aws-sdk-machinelearning 1.39.0 → 1.40.0

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 4edf82160daa65b224fcdd9d82d76e10d808735a73970fadc2f2cdb971b4e882
4
- data.tar.gz: 612664410c33a0eae7e09510aad6f8b79761190994c152f05700dcefdf5d0e25
3
+ metadata.gz: 0a6b88c3941b0f8ce69c5ca09fb60fced164aecd629ce9c2e5bef94aad8761c2
4
+ data.tar.gz: 74846d5ff3509da9f6289b1ebfeaa89fc090b7ffa208352f3f6db4e280bb2390
5
5
  SHA512:
6
- metadata.gz: 475e1e49aa8503301d7baf65957d0cad6422409ba3677ddb3a2deb4986b8a9c38a0ea6276c880ec65bb723ef15186fef6dc9cff20f98c7b4dd1342df0d4e68d9
7
- data.tar.gz: cbb9e646fa1d21a9c627bb5656d3ae1650333fb14e7525649def1d981c62c4364e7e5f595d7626750a1e9ae4599099293d0a50e1a6c99bc19b45725185ec151d
6
+ metadata.gz: 0ed4057c62b71dae382bd7e924b679876bef5f29c19d29b2020d59fd64dd02b8b2053493910279beafeaef4d1a8468e135b3359eeca25dadc805bbbc394a5aee
7
+ data.tar.gz: 22bf492581f635afb40b7904c14921c22952abd43729121c6ee4ba7b0de870c6ff1f149103c176082441baf8fc8abbd9e3cc06601b93155c56de2694bd22f309
data/CHANGELOG.md CHANGED
@@ -1,6 +1,11 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.40.0 (2023-05-31)
5
+ ------------------
6
+
7
+ * Feature - Code Generated Changes, see `./build_tools` or `aws-sdk-core`'s CHANGELOG.md for details.
8
+
4
9
  1.39.0 (2023-01-18)
5
10
  ------------------
6
11
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.39.0
1
+ 1.40.0
@@ -277,6 +277,11 @@ module Aws::MachineLearning
277
277
  # in the future.
278
278
  #
279
279
  #
280
+ # @option options [String] :sdk_ua_app_id
281
+ # A unique and opaque application ID that is appended to the
282
+ # User-Agent header as app/<sdk_ua_app_id>. It should have a
283
+ # maximum length of 50.
284
+ #
280
285
  # @option options [String] :secret_access_key
281
286
  #
282
287
  # @option options [String] :session_token
@@ -527,7 +532,7 @@ module Aws::MachineLearning
527
532
  # A user-supplied name or description of the `DataSource`.
528
533
  #
529
534
  # @option params [required, Types::RDSDataSpec] :rds_data
530
- # The data specification of an Amazon RDS `DataSource`\:
535
+ # The data specification of an Amazon RDS `DataSource`:
531
536
  #
532
537
  # * DatabaseInformation -
533
538
  #
@@ -680,7 +685,7 @@ module Aws::MachineLearning
680
685
  # A user-supplied name or description of the `DataSource`.
681
686
  #
682
687
  # @option params [required, Types::RedshiftDataSpec] :data_spec
683
- # The data specification of an Amazon Redshift `DataSource`\:
688
+ # The data specification of an Amazon Redshift `DataSource`:
684
689
  #
685
690
  # * DatabaseInformation -
686
691
  #
@@ -809,7 +814,7 @@ module Aws::MachineLearning
809
814
  # A user-supplied name or description of the `DataSource`.
810
815
  #
811
816
  # @option params [required, Types::S3DataSpec] :data_spec
812
- # The data specification of a `DataSource`\:
817
+ # The data specification of a `DataSource`:
813
818
  #
814
819
  # * DataLocationS3 - The Amazon S3 location of the observation data.
815
820
  #
@@ -869,7 +874,7 @@ module Aws::MachineLearning
869
874
  # provides a summary so that you know how effective the `MLModel`
870
875
  # functions on the test data. Evaluation generates a relevant
871
876
  # performance metric, such as BinaryAUC, RegressionRMSE or
872
- # MulticlassAvgFScore based on the corresponding `MLModelType`\:
877
+ # MulticlassAvgFScore based on the corresponding `MLModelType`:
873
878
  # `BINARY`, `REGRESSION` or `MULTICLASS`.
874
879
  #
875
880
  # `CreateEvaluation` is an asynchronous operation. In response to
@@ -1296,7 +1301,7 @@ module Aws::MachineLearning
1296
1301
  #
1297
1302
  # @option params [String] :filter_variable
1298
1303
  # Use one of the following variables to filter a list of
1299
- # `BatchPrediction`\:
1304
+ # `BatchPrediction`:
1300
1305
  #
1301
1306
  # * `CreatedAt` - Sets the search criteria to the `BatchPrediction`
1302
1307
  # creation date.
@@ -1355,7 +1360,7 @@ module Aws::MachineLearning
1355
1360
  # For example, a `Batch Prediction` operation could have the `Name`
1356
1361
  # `2014-09-09-HolidayGiftMailer`. To search for this `BatchPrediction`,
1357
1362
  # select `Name` for the `FilterVariable` and any of the following
1358
- # strings for the `Prefix`\:
1363
+ # strings for the `Prefix`:
1359
1364
  #
1360
1365
  # * 2014-09
1361
1366
  #
@@ -1440,7 +1445,7 @@ module Aws::MachineLearning
1440
1445
  # request.
1441
1446
  #
1442
1447
  # @option params [String] :filter_variable
1443
- # Use one of the following variables to filter a list of `DataSource`\:
1448
+ # Use one of the following variables to filter a list of `DataSource`:
1444
1449
  #
1445
1450
  # * `CreatedAt` - Sets the search criteria to `DataSource` creation
1446
1451
  # dates.
@@ -1493,7 +1498,7 @@ module Aws::MachineLearning
1493
1498
  # For example, a `DataSource` could have the `Name`
1494
1499
  # `2014-09-09-HolidayGiftMailer`. To search for this `DataSource`,
1495
1500
  # select `Name` for the `FilterVariable` and any of the following
1496
- # strings for the `Prefix`\:
1501
+ # strings for the `Prefix`:
1497
1502
  #
1498
1503
  # * 2014-09
1499
1504
  #
@@ -1648,7 +1653,7 @@ module Aws::MachineLearning
1648
1653
  # For example, an `Evaluation` could have the `Name`
1649
1654
  # `2014-09-09-HolidayGiftMailer`. To search for this `Evaluation`,
1650
1655
  # select `Name` for the `FilterVariable` and any of the following
1651
- # strings for the `Prefix`\:
1656
+ # strings for the `Prefix`:
1652
1657
  #
1653
1658
  # * 2014-09
1654
1659
  #
@@ -1731,7 +1736,7 @@ module Aws::MachineLearning
1731
1736
  # request.
1732
1737
  #
1733
1738
  # @option params [String] :filter_variable
1734
- # Use one of the following variables to filter a list of `MLModel`\:
1739
+ # Use one of the following variables to filter a list of `MLModel`:
1735
1740
  #
1736
1741
  # * `CreatedAt` - Sets the search criteria to `MLModel` creation date.
1737
1742
  #
@@ -1795,7 +1800,7 @@ module Aws::MachineLearning
1795
1800
  # For example, an `MLModel` could have the `Name`
1796
1801
  # `2014-09-09-HolidayGiftMailer`. To search for this `MLModel`, select
1797
1802
  # `Name` for the `FilterVariable` and any of the following strings for
1798
- # the `Prefix`\:
1803
+ # the `Prefix`:
1799
1804
  #
1800
1805
  # * 2014-09
1801
1806
  #
@@ -2407,7 +2412,7 @@ module Aws::MachineLearning
2407
2412
  params: params,
2408
2413
  config: config)
2409
2414
  context[:gem_name] = 'aws-sdk-machinelearning'
2410
- context[:gem_version] = '1.39.0'
2415
+ context[:gem_version] = '1.40.0'
2411
2416
  Seahorse::Client::Request.new(handlers, context)
2412
2417
  end
2413
2418
 
@@ -240,7 +240,7 @@ module Aws::MachineLearning
240
240
  # @return [String]
241
241
  #
242
242
  # @!attribute [rw] rds_data
243
- # The data specification of an Amazon RDS `DataSource`\:
243
+ # The data specification of an Amazon RDS `DataSource`:
244
244
  #
245
245
  # * DatabaseInformation -
246
246
  #
@@ -347,7 +347,7 @@ module Aws::MachineLearning
347
347
  # @return [String]
348
348
  #
349
349
  # @!attribute [rw] data_spec
350
- # The data specification of an Amazon Redshift `DataSource`\:
350
+ # The data specification of an Amazon Redshift `DataSource`:
351
351
  #
352
352
  # * DatabaseInformation -
353
353
  #
@@ -438,7 +438,7 @@ module Aws::MachineLearning
438
438
  # @return [String]
439
439
  #
440
440
  # @!attribute [rw] data_spec
441
- # The data specification of a `DataSource`\:
441
+ # The data specification of a `DataSource`:
442
442
  #
443
443
  # * DataLocationS3 - The Amazon S3 location of the observation data.
444
444
  #
@@ -1004,7 +1004,7 @@ module Aws::MachineLearning
1004
1004
 
1005
1005
  # @!attribute [rw] filter_variable
1006
1006
  # Use one of the following variables to filter a list of
1007
- # `BatchPrediction`\:
1007
+ # `BatchPrediction`:
1008
1008
  #
1009
1009
  # * `CreatedAt` - Sets the search criteria to the `BatchPrediction`
1010
1010
  # creation date.
@@ -1071,7 +1071,7 @@ module Aws::MachineLearning
1071
1071
  # For example, a `Batch Prediction` operation could have the `Name`
1072
1072
  # `2014-09-09-HolidayGiftMailer`. To search for this
1073
1073
  # `BatchPrediction`, select `Name` for the `FilterVariable` and any of
1074
- # the following strings for the `Prefix`\:
1074
+ # the following strings for the `Prefix`:
1075
1075
  #
1076
1076
  # * 2014-09
1077
1077
  #
@@ -1137,8 +1137,7 @@ module Aws::MachineLearning
1137
1137
  end
1138
1138
 
1139
1139
  # @!attribute [rw] filter_variable
1140
- # Use one of the following variables to filter a list of
1141
- # `DataSource`\:
1140
+ # Use one of the following variables to filter a list of `DataSource`:
1142
1141
  #
1143
1142
  # * `CreatedAt` - Sets the search criteria to `DataSource` creation
1144
1143
  # dates.
@@ -1198,7 +1197,7 @@ module Aws::MachineLearning
1198
1197
  # For example, a `DataSource` could have the `Name`
1199
1198
  # `2014-09-09-HolidayGiftMailer`. To search for this `DataSource`,
1200
1199
  # select `Name` for the `FilterVariable` and any of the following
1201
- # strings for the `Prefix`\:
1200
+ # strings for the `Prefix`:
1202
1201
  #
1203
1202
  # * 2014-09
1204
1203
  #
@@ -1329,7 +1328,7 @@ module Aws::MachineLearning
1329
1328
  # For example, an `Evaluation` could have the `Name`
1330
1329
  # `2014-09-09-HolidayGiftMailer`. To search for this `Evaluation`,
1331
1330
  # select `Name` for the `FilterVariable` and any of the following
1332
- # strings for the `Prefix`\:
1331
+ # strings for the `Prefix`:
1333
1332
  #
1334
1333
  # * 2014-09
1335
1334
  #
@@ -1393,7 +1392,7 @@ module Aws::MachineLearning
1393
1392
  end
1394
1393
 
1395
1394
  # @!attribute [rw] filter_variable
1396
- # Use one of the following variables to filter a list of `MLModel`\:
1395
+ # Use one of the following variables to filter a list of `MLModel`:
1397
1396
  #
1398
1397
  # * `CreatedAt` - Sets the search criteria to `MLModel` creation date.
1399
1398
  #
@@ -1465,7 +1464,7 @@ module Aws::MachineLearning
1465
1464
  # For example, an `MLModel` could have the `Name`
1466
1465
  # `2014-09-09-HolidayGiftMailer`. To search for this `MLModel`, select
1467
1466
  # `Name` for the `FilterVariable` and any of the following strings for
1468
- # the `Prefix`\:
1467
+ # the `Prefix`:
1469
1468
  #
1470
1469
  # * 2014-09
1471
1470
  #
@@ -1630,7 +1629,7 @@ module Aws::MachineLearning
1630
1629
  # @!attribute [rw] performance_metrics
1631
1630
  # Measurements of how well the `MLModel` performed, using observations
1632
1631
  # referenced by the `DataSource`. One of the following metrics is
1633
- # returned, based on the type of the `MLModel`\:
1632
+ # returned, based on the type of the `MLModel`:
1634
1633
  #
1635
1634
  # * BinaryAUC: A binary `MLModel` uses the Area Under the Curve (AUC)
1636
1635
  # technique to measure performance.
@@ -2067,7 +2066,7 @@ module Aws::MachineLearning
2067
2066
  # @!attribute [rw] performance_metrics
2068
2067
  # Measurements of how well the `MLModel` performed using observations
2069
2068
  # referenced by the `DataSource`. One of the following metric is
2070
- # returned based on the type of the `MLModel`\:
2069
+ # returned based on the type of the `MLModel`:
2071
2070
  #
2072
2071
  # * BinaryAUC: A binary `MLModel` uses the Area Under the Curve (AUC)
2073
2072
  # technique to measure performance.
@@ -2619,7 +2618,7 @@ module Aws::MachineLearning
2619
2618
 
2620
2619
  # Measurements of how well the `MLModel` performed on known
2621
2620
  # observations. One of the following metrics is returned, based on the
2622
- # type of the `MLModel`\:
2621
+ # type of the `MLModel`:
2623
2622
  #
2624
2623
  # * BinaryAUC: The binary `MLModel` uses the Area Under the Curve (AUC)
2625
2624
  # technique to measure performance.
@@ -53,6 +53,6 @@ require_relative 'aws-sdk-machinelearning/customizations'
53
53
  # @!group service
54
54
  module Aws::MachineLearning
55
55
 
56
- GEM_VERSION = '1.39.0'
56
+ GEM_VERSION = '1.40.0'
57
57
 
58
58
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-machinelearning
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.39.0
4
+ version: 1.40.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2023-01-18 00:00:00.000000000 Z
11
+ date: 2023-05-31 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core
@@ -19,7 +19,7 @@ dependencies:
19
19
  version: '3'
20
20
  - - ">="
21
21
  - !ruby/object:Gem::Version
22
- version: 3.165.0
22
+ version: 3.174.0
23
23
  type: :runtime
24
24
  prerelease: false
25
25
  version_requirements: !ruby/object:Gem::Requirement
@@ -29,7 +29,7 @@ dependencies:
29
29
  version: '3'
30
30
  - - ">="
31
31
  - !ruby/object:Gem::Version
32
- version: 3.165.0
32
+ version: 3.174.0
33
33
  - !ruby/object:Gem::Dependency
34
34
  name: aws-sigv4
35
35
  requirement: !ruby/object:Gem::Requirement