aws-sdk-forecastservice 1.11.0 → 1.12.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/lib/aws-sdk-forecastservice.rb +1 -1
- data/lib/aws-sdk-forecastservice/client.rb +44 -23
- data/lib/aws-sdk-forecastservice/client_api.rb +13 -1
- data/lib/aws-sdk-forecastservice/types.rb +137 -45
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 56e4be6cf1f6ca160b821a0c1eb0c42189f0a24cef070bc3a478a39610ae4faf
|
4
|
+
data.tar.gz: cb0e149d1db7ca1701f60e818d538fdb270e4d34920a485ddcac57deef526175
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 64b03aa27a932a29bee9b89985b1bf2582ae31e3610fc1b4bba4fba54db0877b3aa781ba8c75f7cf9f6738c779c6cca65477100b3c4ee59518a9cfe914a8d066
|
7
|
+
data.tar.gz: 6cdc9e52a6f559c0f1643dfd9e2fc42eed4d137aeb99f13188979b39671e3e7a3085c3335bdadf422ab1ffb4cd6af7b3c657eea13f244ec712959c9d6abb9984
|
@@ -499,9 +499,9 @@ module Aws::ForecastService
|
|
499
499
|
# To get a list of all your datasets groups, use the ListDatasetGroups
|
500
500
|
# operation.
|
501
501
|
#
|
502
|
-
# <note markdown="1"> The `Status` of a dataset group must be `ACTIVE` before you can
|
503
|
-
#
|
504
|
-
#
|
502
|
+
# <note markdown="1"> The `Status` of a dataset group must be `ACTIVE` before you can use
|
503
|
+
# the dataset group to create a predictor. To get the status, use the
|
504
|
+
# DescribeDatasetGroup operation.
|
505
505
|
#
|
506
506
|
# </note>
|
507
507
|
#
|
@@ -940,24 +940,20 @@ module Aws::ForecastService
|
|
940
940
|
|
941
941
|
# Creates an Amazon Forecast predictor.
|
942
942
|
#
|
943
|
-
# In the request,
|
944
|
-
# algorithm or let Amazon Forecast choose
|
943
|
+
# In the request, provide a dataset group and either specify an
|
944
|
+
# algorithm or let Amazon Forecast choose an algorithm for you using
|
945
945
|
# AutoML. If you specify an algorithm, you also can override
|
946
946
|
# algorithm-specific hyperparameters.
|
947
947
|
#
|
948
|
-
# Amazon Forecast uses the
|
949
|
-
# latest version of the datasets in the specified dataset group.
|
950
|
-
#
|
951
|
-
# CreateForecast operation.
|
948
|
+
# Amazon Forecast uses the algorithm to train a predictor using the
|
949
|
+
# latest version of the datasets in the specified dataset group. You can
|
950
|
+
# then generate a forecast using the CreateForecast operation.
|
952
951
|
#
|
953
|
-
#
|
954
|
-
# it. To see the evaluation metrics, use the GetAccuracyMetrics
|
955
|
-
# operation. Always review the evaluation metrics before deciding to use
|
956
|
-
# the predictor to generate a forecast.
|
952
|
+
# To see the evaluation metrics, use the GetAccuracyMetrics operation.
|
957
953
|
#
|
958
|
-
#
|
959
|
-
#
|
960
|
-
#
|
954
|
+
# You can specify a featurization configuration to fill and aggregate
|
955
|
+
# the data fields in the `TARGET_TIME_SERIES` dataset to improve model
|
956
|
+
# training. For more information, see FeaturizationConfig.
|
961
957
|
#
|
962
958
|
# For RELATED\_TIME\_SERIES datasets, `CreatePredictor` verifies that
|
963
959
|
# the `DataFrequency` specified when the dataset was created matches the
|
@@ -965,12 +961,17 @@ module Aws::ForecastService
|
|
965
961
|
# restriction. Amazon Forecast also verifies the delimiter and timestamp
|
966
962
|
# format. For more information, see howitworks-datasets-groups.
|
967
963
|
#
|
964
|
+
# By default, predictors are trained and evaluated at the 0.1 (P10), 0.5
|
965
|
+
# (P50), and 0.9 (P90) quantiles. You can choose custom forecast types
|
966
|
+
# to train and evaluate your predictor by setting the `ForecastTypes`.
|
967
|
+
#
|
968
968
|
# **AutoML**
|
969
969
|
#
|
970
970
|
# If you want Amazon Forecast to evaluate each algorithm and choose the
|
971
971
|
# one that minimizes the `objective function`, set `PerformAutoML` to
|
972
972
|
# `true`. The `objective function` is defined as the mean of the
|
973
|
-
# weighted
|
973
|
+
# weighted losses over the forecast types. By default, these are the
|
974
|
+
# p10, p50, and p90 quantile losses. For more information, see
|
974
975
|
# EvaluationResult.
|
975
976
|
#
|
976
977
|
# When AutoML is enabled, the following properties are disallowed:
|
@@ -1003,9 +1004,9 @@ module Aws::ForecastService
|
|
1003
1004
|
#
|
1004
1005
|
# * `arn:aws:forecast:::algorithm/ARIMA`
|
1005
1006
|
#
|
1006
|
-
# * `arn:aws:forecast:::algorithm/
|
1007
|
+
# * `arn:aws:forecast:::algorithm/CNN-QR`
|
1007
1008
|
#
|
1008
|
-
#
|
1009
|
+
# * `arn:aws:forecast:::algorithm/Deep_AR_Plus`
|
1009
1010
|
#
|
1010
1011
|
# * `arn:aws:forecast:::algorithm/ETS`
|
1011
1012
|
#
|
@@ -1025,6 +1026,14 @@ module Aws::ForecastService
|
|
1025
1026
|
# The maximum forecast horizon is the lesser of 500 time-steps or 1/3 of
|
1026
1027
|
# the TARGET\_TIME\_SERIES dataset length.
|
1027
1028
|
#
|
1029
|
+
# @option params [Array<String>] :forecast_types
|
1030
|
+
# Specifies the forecast types used to train a predictor. You can
|
1031
|
+
# specify up to five forecast types. Forecast types can be quantiles
|
1032
|
+
# from 0.01 to 0.99, by increments of 0.01 or higher. You can also
|
1033
|
+
# specify the mean forecast with `mean`.
|
1034
|
+
#
|
1035
|
+
# The default value is `["0.10", "0.50", "0.9"]`.
|
1036
|
+
#
|
1028
1037
|
# @option params [Boolean] :perform_auto_ml
|
1029
1038
|
# Whether to perform AutoML. When Amazon Forecast performs AutoML, it
|
1030
1039
|
# evaluates the algorithms it provides and chooses the best algorithm
|
@@ -1052,11 +1061,11 @@ module Aws::ForecastService
|
|
1052
1061
|
# hyperparameter. In this case, you are required to specify an algorithm
|
1053
1062
|
# and `PerformAutoML` must be false.
|
1054
1063
|
#
|
1055
|
-
# The following
|
1064
|
+
# The following algorithms support HPO:
|
1056
1065
|
#
|
1057
1066
|
# * DeepAR+
|
1058
1067
|
#
|
1059
|
-
#
|
1068
|
+
# * CNN-QR
|
1060
1069
|
#
|
1061
1070
|
# @option params [Hash<String,String>] :training_parameters
|
1062
1071
|
# The hyperparameters to override for model training. The
|
@@ -1134,6 +1143,7 @@ module Aws::ForecastService
|
|
1134
1143
|
# predictor_name: "Name", # required
|
1135
1144
|
# algorithm_arn: "Arn",
|
1136
1145
|
# forecast_horizon: 1, # required
|
1146
|
+
# forecast_types: ["ForecastType"],
|
1137
1147
|
# perform_auto_ml: false,
|
1138
1148
|
# perform_hpo: false,
|
1139
1149
|
# training_parameters: {
|
@@ -1716,6 +1726,7 @@ module Aws::ForecastService
|
|
1716
1726
|
# * {Types::DescribePredictorResponse#predictor_name #predictor_name} => String
|
1717
1727
|
# * {Types::DescribePredictorResponse#algorithm_arn #algorithm_arn} => String
|
1718
1728
|
# * {Types::DescribePredictorResponse#forecast_horizon #forecast_horizon} => Integer
|
1729
|
+
# * {Types::DescribePredictorResponse#forecast_types #forecast_types} => Array<String>
|
1719
1730
|
# * {Types::DescribePredictorResponse#perform_auto_ml #perform_auto_ml} => Boolean
|
1720
1731
|
# * {Types::DescribePredictorResponse#perform_hpo #perform_hpo} => Boolean
|
1721
1732
|
# * {Types::DescribePredictorResponse#training_parameters #training_parameters} => Hash<String,String>
|
@@ -1744,6 +1755,8 @@ module Aws::ForecastService
|
|
1744
1755
|
# resp.predictor_name #=> String
|
1745
1756
|
# resp.algorithm_arn #=> String
|
1746
1757
|
# resp.forecast_horizon #=> Integer
|
1758
|
+
# resp.forecast_types #=> Array
|
1759
|
+
# resp.forecast_types[0] #=> String
|
1747
1760
|
# resp.perform_auto_ml #=> Boolean
|
1748
1761
|
# resp.perform_hpo #=> Boolean
|
1749
1762
|
# resp.training_parameters #=> Hash
|
@@ -1807,7 +1820,7 @@ module Aws::ForecastService
|
|
1807
1820
|
# Provides metrics on the accuracy of the models that were trained by
|
1808
1821
|
# the CreatePredictor operation. Use metrics to see how well the model
|
1809
1822
|
# performed and to decide whether to use the predictor to generate a
|
1810
|
-
# forecast. For more information, see
|
1823
|
+
# forecast. For more information, see [Predictor Metrics][1].
|
1811
1824
|
#
|
1812
1825
|
# This operation generates metrics for each backtest window that was
|
1813
1826
|
# evaluated. The number of backtest windows (`NumberOfBacktestWindows`)
|
@@ -1828,6 +1841,10 @@ module Aws::ForecastService
|
|
1828
1841
|
#
|
1829
1842
|
# </note>
|
1830
1843
|
#
|
1844
|
+
#
|
1845
|
+
#
|
1846
|
+
# [1]: https://docs.aws.amazon.com/forecast/latest/dg/metrics.html
|
1847
|
+
#
|
1831
1848
|
# @option params [required, String] :predictor_arn
|
1832
1849
|
# The Amazon Resource Name (ARN) of the predictor to get metrics for.
|
1833
1850
|
#
|
@@ -1854,6 +1871,10 @@ module Aws::ForecastService
|
|
1854
1871
|
# resp.predictor_evaluation_results[0].test_windows[0].metrics.weighted_quantile_losses #=> Array
|
1855
1872
|
# resp.predictor_evaluation_results[0].test_windows[0].metrics.weighted_quantile_losses[0].quantile #=> Float
|
1856
1873
|
# resp.predictor_evaluation_results[0].test_windows[0].metrics.weighted_quantile_losses[0].loss_value #=> Float
|
1874
|
+
# resp.predictor_evaluation_results[0].test_windows[0].metrics.error_metrics #=> Array
|
1875
|
+
# resp.predictor_evaluation_results[0].test_windows[0].metrics.error_metrics[0].forecast_type #=> String
|
1876
|
+
# resp.predictor_evaluation_results[0].test_windows[0].metrics.error_metrics[0].wape #=> Float
|
1877
|
+
# resp.predictor_evaluation_results[0].test_windows[0].metrics.error_metrics[0].rmse #=> Float
|
1857
1878
|
#
|
1858
1879
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/GetAccuracyMetrics AWS API Documentation
|
1859
1880
|
#
|
@@ -2459,7 +2480,7 @@ module Aws::ForecastService
|
|
2459
2480
|
params: params,
|
2460
2481
|
config: config)
|
2461
2482
|
context[:gem_name] = 'aws-sdk-forecastservice'
|
2462
|
-
context[:gem_version] = '1.
|
2483
|
+
context[:gem_version] = '1.12.0'
|
2463
2484
|
Seahorse::Client::Request.new(handlers, context)
|
2464
2485
|
end
|
2465
2486
|
|
@@ -64,6 +64,8 @@ module Aws::ForecastService
|
|
64
64
|
Double = Shapes::FloatShape.new(name: 'Double')
|
65
65
|
EncryptionConfig = Shapes::StructureShape.new(name: 'EncryptionConfig')
|
66
66
|
ErrorMessage = Shapes::StringShape.new(name: 'ErrorMessage')
|
67
|
+
ErrorMetric = Shapes::StructureShape.new(name: 'ErrorMetric')
|
68
|
+
ErrorMetrics = Shapes::ListShape.new(name: 'ErrorMetrics')
|
67
69
|
EvaluationParameters = Shapes::StructureShape.new(name: 'EvaluationParameters')
|
68
70
|
EvaluationResult = Shapes::StructureShape.new(name: 'EvaluationResult')
|
69
71
|
EvaluationType = Shapes::StringShape.new(name: 'EvaluationType')
|
@@ -230,6 +232,7 @@ module Aws::ForecastService
|
|
230
232
|
CreatePredictorRequest.add_member(:predictor_name, Shapes::ShapeRef.new(shape: Name, required: true, location_name: "PredictorName"))
|
231
233
|
CreatePredictorRequest.add_member(:algorithm_arn, Shapes::ShapeRef.new(shape: Arn, location_name: "AlgorithmArn"))
|
232
234
|
CreatePredictorRequest.add_member(:forecast_horizon, Shapes::ShapeRef.new(shape: Integer, required: true, location_name: "ForecastHorizon"))
|
235
|
+
CreatePredictorRequest.add_member(:forecast_types, Shapes::ShapeRef.new(shape: ForecastTypes, location_name: "ForecastTypes"))
|
233
236
|
CreatePredictorRequest.add_member(:perform_auto_ml, Shapes::ShapeRef.new(shape: Boolean, location_name: "PerformAutoML"))
|
234
237
|
CreatePredictorRequest.add_member(:perform_hpo, Shapes::ShapeRef.new(shape: Boolean, location_name: "PerformHPO"))
|
235
238
|
CreatePredictorRequest.add_member(:training_parameters, Shapes::ShapeRef.new(shape: TrainingParameters, location_name: "TrainingParameters"))
|
@@ -374,6 +377,7 @@ module Aws::ForecastService
|
|
374
377
|
DescribePredictorResponse.add_member(:predictor_name, Shapes::ShapeRef.new(shape: Name, location_name: "PredictorName"))
|
375
378
|
DescribePredictorResponse.add_member(:algorithm_arn, Shapes::ShapeRef.new(shape: Arn, location_name: "AlgorithmArn"))
|
376
379
|
DescribePredictorResponse.add_member(:forecast_horizon, Shapes::ShapeRef.new(shape: Integer, location_name: "ForecastHorizon"))
|
380
|
+
DescribePredictorResponse.add_member(:forecast_types, Shapes::ShapeRef.new(shape: ForecastTypes, location_name: "ForecastTypes"))
|
377
381
|
DescribePredictorResponse.add_member(:perform_auto_ml, Shapes::ShapeRef.new(shape: Boolean, location_name: "PerformAutoML"))
|
378
382
|
DescribePredictorResponse.add_member(:perform_hpo, Shapes::ShapeRef.new(shape: Boolean, location_name: "PerformHPO"))
|
379
383
|
DescribePredictorResponse.add_member(:training_parameters, Shapes::ShapeRef.new(shape: TrainingParameters, location_name: "TrainingParameters"))
|
@@ -395,6 +399,13 @@ module Aws::ForecastService
|
|
395
399
|
EncryptionConfig.add_member(:kms_key_arn, Shapes::ShapeRef.new(shape: KMSKeyArn, required: true, location_name: "KMSKeyArn"))
|
396
400
|
EncryptionConfig.struct_class = Types::EncryptionConfig
|
397
401
|
|
402
|
+
ErrorMetric.add_member(:forecast_type, Shapes::ShapeRef.new(shape: ForecastType, location_name: "ForecastType"))
|
403
|
+
ErrorMetric.add_member(:wape, Shapes::ShapeRef.new(shape: Double, location_name: "WAPE"))
|
404
|
+
ErrorMetric.add_member(:rmse, Shapes::ShapeRef.new(shape: Double, location_name: "RMSE"))
|
405
|
+
ErrorMetric.struct_class = Types::ErrorMetric
|
406
|
+
|
407
|
+
ErrorMetrics.member = Shapes::ShapeRef.new(shape: ErrorMetric)
|
408
|
+
|
398
409
|
EvaluationParameters.add_member(:number_of_backtest_windows, Shapes::ShapeRef.new(shape: Integer, location_name: "NumberOfBacktestWindows"))
|
399
410
|
EvaluationParameters.add_member(:back_test_window_offset, Shapes::ShapeRef.new(shape: Integer, location_name: "BackTestWindowOffset"))
|
400
411
|
EvaluationParameters.struct_class = Types::EvaluationParameters
|
@@ -548,8 +559,9 @@ module Aws::ForecastService
|
|
548
559
|
ListTagsForResourceResponse.add_member(:tags, Shapes::ShapeRef.new(shape: Tags, location_name: "Tags"))
|
549
560
|
ListTagsForResourceResponse.struct_class = Types::ListTagsForResourceResponse
|
550
561
|
|
551
|
-
Metrics.add_member(:rmse, Shapes::ShapeRef.new(shape: Double, location_name: "RMSE"))
|
562
|
+
Metrics.add_member(:rmse, Shapes::ShapeRef.new(shape: Double, deprecated: true, location_name: "RMSE", metadata: {"deprecatedMessage"=>"This property is deprecated, please refer to ErrorMetrics for both RMSE and WAPE"}))
|
552
563
|
Metrics.add_member(:weighted_quantile_losses, Shapes::ShapeRef.new(shape: WeightedQuantileLosses, location_name: "WeightedQuantileLosses"))
|
564
|
+
Metrics.add_member(:error_metrics, Shapes::ShapeRef.new(shape: ErrorMetrics, location_name: "ErrorMetrics"))
|
553
565
|
Metrics.struct_class = Types::Metrics
|
554
566
|
|
555
567
|
ParameterRanges.add_member(:categorical_parameter_ranges, Shapes::ShapeRef.new(shape: CategoricalParameterRanges, location_name: "CategoricalParameterRanges"))
|
@@ -652,6 +652,7 @@ module Aws::ForecastService
|
|
652
652
|
# predictor_name: "Name", # required
|
653
653
|
# algorithm_arn: "Arn",
|
654
654
|
# forecast_horizon: 1, # required
|
655
|
+
# forecast_types: ["ForecastType"],
|
655
656
|
# perform_auto_ml: false,
|
656
657
|
# perform_hpo: false,
|
657
658
|
# training_parameters: {
|
@@ -737,9 +738,9 @@ module Aws::ForecastService
|
|
737
738
|
#
|
738
739
|
# * `arn:aws:forecast:::algorithm/ARIMA`
|
739
740
|
#
|
740
|
-
# * `arn:aws:forecast:::algorithm/
|
741
|
+
# * `arn:aws:forecast:::algorithm/CNN-QR`
|
741
742
|
#
|
742
|
-
#
|
743
|
+
# * `arn:aws:forecast:::algorithm/Deep_AR_Plus`
|
743
744
|
#
|
744
745
|
# * `arn:aws:forecast:::algorithm/ETS`
|
745
746
|
#
|
@@ -761,6 +762,15 @@ module Aws::ForecastService
|
|
761
762
|
# of the TARGET\_TIME\_SERIES dataset length.
|
762
763
|
# @return [Integer]
|
763
764
|
#
|
765
|
+
# @!attribute [rw] forecast_types
|
766
|
+
# Specifies the forecast types used to train a predictor. You can
|
767
|
+
# specify up to five forecast types. Forecast types can be quantiles
|
768
|
+
# from 0.01 to 0.99, by increments of 0.01 or higher. You can also
|
769
|
+
# specify the mean forecast with `mean`.
|
770
|
+
#
|
771
|
+
# The default value is `["0.10", "0.50", "0.9"]`.
|
772
|
+
# @return [Array<String>]
|
773
|
+
#
|
764
774
|
# @!attribute [rw] perform_auto_ml
|
765
775
|
# Whether to perform AutoML. When Amazon Forecast performs AutoML, it
|
766
776
|
# evaluates the algorithms it provides and chooses the best algorithm
|
@@ -790,11 +800,11 @@ module Aws::ForecastService
|
|
790
800
|
# hyperparameter. In this case, you are required to specify an
|
791
801
|
# algorithm and `PerformAutoML` must be false.
|
792
802
|
#
|
793
|
-
# The following
|
803
|
+
# The following algorithms support HPO:
|
794
804
|
#
|
795
805
|
# * DeepAR+
|
796
806
|
#
|
797
|
-
#
|
807
|
+
# * CNN-QR
|
798
808
|
# @return [Boolean]
|
799
809
|
#
|
800
810
|
# @!attribute [rw] training_parameters
|
@@ -877,6 +887,7 @@ module Aws::ForecastService
|
|
877
887
|
:predictor_name,
|
878
888
|
:algorithm_arn,
|
879
889
|
:forecast_horizon,
|
890
|
+
:forecast_types,
|
880
891
|
:perform_auto_ml,
|
881
892
|
:perform_hpo,
|
882
893
|
:training_parameters,
|
@@ -1731,6 +1742,11 @@ module Aws::ForecastService
|
|
1731
1742
|
# also called the prediction length.
|
1732
1743
|
# @return [Integer]
|
1733
1744
|
#
|
1745
|
+
# @!attribute [rw] forecast_types
|
1746
|
+
# The forecast types used during predictor training. Default value is
|
1747
|
+
# `["0.1","0.5","0.9"]`
|
1748
|
+
# @return [Array<String>]
|
1749
|
+
#
|
1734
1750
|
# @!attribute [rw] perform_auto_ml
|
1735
1751
|
# Whether the predictor is set to perform AutoML.
|
1736
1752
|
# @return [Boolean]
|
@@ -1742,10 +1758,9 @@ module Aws::ForecastService
|
|
1742
1758
|
#
|
1743
1759
|
# @!attribute [rw] training_parameters
|
1744
1760
|
# The default training parameters or overrides selected during model
|
1745
|
-
# training.
|
1746
|
-
#
|
1747
|
-
#
|
1748
|
-
# aws-forecast-choosing-recipes.
|
1761
|
+
# training. When running AutoML or choosing HPO with CNN-QR or
|
1762
|
+
# DeepAR+, the optimized values for the chosen hyperparameters are
|
1763
|
+
# returned. For more information, see aws-forecast-choosing-recipes.
|
1749
1764
|
# @return [Hash<String,String>]
|
1750
1765
|
#
|
1751
1766
|
# @!attribute [rw] evaluation_parameters
|
@@ -1830,6 +1845,7 @@ module Aws::ForecastService
|
|
1830
1845
|
:predictor_name,
|
1831
1846
|
:algorithm_arn,
|
1832
1847
|
:forecast_horizon,
|
1848
|
+
:forecast_types,
|
1833
1849
|
:perform_auto_ml,
|
1834
1850
|
:perform_hpo,
|
1835
1851
|
:training_parameters,
|
@@ -1884,6 +1900,32 @@ module Aws::ForecastService
|
|
1884
1900
|
include Aws::Structure
|
1885
1901
|
end
|
1886
1902
|
|
1903
|
+
# Provides detailed error metrics to evaluate the performance of a
|
1904
|
+
# predictor. This object is part of the Metrics object.
|
1905
|
+
#
|
1906
|
+
# @!attribute [rw] forecast_type
|
1907
|
+
# Forecast types can be quantiles from 0.01 to 0.99 (by increments of
|
1908
|
+
# 0.01), and the mean.
|
1909
|
+
# @return [String]
|
1910
|
+
#
|
1911
|
+
# @!attribute [rw] wape
|
1912
|
+
# The weighted absolute percentage error (WAPE).
|
1913
|
+
# @return [Float]
|
1914
|
+
#
|
1915
|
+
# @!attribute [rw] rmse
|
1916
|
+
# The root-mean-square error (RMSE).
|
1917
|
+
# @return [Float]
|
1918
|
+
#
|
1919
|
+
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/ErrorMetric AWS API Documentation
|
1920
|
+
#
|
1921
|
+
class ErrorMetric < Struct.new(
|
1922
|
+
:forecast_type,
|
1923
|
+
:wape,
|
1924
|
+
:rmse)
|
1925
|
+
SENSITIVE = []
|
1926
|
+
include Aws::Structure
|
1927
|
+
end
|
1928
|
+
|
1887
1929
|
# Parameters that define how to split a dataset into training data and
|
1888
1930
|
# testing data, and the number of iterations to perform. These
|
1889
1931
|
# parameters are specified in the predefined algorithms but you can
|
@@ -2146,6 +2188,11 @@ module Aws::ForecastService
|
|
2146
2188
|
# * `backfill`\: `zero`, `value`, `median`, `mean`, `min`, `max`
|
2147
2189
|
#
|
2148
2190
|
# * `futurefill`\: `zero`, `value`, `median`, `mean`, `min`, `max`
|
2191
|
+
#
|
2192
|
+
# To set a filling method to a specific value, set the fill parameter
|
2193
|
+
# to `value` and define the value in a corresponding `_value`
|
2194
|
+
# parameter. For example, to set backfilling to a value of 2, include
|
2195
|
+
# the following: `"backfill": "value"` and `"backfill_value":"2"`.
|
2149
2196
|
# @return [Hash<String,String>]
|
2150
2197
|
#
|
2151
2198
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/FeaturizationMethod AWS API Documentation
|
@@ -3002,7 +3049,7 @@ module Aws::ForecastService
|
|
3002
3049
|
# predictor. This object is part of the WindowSummary object.
|
3003
3050
|
#
|
3004
3051
|
# @!attribute [rw] rmse
|
3005
|
-
# The root
|
3052
|
+
# The root-mean-square error (RMSE).
|
3006
3053
|
# @return [Float]
|
3007
3054
|
#
|
3008
3055
|
# @!attribute [rw] weighted_quantile_losses
|
@@ -3011,11 +3058,17 @@ module Aws::ForecastService
|
|
3011
3058
|
# this case is the loss function.
|
3012
3059
|
# @return [Array<Types::WeightedQuantileLoss>]
|
3013
3060
|
#
|
3061
|
+
# @!attribute [rw] error_metrics
|
3062
|
+
# Provides detailed error metrics on forecast type, root-mean
|
3063
|
+
# square-error (RMSE), and weighted average percentage error (WAPE).
|
3064
|
+
# @return [Array<Types::ErrorMetric>]
|
3065
|
+
#
|
3014
3066
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/Metrics AWS API Documentation
|
3015
3067
|
#
|
3016
3068
|
class Metrics < Struct.new(
|
3017
3069
|
:rmse,
|
3018
|
-
:weighted_quantile_losses
|
3070
|
+
:weighted_quantile_losses,
|
3071
|
+
:error_metrics)
|
3019
3072
|
SENSITIVE = []
|
3020
3073
|
include Aws::Structure
|
3021
3074
|
end
|
@@ -3381,39 +3434,10 @@ module Aws::ForecastService
|
|
3381
3434
|
# Describes a supplementary feature of a dataset group. This object is
|
3382
3435
|
# part of the InputDataConfig object.
|
3383
3436
|
#
|
3384
|
-
# The only supported feature is
|
3385
|
-
#
|
3386
|
-
#
|
3387
|
-
#
|
3388
|
-
#
|
3389
|
-
# India and Korea's holidays are not included in the Jollyday library,
|
3390
|
-
# but both are supported by Amazon Forecast. Their holidays are:
|
3391
|
-
#
|
3392
|
-
# **"IN" - INDIA**
|
3393
|
-
#
|
3394
|
-
# * `JANUARY 26 - REPUBLIC DAY`
|
3395
|
-
#
|
3396
|
-
# * `AUGUST 15 - INDEPENDENCE DAY`
|
3397
|
-
#
|
3398
|
-
# * `OCTOBER 2 GANDHI'S BIRTHDAY`
|
3399
|
-
#
|
3400
|
-
# **"KR" - KOREA**
|
3401
|
-
#
|
3402
|
-
# * `JANUARY 1 - NEW YEAR`
|
3403
|
-
#
|
3404
|
-
# * `MARCH 1 - INDEPENDENCE MOVEMENT DAY`
|
3405
|
-
#
|
3406
|
-
# * `MAY 5 - CHILDREN'S DAY`
|
3407
|
-
#
|
3408
|
-
# * `JUNE 6 - MEMORIAL DAY`
|
3409
|
-
#
|
3410
|
-
# * `AUGUST 15 - LIBERATION DAY`
|
3411
|
-
#
|
3412
|
-
# * `OCTOBER 3 - NATIONAL FOUNDATION DAY`
|
3413
|
-
#
|
3414
|
-
# * `OCTOBER 9 - HANGEUL DAY`
|
3415
|
-
#
|
3416
|
-
# * `DECEMBER 25 - CHRISTMAS DAY`
|
3437
|
+
# The only supported feature is Holidays. If you use the calendar, all
|
3438
|
+
# data in the datasets should belong to the same country as the
|
3439
|
+
# calendar. For the holiday calendar data, see the [Jollyday][1]
|
3440
|
+
# website.
|
3417
3441
|
#
|
3418
3442
|
#
|
3419
3443
|
#
|
@@ -3434,19 +3458,35 @@ module Aws::ForecastService
|
|
3434
3458
|
# @!attribute [rw] value
|
3435
3459
|
# One of the following 2 letter country codes:
|
3436
3460
|
#
|
3461
|
+
# * "AL" - ALBANIA
|
3462
|
+
#
|
3437
3463
|
# * "AR" - ARGENTINA
|
3438
3464
|
#
|
3439
3465
|
# * "AT" - AUSTRIA
|
3440
3466
|
#
|
3441
3467
|
# * "AU" - AUSTRALIA
|
3442
3468
|
#
|
3469
|
+
# * "BA" - BOSNIA HERZEGOVINA
|
3470
|
+
#
|
3443
3471
|
# * "BE" - BELGIUM
|
3444
3472
|
#
|
3473
|
+
# * "BG" - BULGARIA
|
3474
|
+
#
|
3475
|
+
# * "BO" - BOLIVIA
|
3476
|
+
#
|
3445
3477
|
# * "BR" - BRAZIL
|
3446
3478
|
#
|
3479
|
+
# * "BY" - BELARUS
|
3480
|
+
#
|
3447
3481
|
# * "CA" - CANADA
|
3448
3482
|
#
|
3449
|
-
# * "
|
3483
|
+
# * "CL" - CHILE
|
3484
|
+
#
|
3485
|
+
# * "CO" - COLOMBIA
|
3486
|
+
#
|
3487
|
+
# * "CR" - COSTA RICA
|
3488
|
+
#
|
3489
|
+
# * "HR" - CROATIA
|
3450
3490
|
#
|
3451
3491
|
# * "CZ" - CZECH REPUBLIC
|
3452
3492
|
#
|
@@ -3454,38 +3494,82 @@ module Aws::ForecastService
|
|
3454
3494
|
#
|
3455
3495
|
# * "EC" - ECUADOR
|
3456
3496
|
#
|
3497
|
+
# * "EE" - ESTONIA
|
3498
|
+
#
|
3499
|
+
# * "ET" - ETHIOPIA
|
3500
|
+
#
|
3457
3501
|
# * "FI" - FINLAND
|
3458
3502
|
#
|
3459
3503
|
# * "FR" - FRANCE
|
3460
3504
|
#
|
3461
3505
|
# * "DE" - GERMANY
|
3462
3506
|
#
|
3507
|
+
# * "GR" - GREECE
|
3508
|
+
#
|
3463
3509
|
# * "HU" - HUNGARY
|
3464
3510
|
#
|
3465
|
-
# * "
|
3511
|
+
# * "IS" - ICELAND
|
3466
3512
|
#
|
3467
3513
|
# * "IN" - INDIA
|
3468
3514
|
#
|
3515
|
+
# * "IE" - IRELAND
|
3516
|
+
#
|
3469
3517
|
# * "IT" - ITALY
|
3470
3518
|
#
|
3471
3519
|
# * "JP" - JAPAN
|
3472
3520
|
#
|
3521
|
+
# * "KZ" - KAZAKHSTAN
|
3522
|
+
#
|
3473
3523
|
# * "KR" - KOREA
|
3474
3524
|
#
|
3525
|
+
# * "LV" - LATVIA
|
3526
|
+
#
|
3527
|
+
# * "LI" - LIECHTENSTEIN
|
3528
|
+
#
|
3529
|
+
# * "LT" - LITHUANIA
|
3530
|
+
#
|
3475
3531
|
# * "LU" - LUXEMBOURG
|
3476
3532
|
#
|
3533
|
+
# * "MK" - MACEDONIA
|
3534
|
+
#
|
3535
|
+
# * "MT" - MALTA
|
3536
|
+
#
|
3477
3537
|
# * "MX" - MEXICO
|
3478
3538
|
#
|
3539
|
+
# * "MD" - MOLDOVA
|
3540
|
+
#
|
3541
|
+
# * "ME" - MONTENEGRO
|
3542
|
+
#
|
3479
3543
|
# * "NL" - NETHERLANDS
|
3480
3544
|
#
|
3545
|
+
# * "NZ" - NEW ZEALAND
|
3546
|
+
#
|
3547
|
+
# * "NI" - NICARAGUA
|
3548
|
+
#
|
3549
|
+
# * "NG" - NIGERIA
|
3550
|
+
#
|
3481
3551
|
# * "NO" - NORWAY
|
3482
3552
|
#
|
3553
|
+
# * "PA" - PANAMA
|
3554
|
+
#
|
3555
|
+
# * "PY" - PARAGUAY
|
3556
|
+
#
|
3557
|
+
# * "PE" - PERU
|
3558
|
+
#
|
3483
3559
|
# * "PL" - POLAND
|
3484
3560
|
#
|
3485
3561
|
# * "PT" - PORTUGAL
|
3486
3562
|
#
|
3563
|
+
# * "RO" - ROMANIA
|
3564
|
+
#
|
3487
3565
|
# * "RU" - RUSSIA
|
3488
3566
|
#
|
3567
|
+
# * "RS" - SERBIA
|
3568
|
+
#
|
3569
|
+
# * "SK" - SLOVAKIA
|
3570
|
+
#
|
3571
|
+
# * "SI" - SLOVENIA
|
3572
|
+
#
|
3489
3573
|
# * "ZA" - SOUTH AFRICA
|
3490
3574
|
#
|
3491
3575
|
# * "ES" - SPAIN
|
@@ -3494,9 +3578,17 @@ module Aws::ForecastService
|
|
3494
3578
|
#
|
3495
3579
|
# * "CH" - SWITZERLAND
|
3496
3580
|
#
|
3581
|
+
# * "UA" - UKRAINE
|
3582
|
+
#
|
3583
|
+
# * "AE" - UNITED ARAB EMIRATES
|
3584
|
+
#
|
3497
3585
|
# * "US" - UNITED STATES
|
3498
3586
|
#
|
3499
3587
|
# * "UK" - UNITED KINGDOM
|
3588
|
+
#
|
3589
|
+
# * "UY" - URUGUAY
|
3590
|
+
#
|
3591
|
+
# * "VE" - VENEZUELA
|
3500
3592
|
# @return [String]
|
3501
3593
|
#
|
3502
3594
|
# @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/SupplementaryFeature AWS API Documentation
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: aws-sdk-forecastservice
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 1.
|
4
|
+
version: 1.12.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Amazon Web Services
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2020-
|
11
|
+
date: 2020-11-11 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: aws-sdk-core
|