aws-sdk-forecastservice 1.24.0 → 1.25.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 9bed7a68d999cd2cbeb16f887c9b5532ae0f308b083335dea775ce703e243f86
4
- data.tar.gz: 5ae1a28d44c35774fe4f2bd77a881e462f90946c63bfd92fc82e28db044e6984
3
+ metadata.gz: e8cc08b8760a59ca46fd2cdf3ef3abee07dac853ef8252f4f66cab70686cdaab
4
+ data.tar.gz: 395f9d5f1e808cf7db10df226c8b9654e4ce362217b9c3c912384eaf1ed7cbda
5
5
  SHA512:
6
- metadata.gz: e56eeeaecf4f6911ea12bd58dada8c8a045ef808d07401d5a3b6fbc72925ddc4a8595a0ccc40a6601ae966b3c5cc4c073b771986622de242a8c27fcbc4d21a84
7
- data.tar.gz: ca72b5306e4013d930a5f87d3bba017a321f556618ff9345bbde569e6f4a12453763a97a9163f5beaf909a284151f0efb84be645e6aae865ff47a1525ec8c43a
6
+ metadata.gz: c414c07629c2de2aa2704482e7ede20d0832de36208aa2159e4da731e48d75de891bdc149d8ab1f88613964cfdb885662f67913c1eb404f102ae1db31dc32459
7
+ data.tar.gz: 7b0d235d3ad4e68a6fc72b66a8892d314b7cf2c0bdb3b66a47c3f8ce778d5f8962c5d61b66e6e20ae67188ba1bc88bce4442b2c38643e0c4dd86d284384102b7
data/CHANGELOG.md CHANGED
@@ -1,6 +1,11 @@
1
1
  Unreleased Changes
2
2
  ------------------
3
3
 
4
+ 1.25.0 (2021-09-07)
5
+ ------------------
6
+
7
+ * Feature - Predictor creation now supports selecting an accuracy metric to optimize in AutoML and hyperparameter optimization. This release adds additional accuracy metrics for predictors - AverageWeightedQuantileLoss, MAPE and MASE.
8
+
4
9
  1.24.0 (2021-09-01)
5
10
  ------------------
6
11
 
data/VERSION CHANGED
@@ -1 +1 @@
1
- 1.24.0
1
+ 1.25.0
@@ -1078,6 +1078,12 @@ module Aws::ForecastService
1078
1078
  # for your training data. In this case, `PerformHPO` must be false.
1079
1079
  #
1080
1080
  # @option params [String] :auto_ml_override_strategy
1081
+ # <note markdown="1"> The `LatencyOptimized` AutoML override strategy is only available in
1082
+ # private beta. Contact AWS Support or your account manager to learn
1083
+ # more about access privileges.
1084
+ #
1085
+ # </note>
1086
+ #
1081
1087
  # Used to overide the default AutoML strategy, which is to optimize
1082
1088
  # predictor accuracy. To apply an AutoML strategy that minimizes
1083
1089
  # training time, use `LatencyOptimized`.
@@ -1171,6 +1177,9 @@ module Aws::ForecastService
1171
1177
  # the limit of 50 tags. Tags with only the key prefix of `aws` do not
1172
1178
  # count against your tags per resource limit.
1173
1179
  #
1180
+ # @option params [String] :optimization_metric
1181
+ # The accuracy metric used to optimize the predictor.
1182
+ #
1174
1183
  # @return [Types::CreatePredictorResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
1175
1184
  #
1176
1185
  # * {Types::CreatePredictorResponse#predictor_arn #predictor_arn} => String
@@ -1254,6 +1263,7 @@ module Aws::ForecastService
1254
1263
  # value: "TagValue", # required
1255
1264
  # },
1256
1265
  # ],
1266
+ # optimization_metric: "WAPE", # accepts WAPE, RMSE, AverageWeightedQuantileLoss, MASE, MAPE
1257
1267
  # })
1258
1268
  #
1259
1269
  # @example Response structure
@@ -1966,6 +1976,7 @@ module Aws::ForecastService
1966
1976
  # * {Types::DescribePredictorResponse#message #message} => String
1967
1977
  # * {Types::DescribePredictorResponse#creation_time #creation_time} => Time
1968
1978
  # * {Types::DescribePredictorResponse#last_modification_time #last_modification_time} => Time
1979
+ # * {Types::DescribePredictorResponse#optimization_metric #optimization_metric} => String
1969
1980
  #
1970
1981
  # @example Request syntax with placeholder values
1971
1982
  #
@@ -2033,6 +2044,7 @@ module Aws::ForecastService
2033
2044
  # resp.message #=> String
2034
2045
  # resp.creation_time #=> Time
2035
2046
  # resp.last_modification_time #=> Time
2047
+ # resp.optimization_metric #=> String, one of "WAPE", "RMSE", "AverageWeightedQuantileLoss", "MASE", "MAPE"
2036
2048
  #
2037
2049
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DescribePredictor AWS API Documentation
2038
2050
  #
@@ -2135,6 +2147,7 @@ module Aws::ForecastService
2135
2147
  #
2136
2148
  # * {Types::GetAccuracyMetricsResponse#predictor_evaluation_results #predictor_evaluation_results} => Array&lt;Types::EvaluationResult&gt;
2137
2149
  # * {Types::GetAccuracyMetricsResponse#auto_ml_override_strategy #auto_ml_override_strategy} => String
2150
+ # * {Types::GetAccuracyMetricsResponse#optimization_metric #optimization_metric} => String
2138
2151
  #
2139
2152
  # @example Request syntax with placeholder values
2140
2153
  #
@@ -2159,7 +2172,11 @@ module Aws::ForecastService
2159
2172
  # resp.predictor_evaluation_results[0].test_windows[0].metrics.error_metrics[0].forecast_type #=> String
2160
2173
  # resp.predictor_evaluation_results[0].test_windows[0].metrics.error_metrics[0].wape #=> Float
2161
2174
  # resp.predictor_evaluation_results[0].test_windows[0].metrics.error_metrics[0].rmse #=> Float
2175
+ # resp.predictor_evaluation_results[0].test_windows[0].metrics.error_metrics[0].mase #=> Float
2176
+ # resp.predictor_evaluation_results[0].test_windows[0].metrics.error_metrics[0].mape #=> Float
2177
+ # resp.predictor_evaluation_results[0].test_windows[0].metrics.average_weighted_quantile_loss #=> Float
2162
2178
  # resp.auto_ml_override_strategy #=> String, one of "LatencyOptimized"
2179
+ # resp.optimization_metric #=> String, one of "WAPE", "RMSE", "AverageWeightedQuantileLoss", "MASE", "MAPE"
2163
2180
  #
2164
2181
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/GetAccuracyMetrics AWS API Documentation
2165
2182
  #
@@ -2887,7 +2904,7 @@ module Aws::ForecastService
2887
2904
  params: params,
2888
2905
  config: config)
2889
2906
  context[:gem_name] = 'aws-sdk-forecastservice'
2890
- context[:gem_version] = '1.24.0'
2907
+ context[:gem_version] = '1.25.0'
2891
2908
  Seahorse::Client::Request.new(handlers, context)
2892
2909
  end
2893
2910
 
@@ -129,6 +129,7 @@ module Aws::ForecastService
129
129
  Metrics = Shapes::StructureShape.new(name: 'Metrics')
130
130
  Name = Shapes::StringShape.new(name: 'Name')
131
131
  NextToken = Shapes::StringShape.new(name: 'NextToken')
132
+ OptimizationMetric = Shapes::StringShape.new(name: 'OptimizationMetric')
132
133
  ParameterKey = Shapes::StringShape.new(name: 'ParameterKey')
133
134
  ParameterRanges = Shapes::StructureShape.new(name: 'ParameterRanges')
134
135
  ParameterValue = Shapes::StringShape.new(name: 'ParameterValue')
@@ -271,6 +272,7 @@ module Aws::ForecastService
271
272
  CreatePredictorRequest.add_member(:featurization_config, Shapes::ShapeRef.new(shape: FeaturizationConfig, required: true, location_name: "FeaturizationConfig"))
272
273
  CreatePredictorRequest.add_member(:encryption_config, Shapes::ShapeRef.new(shape: EncryptionConfig, location_name: "EncryptionConfig"))
273
274
  CreatePredictorRequest.add_member(:tags, Shapes::ShapeRef.new(shape: Tags, location_name: "Tags"))
275
+ CreatePredictorRequest.add_member(:optimization_metric, Shapes::ShapeRef.new(shape: OptimizationMetric, location_name: "OptimizationMetric"))
274
276
  CreatePredictorRequest.struct_class = Types::CreatePredictorRequest
275
277
 
276
278
  CreatePredictorResponse.add_member(:predictor_arn, Shapes::ShapeRef.new(shape: Arn, location_name: "PredictorArn"))
@@ -448,6 +450,7 @@ module Aws::ForecastService
448
450
  DescribePredictorResponse.add_member(:message, Shapes::ShapeRef.new(shape: Message, location_name: "Message"))
449
451
  DescribePredictorResponse.add_member(:creation_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "CreationTime"))
450
452
  DescribePredictorResponse.add_member(:last_modification_time, Shapes::ShapeRef.new(shape: Timestamp, location_name: "LastModificationTime"))
453
+ DescribePredictorResponse.add_member(:optimization_metric, Shapes::ShapeRef.new(shape: OptimizationMetric, location_name: "OptimizationMetric"))
451
454
  DescribePredictorResponse.struct_class = Types::DescribePredictorResponse
452
455
 
453
456
  EncryptionConfig.add_member(:role_arn, Shapes::ShapeRef.new(shape: Arn, required: true, location_name: "RoleArn"))
@@ -457,6 +460,8 @@ module Aws::ForecastService
457
460
  ErrorMetric.add_member(:forecast_type, Shapes::ShapeRef.new(shape: ForecastType, location_name: "ForecastType"))
458
461
  ErrorMetric.add_member(:wape, Shapes::ShapeRef.new(shape: Double, location_name: "WAPE"))
459
462
  ErrorMetric.add_member(:rmse, Shapes::ShapeRef.new(shape: Double, location_name: "RMSE"))
463
+ ErrorMetric.add_member(:mase, Shapes::ShapeRef.new(shape: Double, location_name: "MASE"))
464
+ ErrorMetric.add_member(:mape, Shapes::ShapeRef.new(shape: Double, location_name: "MAPE"))
460
465
  ErrorMetric.struct_class = Types::ErrorMetric
461
466
 
462
467
  ErrorMetrics.member = Shapes::ShapeRef.new(shape: ErrorMetric)
@@ -531,6 +536,7 @@ module Aws::ForecastService
531
536
 
532
537
  GetAccuracyMetricsResponse.add_member(:predictor_evaluation_results, Shapes::ShapeRef.new(shape: PredictorEvaluationResults, location_name: "PredictorEvaluationResults"))
533
538
  GetAccuracyMetricsResponse.add_member(:auto_ml_override_strategy, Shapes::ShapeRef.new(shape: AutoMLOverrideStrategy, location_name: "AutoMLOverrideStrategy"))
539
+ GetAccuracyMetricsResponse.add_member(:optimization_metric, Shapes::ShapeRef.new(shape: OptimizationMetric, location_name: "OptimizationMetric"))
534
540
  GetAccuracyMetricsResponse.struct_class = Types::GetAccuracyMetricsResponse
535
541
 
536
542
  HyperParameterTuningJobConfig.add_member(:parameter_ranges, Shapes::ShapeRef.new(shape: ParameterRanges, location_name: "ParameterRanges"))
@@ -627,6 +633,7 @@ module Aws::ForecastService
627
633
  Metrics.add_member(:rmse, Shapes::ShapeRef.new(shape: Double, deprecated: true, location_name: "RMSE", metadata: {"deprecatedMessage"=>"This property is deprecated, please refer to ErrorMetrics for both RMSE and WAPE"}))
628
634
  Metrics.add_member(:weighted_quantile_losses, Shapes::ShapeRef.new(shape: WeightedQuantileLosses, location_name: "WeightedQuantileLosses"))
629
635
  Metrics.add_member(:error_metrics, Shapes::ShapeRef.new(shape: ErrorMetrics, location_name: "ErrorMetrics"))
636
+ Metrics.add_member(:average_weighted_quantile_loss, Shapes::ShapeRef.new(shape: Double, location_name: "AverageWeightedQuantileLoss"))
630
637
  Metrics.struct_class = Types::Metrics
631
638
 
632
639
  ParameterRanges.add_member(:categorical_parameter_ranges, Shapes::ShapeRef.new(shape: CategoricalParameterRanges, location_name: "CategoricalParameterRanges"))
@@ -853,6 +853,7 @@ module Aws::ForecastService
853
853
  # value: "TagValue", # required
854
854
  # },
855
855
  # ],
856
+ # optimization_metric: "WAPE", # accepts WAPE, RMSE, AverageWeightedQuantileLoss, MASE, MAPE
856
857
  # }
857
858
  #
858
859
  # @!attribute [rw] predictor_name
@@ -915,6 +916,12 @@ module Aws::ForecastService
915
916
  # @return [Boolean]
916
917
  #
917
918
  # @!attribute [rw] auto_ml_override_strategy
919
+ # <note markdown="1"> The `LatencyOptimized` AutoML override strategy is only available in
920
+ # private beta. Contact AWS Support or your account manager to learn
921
+ # more about access privileges.
922
+ #
923
+ # </note>
924
+ #
918
925
  # Used to overide the default AutoML strategy, which is to optimize
919
926
  # predictor accuracy. To apply an AutoML strategy that minimizes
920
927
  # training time, use `LatencyOptimized`.
@@ -1018,6 +1025,10 @@ module Aws::ForecastService
1018
1025
  # of `aws` do not count against your tags per resource limit.
1019
1026
  # @return [Array<Types::Tag>]
1020
1027
  #
1028
+ # @!attribute [rw] optimization_metric
1029
+ # The accuracy metric used to optimize the predictor.
1030
+ # @return [String]
1031
+ #
1021
1032
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/CreatePredictorRequest AWS API Documentation
1022
1033
  #
1023
1034
  class CreatePredictorRequest < Struct.new(
@@ -1034,7 +1045,8 @@ module Aws::ForecastService
1034
1045
  :input_data_config,
1035
1046
  :featurization_config,
1036
1047
  :encryption_config,
1037
- :tags)
1048
+ :tags,
1049
+ :optimization_metric)
1038
1050
  SENSITIVE = []
1039
1051
  include Aws::Structure
1040
1052
  end
@@ -2075,6 +2087,12 @@ module Aws::ForecastService
2075
2087
  # @return [Boolean]
2076
2088
  #
2077
2089
  # @!attribute [rw] auto_ml_override_strategy
2090
+ # <note markdown="1"> The `LatencyOptimized` AutoML override strategy is only available in
2091
+ # private beta. Contact AWS Support or your account manager to learn
2092
+ # more about access privileges.
2093
+ #
2094
+ # </note>
2095
+ #
2078
2096
  # The AutoML strategy used to train the predictor. Unless
2079
2097
  # `LatencyOptimized` is specified, the AutoML strategy optimizes
2080
2098
  # predictor accuracy.
@@ -2181,6 +2199,10 @@ module Aws::ForecastService
2181
2199
  # * `ACTIVE` or `CREATE_FAILED` - When the job finished or failed.
2182
2200
  # @return [Time]
2183
2201
  #
2202
+ # @!attribute [rw] optimization_metric
2203
+ # The accuracy metric used to optimize the predictor.
2204
+ # @return [String]
2205
+ #
2184
2206
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/DescribePredictorResponse AWS API Documentation
2185
2207
  #
2186
2208
  class DescribePredictorResponse < Struct.new(
@@ -2205,7 +2227,8 @@ module Aws::ForecastService
2205
2227
  :status,
2206
2228
  :message,
2207
2229
  :creation_time,
2208
- :last_modification_time)
2230
+ :last_modification_time,
2231
+ :optimization_metric)
2209
2232
  SENSITIVE = []
2210
2233
  include Aws::Structure
2211
2234
  end
@@ -2249,7 +2272,7 @@ module Aws::ForecastService
2249
2272
  # predictor. This object is part of the Metrics object.
2250
2273
  #
2251
2274
  # @!attribute [rw] forecast_type
2252
- # The Forecast type used to compute WAPE and RMSE.
2275
+ # The Forecast type used to compute WAPE, MAPE, MASE, and RMSE.
2253
2276
  # @return [String]
2254
2277
  #
2255
2278
  # @!attribute [rw] wape
@@ -2260,12 +2283,22 @@ module Aws::ForecastService
2260
2283
  # The root-mean-square error (RMSE).
2261
2284
  # @return [Float]
2262
2285
  #
2286
+ # @!attribute [rw] mase
2287
+ # The Mean Absolute Scaled Error (MASE)
2288
+ # @return [Float]
2289
+ #
2290
+ # @!attribute [rw] mape
2291
+ # The Mean Absolute Percentage Error (MAPE)
2292
+ # @return [Float]
2293
+ #
2263
2294
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/ErrorMetric AWS API Documentation
2264
2295
  #
2265
2296
  class ErrorMetric < Struct.new(
2266
2297
  :forecast_type,
2267
2298
  :wape,
2268
- :rmse)
2299
+ :rmse,
2300
+ :mase,
2301
+ :mape)
2269
2302
  SENSITIVE = []
2270
2303
  include Aws::Structure
2271
2304
  end
@@ -2760,6 +2793,12 @@ module Aws::ForecastService
2760
2793
  # @return [Array<Types::EvaluationResult>]
2761
2794
  #
2762
2795
  # @!attribute [rw] auto_ml_override_strategy
2796
+ # <note markdown="1"> The `LatencyOptimized` AutoML override strategy is only available in
2797
+ # private beta. Contact AWS Support or your account manager to learn
2798
+ # more about access privileges.
2799
+ #
2800
+ # </note>
2801
+ #
2763
2802
  # The AutoML strategy used to train the predictor. Unless
2764
2803
  # `LatencyOptimized` is specified, the AutoML strategy optimizes
2765
2804
  # predictor accuracy.
@@ -2767,11 +2806,16 @@ module Aws::ForecastService
2767
2806
  # This parameter is only valid for predictors trained using AutoML.
2768
2807
  # @return [String]
2769
2808
  #
2809
+ # @!attribute [rw] optimization_metric
2810
+ # The accuracy metric used to optimize the predictor.
2811
+ # @return [String]
2812
+ #
2770
2813
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/GetAccuracyMetricsResponse AWS API Documentation
2771
2814
  #
2772
2815
  class GetAccuracyMetricsResponse < Struct.new(
2773
2816
  :predictor_evaluation_results,
2774
- :auto_ml_override_strategy)
2817
+ :auto_ml_override_strategy,
2818
+ :optimization_metric)
2775
2819
  SENSITIVE = []
2776
2820
  include Aws::Structure
2777
2821
  end
@@ -3508,16 +3552,23 @@ module Aws::ForecastService
3508
3552
  # @return [Array<Types::WeightedQuantileLoss>]
3509
3553
  #
3510
3554
  # @!attribute [rw] error_metrics
3511
- # Provides detailed error metrics on forecast type, root-mean
3512
- # square-error (RMSE), and weighted average percentage error (WAPE).
3555
+ # Provides detailed error metrics for each forecast type. Metrics
3556
+ # include root-mean square-error (RMSE), mean absolute percentage
3557
+ # error (MAPE), mean absolute scaled error (MASE), and weighted
3558
+ # average percentage error (WAPE).
3513
3559
  # @return [Array<Types::ErrorMetric>]
3514
3560
  #
3561
+ # @!attribute [rw] average_weighted_quantile_loss
3562
+ # The average value of all weighted quantile losses.
3563
+ # @return [Float]
3564
+ #
3515
3565
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/Metrics AWS API Documentation
3516
3566
  #
3517
3567
  class Metrics < Struct.new(
3518
3568
  :rmse,
3519
3569
  :weighted_quantile_losses,
3520
- :error_metrics)
3570
+ :error_metrics,
3571
+ :average_weighted_quantile_loss)
3521
3572
  SENSITIVE = []
3522
3573
  include Aws::Structure
3523
3574
  end
@@ -48,6 +48,6 @@ require_relative 'aws-sdk-forecastservice/customizations'
48
48
  # @!group service
49
49
  module Aws::ForecastService
50
50
 
51
- GEM_VERSION = '1.24.0'
51
+ GEM_VERSION = '1.25.0'
52
52
 
53
53
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-forecastservice
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.24.0
4
+ version: 1.25.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2021-09-01 00:00:00.000000000 Z
11
+ date: 2021-09-07 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core