aws-sdk-machinelearning 1.39.0 → 1.40.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 4edf82160daa65b224fcdd9d82d76e10d808735a73970fadc2f2cdb971b4e882
4
- data.tar.gz: 612664410c33a0eae7e09510aad6f8b79761190994c152f05700dcefdf5d0e25
3
+ metadata.gz: 0a6b88c3941b0f8ce69c5ca09fb60fced164aecd629ce9c2e5bef94aad8761c2
4
+ data.tar.gz: 74846d5ff3509da9f6289b1ebfeaa89fc090b7ffa208352f3f6db4e280bb2390
5
5
  SHA512:
6
- metadata.gz: 475e1e49aa8503301d7baf65957d0cad6422409ba3677ddb3a2deb4986b8a9c38a0ea6276c880ec65bb723ef15186fef6dc9cff20f98c7b4dd1342df0d4e68d9
7
- data.tar.gz: cbb9e646fa1d21a9c627bb5656d3ae1650333fb14e7525649def1d981c62c4364e7e5f595d7626750a1e9ae4599099293d0a50e1a6c99bc19b45725185ec151d
6
+ metadata.gz: 0ed4057c62b71dae382bd7e924b679876bef5f29c19d29b2020d59fd64dd02b8b2053493910279beafeaef4d1a8468e135b3359eeca25dadc805bbbc394a5aee
7
+ data.tar.gz: 22bf492581f635afb40b7904c14921c22952abd43729121c6ee4ba7b0de870c6ff1f149103c176082441baf8fc8abbd9e3cc06601b93155c56de2694bd22f309
data/CHANGELOG.md CHANGED
@@ -1,6 +1,11 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.40.0 (2023-05-31)
5
+ ------------------
6
+
7
+ * Feature - Code Generated Changes, see `./build_tools` or `aws-sdk-core`'s CHANGELOG.md for details.
8
+
4
9
  1.39.0 (2023-01-18)
5
10
  ------------------
6
11
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.39.0
1
+ 1.40.0
@@ -277,6 +277,11 @@ module Aws::MachineLearning
277
277
  # in the future.
278
278
  #
279
279
  #
280
+ # @option options [String] :sdk_ua_app_id
281
+ # A unique and opaque application ID that is appended to the
282
+ # User-Agent header as app/<sdk_ua_app_id>. It should have a
283
+ # maximum length of 50.
284
+ #
280
285
  # @option options [String] :secret_access_key
281
286
  #
282
287
  # @option options [String] :session_token
@@ -527,7 +532,7 @@ module Aws::MachineLearning
527
532
  # A user-supplied name or description of the `DataSource`.
528
533
  #
529
534
  # @option params [required, Types::RDSDataSpec] :rds_data
530
- # The data specification of an Amazon RDS `DataSource`\:
535
+ # The data specification of an Amazon RDS `DataSource`:
531
536
  #
532
537
  # * DatabaseInformation -
533
538
  #
@@ -680,7 +685,7 @@ module Aws::MachineLearning
680
685
  # A user-supplied name or description of the `DataSource`.
681
686
  #
682
687
  # @option params [required, Types::RedshiftDataSpec] :data_spec
683
- # The data specification of an Amazon Redshift `DataSource`\:
688
+ # The data specification of an Amazon Redshift `DataSource`:
684
689
  #
685
690
  # * DatabaseInformation -
686
691
  #
@@ -809,7 +814,7 @@ module Aws::MachineLearning
809
814
  # A user-supplied name or description of the `DataSource`.
810
815
  #
811
816
  # @option params [required, Types::S3DataSpec] :data_spec
812
- # The data specification of a `DataSource`\:
817
+ # The data specification of a `DataSource`:
813
818
  #
814
819
  # * DataLocationS3 - The Amazon S3 location of the observation data.
815
820
  #
@@ -869,7 +874,7 @@ module Aws::MachineLearning
869
874
  # provides a summary so that you know how effective the `MLModel`
870
875
  # functions on the test data. Evaluation generates a relevant
871
876
  # performance metric, such as BinaryAUC, RegressionRMSE or
872
- # MulticlassAvgFScore based on the corresponding `MLModelType`\:
877
+ # MulticlassAvgFScore based on the corresponding `MLModelType`:
873
878
  # `BINARY`, `REGRESSION` or `MULTICLASS`.
874
879
  #
875
880
  # `CreateEvaluation` is an asynchronous operation. In response to
@@ -1296,7 +1301,7 @@ module Aws::MachineLearning
1296
1301
  #
1297
1302
  # @option params [String] :filter_variable
1298
1303
  # Use one of the following variables to filter a list of
1299
- # `BatchPrediction`\:
1304
+ # `BatchPrediction`:
1300
1305
  #
1301
1306
  # * `CreatedAt` - Sets the search criteria to the `BatchPrediction`
1302
1307
  # creation date.
@@ -1355,7 +1360,7 @@ module Aws::MachineLearning
1355
1360
  # For example, a `Batch Prediction` operation could have the `Name`
1356
1361
  # `2014-09-09-HolidayGiftMailer`. To search for this `BatchPrediction`,
1357
1362
  # select `Name` for the `FilterVariable` and any of the following
1358
- # strings for the `Prefix`\:
1363
+ # strings for the `Prefix`:
1359
1364
  #
1360
1365
  # * 2014-09
1361
1366
  #
@@ -1440,7 +1445,7 @@ module Aws::MachineLearning
1440
1445
  # request.
1441
1446
  #
1442
1447
  # @option params [String] :filter_variable
1443
- # Use one of the following variables to filter a list of `DataSource`\:
1448
+ # Use one of the following variables to filter a list of `DataSource`:
1444
1449
  #
1445
1450
  # * `CreatedAt` - Sets the search criteria to `DataSource` creation
1446
1451
  # dates.
@@ -1493,7 +1498,7 @@ module Aws::MachineLearning
1493
1498
  # For example, a `DataSource` could have the `Name`
1494
1499
  # `2014-09-09-HolidayGiftMailer`. To search for this `DataSource`,
1495
1500
  # select `Name` for the `FilterVariable` and any of the following
1496
- # strings for the `Prefix`\:
1501
+ # strings for the `Prefix`:
1497
1502
  #
1498
1503
  # * 2014-09
1499
1504
  #
@@ -1648,7 +1653,7 @@ module Aws::MachineLearning
1648
1653
  # For example, an `Evaluation` could have the `Name`
1649
1654
  # `2014-09-09-HolidayGiftMailer`. To search for this `Evaluation`,
1650
1655
  # select `Name` for the `FilterVariable` and any of the following
1651
- # strings for the `Prefix`\:
1656
+ # strings for the `Prefix`:
1652
1657
  #
1653
1658
  # * 2014-09
1654
1659
  #
@@ -1731,7 +1736,7 @@ module Aws::MachineLearning
1731
1736
  # request.
1732
1737
  #
1733
1738
  # @option params [String] :filter_variable
1734
- # Use one of the following variables to filter a list of `MLModel`\:
1739
+ # Use one of the following variables to filter a list of `MLModel`:
1735
1740
  #
1736
1741
  # * `CreatedAt` - Sets the search criteria to `MLModel` creation date.
1737
1742
  #
@@ -1795,7 +1800,7 @@ module Aws::MachineLearning
1795
1800
  # For example, an `MLModel` could have the `Name`
1796
1801
  # `2014-09-09-HolidayGiftMailer`. To search for this `MLModel`, select
1797
1802
  # `Name` for the `FilterVariable` and any of the following strings for
1798
- # the `Prefix`\:
1803
+ # the `Prefix`:
1799
1804
  #
1800
1805
  # * 2014-09
1801
1806
  #
@@ -2407,7 +2412,7 @@ module Aws::MachineLearning
2407
2412
  params: params,
2408
2413
  config: config)
2409
2414
  context[:gem_name] = 'aws-sdk-machinelearning'
2410
- context[:gem_version] = '1.39.0'
2415
+ context[:gem_version] = '1.40.0'
2411
2416
  Seahorse::Client::Request.new(handlers, context)
2412
2417
  end
2413
2418
 
@@ -240,7 +240,7 @@ module Aws::MachineLearning
240
240
  # @return [String]
241
241
  #
242
242
  # @!attribute [rw] rds_data
243
- # The data specification of an Amazon RDS `DataSource`\:
243
+ # The data specification of an Amazon RDS `DataSource`:
244
244
  #
245
245
  # * DatabaseInformation -
246
246
  #
@@ -347,7 +347,7 @@ module Aws::MachineLearning
347
347
  # @return [String]
348
348
  #
349
349
  # @!attribute [rw] data_spec
350
- # The data specification of an Amazon Redshift `DataSource`\:
350
+ # The data specification of an Amazon Redshift `DataSource`:
351
351
  #
352
352
  # * DatabaseInformation -
353
353
  #
@@ -438,7 +438,7 @@ module Aws::MachineLearning
438
438
  # @return [String]
439
439
  #
440
440
  # @!attribute [rw] data_spec
441
- # The data specification of a `DataSource`\:
441
+ # The data specification of a `DataSource`:
442
442
  #
443
443
  # * DataLocationS3 - The Amazon S3 location of the observation data.
444
444
  #
@@ -1004,7 +1004,7 @@ module Aws::MachineLearning
1004
1004
 
1005
1005
  # @!attribute [rw] filter_variable
1006
1006
  # Use one of the following variables to filter a list of
1007
- # `BatchPrediction`\:
1007
+ # `BatchPrediction`:
1008
1008
  #
1009
1009
  # * `CreatedAt` - Sets the search criteria to the `BatchPrediction`
1010
1010
  # creation date.
@@ -1071,7 +1071,7 @@ module Aws::MachineLearning
1071
1071
  # For example, a `Batch Prediction` operation could have the `Name`
1072
1072
  # `2014-09-09-HolidayGiftMailer`. To search for this
1073
1073
  # `BatchPrediction`, select `Name` for the `FilterVariable` and any of
1074
- # the following strings for the `Prefix`\:
1074
+ # the following strings for the `Prefix`:
1075
1075
  #
1076
1076
  # * 2014-09
1077
1077
  #
@@ -1137,8 +1137,7 @@ module Aws::MachineLearning
1137
1137
  end
1138
1138
 
1139
1139
  # @!attribute [rw] filter_variable
1140
- # Use one of the following variables to filter a list of
1141
- # `DataSource`\:
1140
+ # Use one of the following variables to filter a list of `DataSource`:
1142
1141
  #
1143
1142
  # * `CreatedAt` - Sets the search criteria to `DataSource` creation
1144
1143
  # dates.
@@ -1198,7 +1197,7 @@ module Aws::MachineLearning
1198
1197
  # For example, a `DataSource` could have the `Name`
1199
1198
  # `2014-09-09-HolidayGiftMailer`. To search for this `DataSource`,
1200
1199
  # select `Name` for the `FilterVariable` and any of the following
1201
- # strings for the `Prefix`\:
1200
+ # strings for the `Prefix`:
1202
1201
  #
1203
1202
  # * 2014-09
1204
1203
  #
@@ -1329,7 +1328,7 @@ module Aws::MachineLearning
1329
1328
  # For example, an `Evaluation` could have the `Name`
1330
1329
  # `2014-09-09-HolidayGiftMailer`. To search for this `Evaluation`,
1331
1330
  # select `Name` for the `FilterVariable` and any of the following
1332
- # strings for the `Prefix`\:
1331
+ # strings for the `Prefix`:
1333
1332
  #
1334
1333
  # * 2014-09
1335
1334
  #
@@ -1393,7 +1392,7 @@ module Aws::MachineLearning
1393
1392
  end
1394
1393
 
1395
1394
  # @!attribute [rw] filter_variable
1396
- # Use one of the following variables to filter a list of `MLModel`\:
1395
+ # Use one of the following variables to filter a list of `MLModel`:
1397
1396
  #
1398
1397
  # * `CreatedAt` - Sets the search criteria to `MLModel` creation date.
1399
1398
  #
@@ -1465,7 +1464,7 @@ module Aws::MachineLearning
1465
1464
  # For example, an `MLModel` could have the `Name`
1466
1465
  # `2014-09-09-HolidayGiftMailer`. To search for this `MLModel`, select
1467
1466
  # `Name` for the `FilterVariable` and any of the following strings for
1468
- # the `Prefix`\:
1467
+ # the `Prefix`:
1469
1468
  #
1470
1469
  # * 2014-09
1471
1470
  #
@@ -1630,7 +1629,7 @@ module Aws::MachineLearning
1630
1629
  # @!attribute [rw] performance_metrics
1631
1630
  # Measurements of how well the `MLModel` performed, using observations
1632
1631
  # referenced by the `DataSource`. One of the following metrics is
1633
- # returned, based on the type of the `MLModel`\:
1632
+ # returned, based on the type of the `MLModel`:
1634
1633
  #
1635
1634
  # * BinaryAUC: A binary `MLModel` uses the Area Under the Curve (AUC)
1636
1635
  # technique to measure performance.
@@ -2067,7 +2066,7 @@ module Aws::MachineLearning
2067
2066
  # @!attribute [rw] performance_metrics
2068
2067
  # Measurements of how well the `MLModel` performed using observations
2069
2068
  # referenced by the `DataSource`. One of the following metric is
2070
- # returned based on the type of the `MLModel`\:
2069
+ # returned based on the type of the `MLModel`:
2071
2070
  #
2072
2071
  # * BinaryAUC: A binary `MLModel` uses the Area Under the Curve (AUC)
2073
2072
  # technique to measure performance.
@@ -2619,7 +2618,7 @@ module Aws::MachineLearning
2619
2618
 
2620
2619
  # Measurements of how well the `MLModel` performed on known
2621
2620
  # observations. One of the following metrics is returned, based on the
2622
- # type of the `MLModel`\:
2621
+ # type of the `MLModel`:
2623
2622
  #
2624
2623
  # * BinaryAUC: The binary `MLModel` uses the Area Under the Curve (AUC)
2625
2624
  # technique to measure performance.
@@ -53,6 +53,6 @@ require_relative 'aws-sdk-machinelearning/customizations'
53
53
  # @!group service
54
54
  module Aws::MachineLearning
55
55
 
56
- GEM_VERSION = '1.39.0'
56
+ GEM_VERSION = '1.40.0'
57
57
 
58
58
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-machinelearning
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.39.0
4
+ version: 1.40.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2023-01-18 00:00:00.000000000 Z
11
+ date: 2023-05-31 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core
@@ -19,7 +19,7 @@ dependencies:
19
19
  version: '3'
20
20
  - - ">="
21
21
  - !ruby/object:Gem::Version
22
- version: 3.165.0
22
+ version: 3.174.0
23
23
  type: :runtime
24
24
  prerelease: false
25
25
  version_requirements: !ruby/object:Gem::Requirement
@@ -29,7 +29,7 @@ dependencies:
29
29
  version: '3'
30
30
  - - ">="
31
31
  - !ruby/object:Gem::Version
32
- version: 3.165.0
32
+ version: 3.174.0
33
33
  - !ruby/object:Gem::Dependency
34
34
  name: aws-sigv4
35
35
  requirement: !ruby/object:Gem::Requirement