommendations: false,
856
859
  # sync_with_latest_solution_version: false,
860
+ # ranking_influence: {
861
+ # "POPULARITY" => 1.0,
862
+ # },
857
863
  # },
858
864
  # tags: [
859
865
  # {
@@ -1384,7 +1390,7 @@ module Aws::Personalize
1384
1390
  # @option params [required, Types::DataSource] :data_source
1385
1391
  # The Amazon S3 bucket that contains the training data to import.
1386
1392
  #
1387
- # @option params [required, String] :role_arn
1393
+ # @option params [String] :role_arn
1388
1394
  # The ARN of the IAM role that has permissions to read from the Amazon
1389
1395
  # S3 data source.
1390
1396
  #
@@ -1423,7 +1429,7 @@ module Aws::Personalize
1423
1429
  # data_source: { # required
1424
1430
  # data_location: "S3Location",
1425
1431
  # },
1426
- # role_arn: "RoleArn", # required
1432
+ # role_arn: "RoleArn",
1427
1433
  # tags: [
1428
1434
  # {
1429
1435
  # tag_key: "TagKey", # required
@@ -1784,6 +1790,9 @@ module Aws::Personalize
1784
1790
  # excluded_dataset_columns: {
1785
1791
  # "DatasetType" => ["ColumnName"],
1786
1792
  # },
1793
+ # included_dataset_columns: {
1794
+ # "DatasetType" => ["ColumnName"],
1795
+ # },
1787
1796
  # },
1788
1797
  # enable_metadata_with_recommendations: false,
1789
1798
  # },
@@ -2005,6 +2014,13 @@ module Aws::Personalize
2005
2014
  # [2]: https://docs.aws.amazon.com/personalize/latest/dg/API_ListSolutionVersions.html
2006
2015
  # [3]: https://docs.aws.amazon.com/personalize/latest/dg/API_DescribeSolutionVersion.html
2007
2016
  #
2017
+ # @option params [Boolean] :perform_incremental_update
2018
+ # Whether to perform incremental training updates on your model. When
2019
+ # enabled, this allows the model to learn from new data more frequently
2020
+ # without requiring full retraining, which enables near real-time
2021
+ # personalization. This parameter is supported only for solutions that
2022
+ # use the semantic-similarity recipe.
2023
+ #
2008
2024
  # @option params [String] :recipe_arn
2009
2025
  # The Amazon Resource Name (ARN) of the recipe to use for model
2010
2026
  # training. This is required when `performAutoML` is false. For
@@ -2055,6 +2071,7 @@ module Aws::Personalize
2055
2071
  # perform_hpo: false,
2056
2072
  # perform_auto_ml: false,
2057
2073
  # perform_auto_training: false,
2074
+ # perform_incremental_update: false,
2058
2075
  # recipe_arn: "Arn",
2059
2076
  # dataset_group_arn: "Arn", # required
2060
2077
  # event_type: "EventType",
@@ -2120,6 +2137,9 @@ module Aws::Personalize
2120
2137
  # excluded_dataset_columns: {
2121
2138
  # "DatasetType" => ["ColumnName"],
2122
2139
  # },
2140
+ # included_dataset_columns: {
2141
+ # "DatasetType" => ["ColumnName"],
2142
+ # },
2123
2143
  # },
2124
2144
  # auto_training_config: {
2125
2145
  # scheduling_expression: "SchedulingExpression",
@@ -2602,6 +2622,8 @@ module Aws::Personalize
2602
2622
  # resp.batch_inference_job.job_output.s3_data_destination.kms_key_arn #=> String
2603
2623
  # resp.batch_inference_job.batch_inference_job_config.item_exploration_config #=> Hash
2604
2624
  # resp.batch_inference_job.batch_inference_job_config.item_exploration_config["ParameterName"] #=> String
2625
+ # resp.batch_inference_job.batch_inference_job_config.ranking_influence #=> Hash
2626
+ # resp.batch_inference_job.batch_inference_job_config.ranking_influence["RankingInfluenceType"] #=> Float
2605
2627
  # resp.batch_inference_job.role_arn #=> String
2606
2628
  # resp.batch_inference_job.batch_inference_job_mode #=> String, one of "BATCH_INFERENCE", "THEME_GENERATION"
2607
2629
  # resp.batch_inference_job.theme_generation_config.fields_for_theme_generation.item_name #=> String
@@ -2702,6 +2724,8 @@ module Aws::Personalize
2702
2724
  # resp.campaign.campaign_config.item_exploration_config["ParameterName"] #=> String
2703
2725
  # resp.campaign.campaign_config.enable_metadata_with_recommendations #=> Boolean
2704
2726
  # resp.campaign.campaign_config.sync_with_latest_solution_version #=> Boolean
2727
+ # resp.campaign.campaign_config.ranking_influence #=> Hash
2728
+ # resp.campaign.campaign_config.ranking_influence["RankingInfluenceType"] #=> Float
2705
2729
  # resp.campaign.status #=> String
2706
2730
  # resp.campaign.failure_reason #=> String
2707
2731
  # resp.campaign.creation_date_time #=> Time
@@ -2712,6 +2736,8 @@ module Aws::Personalize
2712
2736
  # resp.campaign.latest_campaign_update.campaign_config.item_exploration_config["ParameterName"] #=> String
2713
2737
  # resp.campaign.latest_campaign_update.campaign_config.enable_metadata_with_recommendations #=> Boolean
2714
2738
  # resp.campaign.latest_campaign_update.campaign_config.sync_with_latest_solution_version #=> Boolean
2739
+ # resp.campaign.latest_campaign_update.campaign_config.ranking_influence #=> Hash
2740
+ # resp.campaign.latest_campaign_update.campaign_config.ranking_influence["RankingInfluenceType"] #=> Float
2715
2741
  # resp.campaign.latest_campaign_update.status #=> String
2716
2742
  # resp.campaign.latest_campaign_update.failure_reason #=> String
2717
2743
  # resp.campaign.latest_campaign_update.creation_date_time #=> Time
@@ -3195,6 +3221,9 @@ module Aws::Personalize
3195
3221
  # resp.recommender.recommender_config.training_data_config.excluded_dataset_columns #=> Hash
3196
3222
  # resp.recommender.recommender_config.training_data_config.excluded_dataset_columns["DatasetType"] #=> Array
3197
3223
  # resp.recommender.recommender_config.training_data_config.excluded_dataset_columns["DatasetType"][0] #=> String
3224
+ # resp.recommender.recommender_config.training_data_config.included_dataset_columns #=> Hash
3225
+ # resp.recommender.recommender_config.training_data_config.included_dataset_columns["DatasetType"] #=> Array
3226
+ # resp.recommender.recommender_config.training_data_config.included_dataset_columns["DatasetType"][0] #=> String
3198
3227
  # resp.recommender.recommender_config.enable_metadata_with_recommendations #=> Boolean
3199
3228
  # resp.recommender.creation_date_time #=> Time
3200
3229
  # resp.recommender.last_updated_date_time #=> Time
@@ -3206,6 +3235,9 @@ module Aws::Personalize
3206
3235
  # resp.recommender.latest_recommender_update.recommender_config.training_data_config.excluded_dataset_columns #=> Hash
3207
3236
  # resp.recommender.latest_recommender_update.recommender_config.training_data_config.excluded_dataset_columns["DatasetType"] #=> Array
3208
3237
  # resp.recommender.latest_recommender_update.recommender_config.training_data_config.excluded_dataset_columns["DatasetType"][0] #=> String
3238
+ # resp.recommender.latest_recommender_update.recommender_config.training_data_config.included_dataset_columns #=> Hash
3239
+ # resp.recommender.latest_recommender_update.recommender_config.training_data_config.included_dataset_columns["DatasetType"] #=> Array
3240
+ # resp.recommender.latest_recommender_update.recommender_config.training_data_config.included_dataset_columns["DatasetType"][0] #=> String
3209
3241
  # resp.recommender.latest_recommender_update.recommender_config.enable_metadata_with_recommendations #=> Boolean
3210
3242
  # resp.recommender.latest_recommender_update.creation_date_time #=> Time
3211
3243
  # resp.recommender.latest_recommender_update.last_updated_date_time #=> Time
@@ -3288,6 +3320,7 @@ module Aws::Personalize
3288
3320
  # resp.solution.perform_hpo #=> Boolean
3289
3321
  # resp.solution.perform_auto_ml #=> Boolean
3290
3322
  # resp.solution.perform_auto_training #=> Boolean
3323
+ # resp.solution.perform_incremental_update #=> Boolean
3291
3324
  # resp.solution.recipe_arn #=> String
3292
3325
  # resp.solution.dataset_group_arn #=> String
3293
3326
  # resp.solution.event_type #=> String
@@ -3325,6 +3358,9 @@ module Aws::Personalize
3325
3358
  # resp.solution.solution_config.training_data_config.excluded_dataset_columns #=> Hash
3326
3359
  # resp.solution.solution_config.training_data_config.excluded_dataset_columns["DatasetType"] #=> Array
3327
3360
  # resp.solution.solution_config.training_data_config.excluded_dataset_columns["DatasetType"][0] #=> String
3361
+ # resp.solution.solution_config.training_data_config.included_dataset_columns #=> Hash
3362
+ # resp.solution.solution_config.training_data_config.included_dataset_columns["DatasetType"] #=> Array
3363
+ # resp.solution.solution_config.training_data_config.included_dataset_columns["DatasetType"][0] #=> String
3328
3364
  # resp.solution.solution_config.auto_training_config.scheduling_expression #=> String
3329
3365
  # resp.solution.auto_ml_result.best_recipe_arn #=> String
3330
3366
  # resp.solution.status #=> String
@@ -3344,6 +3380,7 @@ module Aws::Personalize
3344
3380
  # resp.solution.latest_solution_update.solution_update_config.events_config.event_parameters_list[0].weight #=> Float
3345
3381
  # resp.solution.latest_solution_update.status #=> String
3346
3382
  # resp.solution.latest_solution_update.perform_auto_training #=> Boolean
3383
+ # resp.solution.latest_solution_update.perform_incremental_update #=> Boolean
3347
3384
  # resp.solution.latest_solution_update.creation_date_time #=> Time
3348
3385
  # resp.solution.latest_solution_update.last_updated_date_time #=> Time
3349
3386
  # resp.solution.latest_solution_update.failure_reason #=> String
@@ -3384,6 +3421,7 @@ module Aws::Personalize
3384
3421
  # resp.solution_version.solution_arn #=> String
3385
3422
  # resp.solution_version.perform_hpo #=> Boolean
3386
3423
  # resp.solution_version.perform_auto_ml #=> Boolean
3424
+ # resp.solution_version.perform_incremental_update #=> Boolean
3387
3425
  # resp.solution_version.recipe_arn #=> String
3388
3426
  # resp.solution_version.event_type #=> String
3389
3427
  # resp.solution_version.dataset_group_arn #=> String
@@ -3421,6 +3459,9 @@ module Aws::Personalize
3421
3459
  # resp.solution_version.solution_config.training_data_config.excluded_dataset_columns #=> Hash
3422
3460
  # resp.solution_version.solution_config.training_data_config.excluded_dataset_columns["DatasetType"] #=> Array
3423
3461
  # resp.solution_version.solution_config.training_data_config.excluded_dataset_columns["DatasetType"][0] #=> String
3462
+ # resp.solution_version.solution_config.training_data_config.included_dataset_columns #=> Hash
3463
+ # resp.solution_version.solution_config.training_data_config.included_dataset_columns["DatasetType"] #=> Array
3464
+ # resp.solution_version.solution_config.training_data_config.included_dataset_columns["DatasetType"][0] #=> String
3424
3465
  # resp.solution_version.solution_config.auto_training_config.scheduling_expression #=> String
3425
3466
  # resp.solution_version.training_hours #=> Float
3426
3467
  # resp.solution_version.training_mode #=> String, one of "FULL", "UPDATE", "AUTOTRAIN"
@@ -4215,6 +4256,9 @@ module Aws::Personalize
4215
4256
  # resp.recommenders[0].recommender_config.training_data_config.excluded_dataset_columns #=> Hash
4216
4257
  # resp.recommenders[0].recommender_config.training_data_config.excluded_dataset_columns["DatasetType"] #=> Array
4217
4258
  # resp.recommenders[0].recommender_config.training_data_config.excluded_dataset_columns["DatasetType"][0] #=> String
4259
+ # resp.recommenders[0].recommender_config.training_data_config.included_dataset_columns #=> Hash
4260
+ # resp.recommenders[0].recommender_config.training_data_config.included_dataset_columns["DatasetType"] #=> Array
4261
+ # resp.recommenders[0].recommender_config.training_data_config.included_dataset_columns["DatasetType"][0] #=> String
4218
4262
  # resp.recommenders[0].recommender_config.enable_metadata_with_recommendations #=> Boolean
4219
4263
  # resp.recommenders[0].status #=> String
4220
4264
  # resp.recommenders[0].creation_date_time #=> Time
@@ -4664,6 +4708,9 @@ module Aws::Personalize
4664
4708
  # },
4665
4709
  # enable_metadata_with_recommendations: false,
4666
4710
  # sync_with_latest_solution_version: false,
4711
+ # ranking_influence: {
4712
+ # "POPULARITY" => 1.0,
4713
+ # },
4667
4714
  # },
4668
4715
  # })
4669
4716
  #
@@ -4805,6 +4852,9 @@ module Aws::Personalize
4805
4852
  # excluded_dataset_columns: {
4806
4853
  # "DatasetType" => ["ColumnName"],
4807
4854
  # },
4855
+ # included_dataset_columns: {
4856
+ # "DatasetType" => ["ColumnName"],
4857
+ # },
4808
4858
  # },
4809
4859
  # enable_metadata_with_recommendations: false,
4810
4860
  # },
@@ -4866,6 +4916,13 @@ module Aws::Personalize
4866
4916
  # [2]: https://docs.aws.amazon.com/personalize/latest/dg/API_ListSolutionVersions.html
4867
4917
  # [3]: https://docs.aws.amazon.com/personalize/latest/dg/API_DescribeSolutionVersion.html
4868
4918
  #
4919
+ # @option params [Boolean] :perform_incremental_update
4920
+ # Whether to perform incremental training updates on your model. When
4921
+ # enabled, this allows the model to learn from new data more frequently
4922
+ # without requiring full retraining, which enables near real-time
4923
+ # personalization. This parameter is supported only for solutions that
4924
+ # use the semantic-similarity recipe.
4925
+ #
4869
4926
  # @option params [Types::SolutionUpdateConfig] :solution_update_config
4870
4927
  # The new configuration details of the solution.
4871
4928
  #
@@ -4878,6 +4935,7 @@ module Aws::Personalize
4878
4935
  # resp = client.update_solution({
4879
4936
  # solution_arn: "Arn", # required
4880
4937
  # perform_auto_training: false,
4938
+ # perform_incremental_update: false,
4881
4939
  # solution_update_config: {
4882
4940
  # auto_training_config: {
4883
4941
  # scheduling_expression: "SchedulingExpression",
@@ -4925,7 +4983,7 @@ module Aws::Personalize
4925
4983
  tracer: tracer
4926
4984
  )
4927
4985
  context[:gem_name] = 'aws-sdk-personalize'
4928
- context[:gem_version] = '1.91.0'
4986
+ context[:gem_version] = '1.92.0'
4929
4987
  Seahorse::Client::Request.new(handlers, context)
4930
4988
  end
4931
4989
 
@@ -189,6 +189,7 @@ module Aws::Personalize
189
189
  HyperParameterRanges = Shapes::StructureShape.new(name: 'HyperParameterRanges')
190
190
  HyperParameters = Shapes::MapShape.new(name: 'HyperParameters')
191
191
  ImportMode = Shapes::StringShape.new(name: 'ImportMode')
192
+ IncludedDatasetColumns = Shapes::MapShape.new(name: 'IncludedDatasetColumns')
192
193
  IngestionMode = Shapes::StringShape.new(name: 'IngestionMode')
193
194
  Integer = Shapes::IntegerShape.new(name: 'Integer')
194
195
  IntegerHyperParameterRange = Shapes::StructureShape.new(name: 'IntegerHyperParameterRange')
@@ -259,6 +260,10 @@ module Aws::Personalize
259
260
  PerformAutoML = Shapes::BooleanShape.new(name: 'PerformAutoML')
260
261
  PerformAutoTraining = Shapes::BooleanShape.new(name: 'PerformAutoTraining')
261
262
  PerformHPO = Shapes::BooleanShape.new(name: 'PerformHPO')
263
+ PerformIncrementalUpdate = Shapes::BooleanShape.new(name: 'PerformIncrementalUpdate')
264
+ RankingInfluence = Shapes::MapShape.new(name: 'RankingInfluence')
265
+ RankingInfluenceType = Shapes::StringShape.new(name: 'RankingInfluenceType')
266
+ RankingInfluenceWeight = Shapes::FloatShape.new(name: 'RankingInfluenceWeight')
262
267
  Recipe = Shapes::StructureShape.new(name: 'Recipe')
263
268
  RecipeProvider = Shapes::StringShape.new(name: 'RecipeProvider')
264
269
  RecipeSummary = Shapes::StructureShape.new(name: 'RecipeSummary')
@@ -371,6 +376,7 @@ module Aws::Personalize
371
376
  BatchInferenceJob.struct_class = Types::BatchInferenceJob
372
377
 
373
378
  BatchInferenceJobConfig.add_member(:item_exploration_config, Shapes::ShapeRef.new(shape: HyperParameters, location_name: "itemExplorationConfig"))
379
+ BatchInferenceJobConfig.add_member(:ranking_influence, Shapes::ShapeRef.new(shape: RankingInfluence, location_name: "rankingInfluence"))
374
380
  BatchInferenceJobConfig.struct_class = Types::BatchInferenceJobConfig
375
381
 
376
382
  BatchInferenceJobInput.add_member(:s3_data_source, Shapes::ShapeRef.new(shape: S3DataConfig, required: true, location_name: "s3DataSource"))
@@ -437,6 +443,7 @@ module Aws::Personalize
437
443
  CampaignConfig.add_member(:item_exploration_config, Shapes::ShapeRef.new(shape: HyperParameters, location_name: "itemExplorationConfig"))
438
444
  CampaignConfig.add_member(:enable_metadata_with_recommendations, Shapes::ShapeRef.new(shape: Boolean, location_name: "enableMetadataWithRecommendations"))
439
445
  CampaignConfig.add_member(:sync_with_latest_solution_version, Shapes::ShapeRef.new(shape: Boolean, location_name: "syncWithLatestSolutionVersion"))
446
+ CampaignConfig.add_member(:ranking_influence, Shapes::ShapeRef.new(shape: RankingInfluence, location_name: "rankingInfluence"))
440
447
  CampaignConfig.struct_class = Types::CampaignConfig
441
448
 
442
449
  CampaignSummary.add_member(:name, Shapes::ShapeRef.new(shape: Name, location_name: "name"))
@@ -549,7 +556,7 @@ module Aws::Personalize
549
556
  CreateDatasetImportJobRequest.add_member(:job_name, Shapes::ShapeRef.new(shape: Name, required: true, location_name: "jobName"))
550
557
  CreateDatasetImportJobRequest.add_member(:dataset_arn, Shapes::ShapeRef.new(shape: Arn, required: true, location_name: "datasetArn"))
551
558
  CreateDatasetImportJobRequest.add_member(:data_source, Shapes::ShapeRef.new(shape: DataSource, required: true, location_name: "dataSource"))
552
- CreateDatasetImportJobRequest.add_member(:role_arn, Shapes::ShapeRef.new(shape: RoleArn, required: true, location_name: "roleArn"))
559
+ CreateDatasetImportJobRequest.add_member(:role_arn, Shapes::ShapeRef.new(shape: RoleArn, location_name: "roleArn"))
553
560
  CreateDatasetImportJobRequest.add_member(:tags, Shapes::ShapeRef.new(shape: Tags, location_name: "tags"))
554
561
  CreateDatasetImportJobRequest.add_member(:import_mode, Shapes::ShapeRef.new(shape: ImportMode, location_name: "importMode"))
555
562
  CreateDatasetImportJobRequest.add_member(:publish_attribution_metrics_to_s3, Shapes::ShapeRef.new(shape: Boolean, location_name: "publishAttributionMetricsToS3"))
@@ -617,6 +624,7 @@ module Aws::Personalize
617
624
  CreateSolutionRequest.add_member(:perform_hpo, Shapes::ShapeRef.new(shape: Boolean, location_name: "performHPO"))
618
625
  CreateSolutionRequest.add_member(:perform_auto_ml, Shapes::ShapeRef.new(shape: PerformAutoML, location_name: "performAutoML"))
619
626
  CreateSolutionRequest.add_member(:perform_auto_training, Shapes::ShapeRef.new(shape: PerformAutoTraining, location_name: "performAutoTraining"))
627
+ CreateSolutionRequest.add_member(:perform_incremental_update, Shapes::ShapeRef.new(shape: PerformIncrementalUpdate, location_name: "performIncrementalUpdate"))
620
628
  CreateSolutionRequest.add_member(:recipe_arn, Shapes::ShapeRef.new(shape: Arn, location_name: "recipeArn"))
621
629
  CreateSolutionRequest.add_member(:dataset_group_arn, Shapes::ShapeRef.new(shape: Arn, required: true, location_name: "datasetGroupArn"))
622
630
  CreateSolutionRequest.add_member(:event_type, Shapes::ShapeRef.new(shape: EventType, location_name: "eventType"))
@@ -1039,6 +1047,9 @@ module Aws::Personalize
1039
1047
  HyperParameters.key = Shapes::ShapeRef.new(shape: ParameterName)
1040
1048
  HyperParameters.value = Shapes::ShapeRef.new(shape: ParameterValue)
1041
1049
 
1050
+ IncludedDatasetColumns.key = Shapes::ShapeRef.new(shape: DatasetType)
1051
+ IncludedDatasetColumns.value = Shapes::ShapeRef.new(shape: ColumnNamesList)
1052
+
1042
1053
  IntegerHyperParameterRange.add_member(:name, Shapes::ShapeRef.new(shape: ParameterName, location_name: "name"))
1043
1054
  IntegerHyperParameterRange.add_member(:min_value, Shapes::ShapeRef.new(shape: IntegerMinValue, location_name: "minValue"))
1044
1055
  IntegerHyperParameterRange.add_member(:max_value, Shapes::ShapeRef.new(shape: IntegerMaxValue, location_name: "maxValue"))
@@ -1253,6 +1264,9 @@ module Aws::Personalize
1253
1264
  OptimizationObjective.add_member(:objective_sensitivity, Shapes::ShapeRef.new(shape: ObjectiveSensitivity, location_name: "objectiveSensitivity"))
1254
1265
  OptimizationObjective.struct_class = Types::OptimizationObjective
1255
1266
 
1267
+ RankingInfluence.key = Shapes::ShapeRef.new(shape: RankingInfluenceType)
1268
+ RankingInfluence.value = Shapes::ShapeRef.new(shape: RankingInfluenceWeight)
1269
+
1256
1270
  Recipe.add_member(:name, Shapes::ShapeRef.new(shape: Name, location_name: "name"))
1257
1271
  Recipe.add_member(:recipe_arn, Shapes::ShapeRef.new(shape: Arn, location_name: "recipeArn"))
1258
1272
  Recipe.add_member(:algorithm_arn, Shapes::ShapeRef.new(shape: Arn, location_name: "algorithmArn"))
@@ -1335,6 +1349,7 @@ module Aws::Personalize
1335
1349
  Solution.add_member(:perform_hpo, Shapes::ShapeRef.new(shape: PerformHPO, location_name: "performHPO"))
1336
1350
  Solution.add_member(:perform_auto_ml, Shapes::ShapeRef.new(shape: PerformAutoML, location_name: "performAutoML"))
1337
1351
  Solution.add_member(:perform_auto_training, Shapes::ShapeRef.new(shape: PerformAutoTraining, location_name: "performAutoTraining"))
1352
+ Solution.add_member(:perform_incremental_update, Shapes::ShapeRef.new(shape: PerformIncrementalUpdate, location_name: "performIncrementalUpdate"))
1338
1353
  Solution.add_member(:recipe_arn, Shapes::ShapeRef.new(shape: Arn, location_name: "recipeArn"))
1339
1354
  Solution.add_member(:dataset_group_arn, Shapes::ShapeRef.new(shape: Arn, location_name: "datasetGroupArn"))
1340
1355
  Solution.add_member(:event_type, Shapes::ShapeRef.new(shape: EventType, location_name: "eventType"))
@@ -1373,6 +1388,7 @@ module Aws::Personalize
1373
1388
  SolutionUpdateSummary.add_member(:solution_update_config, Shapes::ShapeRef.new(shape: SolutionUpdateConfig, location_name: "solutionUpdateConfig"))
1374
1389
  SolutionUpdateSummary.add_member(:status, Shapes::ShapeRef.new(shape: Status, location_name: "status"))
1375
1390
  SolutionUpdateSummary.add_member(:perform_auto_training, Shapes::ShapeRef.new(shape: PerformAutoTraining, location_name: "performAutoTraining"))
1391
+ SolutionUpdateSummary.add_member(:perform_incremental_update, Shapes::ShapeRef.new(shape: PerformIncrementalUpdate, location_name: "performIncrementalUpdate"))
1376
1392
  SolutionUpdateSummary.add_member(:creation_date_time, Shapes::ShapeRef.new(shape: Date, location_name: "creationDateTime"))
1377
1393
  SolutionUpdateSummary.add_member(:last_updated_date_time, Shapes::ShapeRef.new(shape: Date, location_name: "lastUpdatedDateTime"))
1378
1394
  SolutionUpdateSummary.add_member(:failure_reason, Shapes::ShapeRef.new(shape: FailureReason, location_name: "failureReason"))
@@ -1383,6 +1399,7 @@ module Aws::Personalize
1383
1399
  SolutionVersion.add_member(:solution_arn, Shapes::ShapeRef.new(shape: Arn, location_name: "solutionArn"))
1384
1400
  SolutionVersion.add_member(:perform_hpo, Shapes::ShapeRef.new(shape: PerformHPO, location_name: "performHPO"))
1385
1401
  SolutionVersion.add_member(:perform_auto_ml, Shapes::ShapeRef.new(shape: PerformAutoML, location_name: "performAutoML"))
1402
+ SolutionVersion.add_member(:perform_incremental_update, Shapes::ShapeRef.new(shape: PerformIncrementalUpdate, location_name: "performIncrementalUpdate"))
1386
1403
  SolutionVersion.add_member(:recipe_arn, Shapes::ShapeRef.new(shape: Arn, location_name: "recipeArn"))
1387
1404
  SolutionVersion.add_member(:event_type, Shapes::ShapeRef.new(shape: EventType, location_name: "eventType"))
1388
1405
  SolutionVersion.add_member(:dataset_group_arn, Shapes::ShapeRef.new(shape: Arn, location_name: "datasetGroupArn"))
@@ -1449,6 +1466,7 @@ module Aws::Personalize
1449
1466
  TooManyTagsException.struct_class = Types::TooManyTagsException
1450
1467
 
1451
1468
  TrainingDataConfig.add_member(:excluded_dataset_columns, Shapes::ShapeRef.new(shape: ExcludedDatasetColumns, location_name: "excludedDatasetColumns"))
1469
+ TrainingDataConfig.add_member(:included_dataset_columns, Shapes::ShapeRef.new(shape: IncludedDatasetColumns, location_name: "includedDatasetColumns"))
1452
1470
  TrainingDataConfig.struct_class = Types::TrainingDataConfig
1453
1471
 
1454
1472
  TunedHPOParams.add_member(:algorithm_hyper_parameters, Shapes::ShapeRef.new(shape: HyperParameters, location_name: "algorithmHyperParameters"))
@@ -1494,6 +1512,7 @@ module Aws::Personalize
1494
1512
 
1495
1513
  UpdateSolutionRequest.add_member(:solution_arn, Shapes::ShapeRef.new(shape: Arn, required: true, location_name: "solutionArn"))
1496
1514
  UpdateSolutionRequest.add_member(:perform_auto_training, Shapes::ShapeRef.new(shape: PerformAutoTraining, location_name: "performAutoTraining"))
1515
+ UpdateSolutionRequest.add_member(:perform_incremental_update, Shapes::ShapeRef.new(shape: PerformIncrementalUpdate, location_name: "performIncrementalUpdate"))
1497
1516
  UpdateSolutionRequest.add_member(:solution_update_config, Shapes::ShapeRef.new(shape: SolutionUpdateConfig, location_name: "solutionUpdateConfig"))
1498
1517
  UpdateSolutionRequest.struct_class = Types::UpdateSolutionRequest
1499
1518
 
@@ -278,10 +278,19 @@ module Aws::Personalize
278
278
  # [1]: https://docs.aws.amazon.com/personalize/latest/dg/native-recipe-new-item-USER_PERSONALIZATION.html
279
279
  # @return [Hash<String,String>]
280
280
  #
281
+ # @!attribute [rw] ranking_influence
282
+ # A map of ranking influence values for POPULARITY and FRESHNESS. For
283
+ # each key, specify a numerical value between 0.0 and 1.0 that
284
+ # determines how much influence that ranking factor has on the final
285
+ # recommendations. A value closer to 1.0 gives more weight to the
286
+ # factor, while a value closer to 0.0 reduces its influence.
287
+ # @return [Hash<String,Float>]
288
+ #
281
289
  # @see http://docs.aws.amazon.com/goto/WebAPI/personalize-2018-05-22/BatchInferenceJobConfig AWS API Documentation
282
290
  #
283
291
  class BatchInferenceJobConfig < Struct.new(
284
- :item_exploration_config)
292
+ :item_exploration_config,
293
+ :ranking_influence)
285
294
  SENSITIVE = []
286
295
  include Aws::Structure
287
296
  end
@@ -616,6 +625,11 @@ module Aws::Personalize
616
625
  # Provides a summary of the properties of a campaign update. For a
617
626
  # complete listing, call the [DescribeCampaign][1] API.
618
627
  #
628
+ # <note markdown="1"> The `latestCampaignUpdate` field is only returned when the campaign
629
+ # has had at least one `UpdateCampaign` call.
630
+ #
631
+ # </note>
632
+ #
619
633
  #
620
634
  #
621
635
  # [1]: https://docs.aws.amazon.com/personalize/latest/dg/API_DescribeCampaign.html
@@ -685,12 +699,21 @@ module Aws::Personalize
685
699
  # [1]: https://docs.aws.amazon.com/personalize/latest/dg/campaigns.html#create-campaign-automatic-latest-sv-update
686
700
  # @return [Boolean]
687
701
  #
702
+ # @!attribute [rw] ranking_influence
703
+ # A map of ranking influence values for POPULARITY and FRESHNESS. For
704
+ # each key, specify a numerical value between 0.0 and 1.0 that
705
+ # determines how much influence that ranking factor has on the final
706
+ # recommendations. A value closer to 1.0 gives more weight to the
707
+ # factor, while a value closer to 0.0 reduces its influence.
708
+ # @return [Hash<String,Float>]
709
+ #
688
710
  # @see http://docs.aws.amazon.com/goto/WebAPI/personalize-2018-05-22/CampaignConfig AWS API Documentation
689
711
  #
690
712
  class CampaignConfig < Struct.new(
691
713
  :item_exploration_config,
692
714
  :enable_metadata_with_recommendations,
693
- :sync_with_latest_solution_version)
715
+ :sync_with_latest_solution_version,
716
+ :ranking_influence)
694
717
  SENSITIVE = []
695
718
  include Aws::Structure
696
719
  end
@@ -1688,6 +1711,14 @@ module Aws::Personalize
1688
1711
  # [3]: https://docs.aws.amazon.com/personalize/latest/dg/API_DescribeSolutionVersion.html
1689
1712
  # @return [Boolean]
1690
1713
  #
1714
+ # @!attribute [rw] perform_incremental_update
1715
+ # Whether to perform incremental training updates on your model. When
1716
+ # enabled, this allows the model to learn from new data more
1717
+ # frequently without requiring full retraining, which enables near
1718
+ # real-time personalization. This parameter is supported only for
1719
+ # solutions that use the semantic-similarity recipe.
1720
+ # @return [Boolean]
1721
+ #
1691
1722
  # @!attribute [rw] recipe_arn
1692
1723
  # The Amazon Resource Name (ARN) of the recipe to use for model
1693
1724
  # training. This is required when `performAutoML` is false. For
@@ -1739,6 +1770,7 @@ module Aws::Personalize
1739
1770
  :perform_hpo,
1740
1771
  :perform_auto_ml,
1741
1772
  :perform_auto_training,
1773
+ :perform_incremental_update,
1742
1774
  :recipe_arn,
1743
1775
  :dataset_group_arn,
1744
1776
  :event_type,
@@ -2999,7 +3031,17 @@ module Aws::Personalize
2999
3031
  end
3000
3032
 
3001
3033
  # @!attribute [rw] campaign
3034
+ # <note markdown="1"> The `latestCampaignUpdate` field is only returned when the campaign
3035
+ # has had at least one `UpdateCampaign` call.
3036
+ #
3037
+ # </note>
3038
+ #
3002
3039
  # The properties of the campaign.
3040
+ #
3041
+ # <note markdown="1"> The `latestCampaignUpdate` field is only returned when the campaign
3042
+ # has had at least one `UpdateCampaign` call.
3043
+ #
3044
+ # </note>
3003
3045
  # @return [Types::Campaign]
3004
3046
  #
3005
3047
  # @see http://docs.aws.amazon.com/goto/WebAPI/personalize-2018-05-22/DescribeCampaignResponse AWS API Documentation
@@ -5304,6 +5346,15 @@ module Aws::Personalize
5304
5346
  # [1]: https://docs.aws.amazon.com/personalize/latest/dg/customizing-solution-config.html
5305
5347
  # @return [Boolean]
5306
5348
  #
5349
+ # @!attribute [rw] perform_incremental_update
5350
+ # A Boolean value that indicates whether incremental training updates
5351
+ # are performed on the model. When enabled, this allows the model to
5352
+ # learn from new data more frequently without requiring full
5353
+ # retraining, which enables near real-time personalization. This
5354
+ # parameter is supported only for solutions that use the
5355
+ # semantic-similarity recipe
5356
+ # @return [Boolean]
5357
+ #
5307
5358
  # @!attribute [rw] recipe_arn
5308
5359
  # The ARN of the recipe used to create the solution. This is required
5309
5360
  # when `performAutoML` is false.
@@ -5365,6 +5416,7 @@ module Aws::Personalize
5365
5416
  :perform_hpo,
5366
5417
  :perform_auto_ml,
5367
5418
  :perform_auto_training,
5419
+ :perform_incremental_update,
5368
5420
  :recipe_arn,
5369
5421
  :dataset_group_arn,
5370
5422
  :event_type,
@@ -5544,6 +5596,15 @@ module Aws::Personalize
5544
5596
  # Whether the solution automatically creates solution versions.
5545
5597
  # @return [Boolean]
5546
5598
  #
5599
+ # @!attribute [rw] perform_incremental_update
5600
+ # A Boolean value that indicates whether incremental training updates
5601
+ # are performed on the model. When enabled, this allows the model to
5602
+ # learn from new data more frequently without requiring full
5603
+ # retraining, which enables near real-time personalization. This
5604
+ # parameter is supported only for solutions that use the
5605
+ # semantic-similarity recipe.
5606
+ # @return [Boolean]
5607
+ #
5547
5608
  # @!attribute [rw] creation_date_time
5548
5609
  # The date and time (in Unix format) that the solution update was
5549
5610
  # created.
@@ -5564,6 +5625,7 @@ module Aws::Personalize
5564
5625
  :solution_update_config,
5565
5626
  :status,
5566
5627
  :perform_auto_training,
5628
+ :perform_incremental_update,
5567
5629
  :creation_date_time,
5568
5630
  :last_updated_date_time,
5569
5631
  :failure_reason)
@@ -5601,6 +5663,14 @@ module Aws::Personalize
5601
5663
  # Amazon Personalize uses `recipeArn`.
5602
5664
  # @return [Boolean]
5603
5665
  #
5666
+ # @!attribute [rw] perform_incremental_update
5667
+ # Whether the solution version should perform an incremental update.
5668
+ # When set to true, the training will process only the data that has
5669
+ # changed since the latest training, similar to when trainingMode is
5670
+ # set to UPDATE. This can only be used with solution versions that use
5671
+ # the User-Personalization recipe.
5672
+ # @return [Boolean]
5673
+ #
5604
5674
  # @!attribute [rw] recipe_arn
5605
5675
  # The ARN of the recipe used in the solution.
5606
5676
  # @return [String]
@@ -5681,6 +5751,7 @@ module Aws::Personalize
5681
5751
  :solution_arn,
5682
5752
  :perform_hpo,
5683
5753
  :perform_auto_ml,
5754
+ :perform_incremental_update,
5684
5755
  :recipe_arn,
5685
5756
  :event_type,
5686
5757
  :dataset_group_arn,
@@ -5932,10 +6003,21 @@ module Aws::Personalize
5932
6003
  # and Amazon Personalize considers it only when filtering.
5933
6004
  # @return [Hash<String,Array<String>>]
5934
6005
  #
6006
+ # @!attribute [rw] included_dataset_columns
6007
+ # A map that specifies which columns to include from each dataset
6008
+ # during training. The map can contain up to 3 entries, where each key
6009
+ # is a dataset name (maximum length of 256 characters, must contain
6010
+ # only letters and underscores) and each value is an array of up to 50
6011
+ # column names. Column names can be up to 150 characters long, must
6012
+ # start with a letter or underscore, and can contain only letters,
6013
+ # numbers, and underscores.
6014
+ # @return [Hash<String,Array<String>>]
6015
+ #
5935
6016
  # @see http://docs.aws.amazon.com/goto/WebAPI/personalize-2018-05-22/TrainingDataConfig AWS API Documentation
5936
6017
  #
5937
6018
  class TrainingDataConfig < Struct.new(
5938
- :excluded_dataset_columns)
6019
+ :excluded_dataset_columns,
6020
+ :included_dataset_columns)
5939
6021
  SENSITIVE = []
5940
6022
  include Aws::Structure
5941
6023
  end
@@ -6162,6 +6244,14 @@ module Aws::Personalize
6162
6244
  # [3]: https://docs.aws.amazon.com/personalize/latest/dg/API_DescribeSolutionVersion.html
6163
6245
  # @return [Boolean]
6164
6246
  #
6247
+ # @!attribute [rw] perform_incremental_update
6248
+ # Whether to perform incremental training updates on your model. When
6249
+ # enabled, this allows the model to learn from new data more
6250
+ # frequently without requiring full retraining, which enables near
6251
+ # real-time personalization. This parameter is supported only for
6252
+ # solutions that use the semantic-similarity recipe.
6253
+ # @return [Boolean]
6254
+ #
6165
6255
  # @!attribute [rw] solution_update_config
6166
6256
  # The new configuration details of the solution.
6167
6257
  # @return [Types::SolutionUpdateConfig]
@@ -6171,6 +6261,7 @@ module Aws::Personalize
6171
6261
  class UpdateSolutionRequest < Struct.new(
6172
6262
  :solution_arn,
6173
6263
  :perform_auto_training,
6264
+ :perform_incremental_update,
6174
6265
  :solution_update_config)
6175
6266
  SENSITIVE = []
6176
6267
  include Aws::Structure
@@ -54,7 +54,7 @@ module Aws::Personalize
54
54
  autoload :EndpointProvider, 'aws-sdk-personalize/endpoint_provider'
55
55
  autoload :Endpoints, 'aws-sdk-personalize/endpoints'
56
56
 
57
- GEM_VERSION = '1.91.0'
57
+ GEM_VERSION = '1.92.0'
58
58
 
59
59
  end
60
60
 
data/sig/client.rbs CHANGED
@@ -103,7 +103,8 @@ module Aws
103
103
  },
104
104
  role_arn: ::String,
105
105
  ?batch_inference_job_config: {
106
- item_exploration_config: Hash[::String, ::String]?
106
+ item_exploration_config: Hash[::String, ::String]?,
107
+ ranking_influence: Hash[("POPULARITY" | "FRESHNESS"), ::Float]?
107
108
  },
108
109
  ?tags: Array[
109
110
  {
@@ -164,7 +165,8 @@ module Aws
164
165
  ?campaign_config: {
165
166
  item_exploration_config: Hash[::String, ::String]?,
166
167
  enable_metadata_with_recommendations: bool?,
167
- sync_with_latest_solution_version: bool?
168
+ sync_with_latest_solution_version: bool?,
169
+ ranking_influence: Hash[("POPULARITY" | "FRESHNESS"), ::Float]?
168
170
  },
169
171
  ?tags: Array[
170
172
  {
@@ -271,7 +273,7 @@ module Aws
271
273
  data_source: {
272
274
  data_location: ::String?
273
275
  },
274
- role_arn: ::String,
276
+ ?role_arn: ::String,
275
277
  ?tags: Array[
276
278
  {
277
279
  tag_key: ::String,
@@ -357,7 +359,8 @@ module Aws
357
359
  item_exploration_config: Hash[::String, ::String]?,
358
360
  min_recommendation_requests_per_second: ::Integer?,
359
361
  training_data_config: {
360
- excluded_dataset_columns: Hash[::String, Array[::String]]?
362
+ excluded_dataset_columns: Hash[::String, Array[::String]]?,
363
+ included_dataset_columns: Hash[::String, Array[::String]]?
361
364
  }?,
362
365
  enable_metadata_with_recommendations: bool?
363
366
  },
@@ -392,6 +395,7 @@ module Aws
392
395
  ?perform_hpo: bool,
393
396
  ?perform_auto_ml: bool,
394
397
  ?perform_auto_training: bool,
398
+ ?perform_incremental_update: bool,
395
399
  ?recipe_arn: ::String,
396
400
  dataset_group_arn: ::String,
397
401
  ?event_type: ::String,
@@ -450,7 +454,8 @@ module Aws
450
454
  objective_sensitivity: ("LOW" | "MEDIUM" | "HIGH" | "OFF")?
451
455
  }?,
452
456
  training_data_config: {
453
- excluded_dataset_columns: Hash[::String, Array[::String]]?
457
+ excluded_dataset_columns: Hash[::String, Array[::String]]?,
458
+ included_dataset_columns: Hash[::String, Array[::String]]?
454
459
  }?,
455
460
  auto_training_config: {
456
461
  scheduling_expression: ::String?
@@ -1021,7 +1026,8 @@ module Aws
1021
1026
  ?campaign_config: {
1022
1027
  item_exploration_config: Hash[::String, ::String]?,
1023
1028
  enable_metadata_with_recommendations: bool?,
1024
- sync_with_latest_solution_version: bool?
1029
+ sync_with_latest_solution_version: bool?,
1030
+ ranking_influence: Hash[("POPULARITY" | "FRESHNESS"), ::Float]?
1025
1031
  }
1026
1032
  ) -> _UpdateCampaignResponseSuccess
1027
1033
  | (Hash[Symbol, untyped] params, ?Hash[Symbol, untyped] options) -> _UpdateCampaignResponseSuccess
@@ -1073,7 +1079,8 @@ module Aws
1073
1079
  item_exploration_config: Hash[::String, ::String]?,
1074
1080
  min_recommendation_requests_per_second: ::Integer?,
1075
1081
  training_data_config: {
1076
- excluded_dataset_columns: Hash[::String, Array[::String]]?
1082
+ excluded_dataset_columns: Hash[::String, Array[::String]]?,
1083
+ included_dataset_columns: Hash[::String, Array[::String]]?
1077
1084
  }?,
1078
1085
  enable_metadata_with_recommendations: bool?
1079
1086
  }
@@ -1088,6 +1095,7 @@ module Aws
1088
1095
  def update_solution: (
1089
1096
  solution_arn: ::String,
1090
1097
  ?perform_auto_training: bool,
1098
+ ?perform_incremental_update: bool,
1091
1099
  ?solution_update_config: {
1092
1100
  auto_training_config: {
1093
1101
  scheduling_expression: ::String?
data/sig/types.rbs CHANGED
@@ -65,6 +65,7 @@ module Aws::Personalize
65
65
 
66
66
  class BatchInferenceJobConfig
67
67
  attr_accessor item_exploration_config: ::Hash[::String, ::String]
68
+ attr_accessor ranking_influence: ::Hash[("POPULARITY" | "FRESHNESS"), ::Float]
68
69
  SENSITIVE: []
69
70
  end
70
71
 
@@ -145,6 +146,7 @@ module Aws::Personalize
145
146
  attr_accessor item_exploration_config: ::Hash[::String, ::String]
146
147
  attr_accessor enable_metadata_with_recommendations: bool
147
148
  attr_accessor sync_with_latest_solution_version: bool
149
+ attr_accessor ranking_influence: ::Hash[("POPULARITY" | "FRESHNESS"), ::Float]
148
150
  SENSITIVE: []
149
151
  end
150
152
 
@@ -377,6 +379,7 @@ module Aws::Personalize
377
379
  attr_accessor perform_hpo: bool
378
380
  attr_accessor perform_auto_ml: bool
379
381
  attr_accessor perform_auto_training: bool
382
+ attr_accessor perform_incremental_update: bool
380
383
  attr_accessor recipe_arn: ::String
381
384
  attr_accessor dataset_group_arn: ::String
382
385
  attr_accessor event_type: ::String
@@ -1315,6 +1318,7 @@ module Aws::Personalize
1315
1318
  attr_accessor perform_hpo: bool
1316
1319
  attr_accessor perform_auto_ml: bool
1317
1320
  attr_accessor perform_auto_training: bool
1321
+ attr_accessor perform_incremental_update: bool
1318
1322
  attr_accessor recipe_arn: ::String
1319
1323
  attr_accessor dataset_group_arn: ::String
1320
1324
  attr_accessor event_type: ::String
@@ -1361,6 +1365,7 @@ module Aws::Personalize
1361
1365
  attr_accessor solution_update_config: Types::SolutionUpdateConfig
1362
1366
  attr_accessor status: ::String
1363
1367
  attr_accessor perform_auto_training: bool
1368
+ attr_accessor perform_incremental_update: bool
1364
1369
  attr_accessor creation_date_time: ::Time
1365
1370
  attr_accessor last_updated_date_time: ::Time
1366
1371
  attr_accessor failure_reason: ::String
@@ -1373,6 +1378,7 @@ module Aws::Personalize
1373
1378
  attr_accessor solution_arn: ::String
1374
1379
  attr_accessor perform_hpo: bool
1375
1380
  attr_accessor perform_auto_ml: bool
1381
+ attr_accessor perform_incremental_update: bool
1376
1382
  attr_accessor recipe_arn: ::String
1377
1383
  attr_accessor event_type: ::String
1378
1384
  attr_accessor dataset_group_arn: ::String
@@ -1456,6 +1462,7 @@ module Aws::Personalize
1456
1462
 
1457
1463
  class TrainingDataConfig
1458
1464
  attr_accessor excluded_dataset_columns: ::Hash[::String, ::Array[::String]]
1465
+ attr_accessor included_dataset_columns: ::Hash[::String, ::Array[::String]]
1459
1466
  SENSITIVE: []
1460
1467
  end
1461
1468
 
@@ -1524,6 +1531,7 @@ module Aws::Personalize
1524
1531
  class UpdateSolutionRequest
1525
1532
  attr_accessor solution_arn: ::String
1526
1533
  attr_accessor perform_auto_training: bool
1534
+ attr_accessor perform_incremental_update: bool
1527
1535
  attr_accessor solution_update_config: Types::SolutionUpdateConfig
1528
1536
  SENSITIVE: []
1529
1537
  end
metadata CHANGED
@@ -1,7 +1,7 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-personalize
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.91.0
4
+ version: 1.92.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services