aws-sdk-forecastservice 1.11.0 → 1.12.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 70b267366d492acd5e216dd6845914afbe9a22d5715c170112b9cfe2acabf577
4
- data.tar.gz: 8ef8bec9a516306642555b10bb837453870a243698041a59d3ec971464f5db02
3
+ metadata.gz: 56e4be6cf1f6ca160b821a0c1eb0c42189f0a24cef070bc3a478a39610ae4faf
4
+ data.tar.gz: cb0e149d1db7ca1701f60e818d538fdb270e4d34920a485ddcac57deef526175
5
5
  SHA512:
6
- metadata.gz: 40ce700ff5c1e8f81b92cc2b9bad79fdd26a2a0bcdd9de2a1a4f035db7fa310704d45c0e8604d20257944e740fc11403b32acc6f0e9798f5c727644795688601
7
- data.tar.gz: 7e33d26ca12568a648ae2207f9e1b525f471a11cf1c00faa589b1005da22cd9932ba302472d4023ed4cf19eda8ab5a737c6574aa55221e6118e6ea2702c9b050
6
+ metadata.gz: 64b03aa27a932a29bee9b89985b1bf2582ae31e3610fc1b4bba4fba54db0877b3aa781ba8c75f7cf9f6738c779c6cca65477100b3c4ee59518a9cfe914a8d066
7
+ data.tar.gz: 6cdc9e52a6f559c0f1643dfd9e2fc42eed4d137aeb99f13188979b39671e3e7a3085c3335bdadf422ab1ffb4cd6af7b3c657eea13f244ec712959c9d6abb9984
@@ -48,6 +48,6 @@ require_relative 'aws-sdk-forecastservice/customizations'
48
48
  # @!group service
49
49
  module Aws::ForecastService
50
50
 
51
- GEM_VERSION = '1.11.0'
51
+ GEM_VERSION = '1.12.0'
52
52
 
53
53
  end
@@ -499,9 +499,9 @@ module Aws::ForecastService
499
499
  # To get a list of all your datasets groups, use the ListDatasetGroups
500
500
  # operation.
501
501
  #
502
- # <note markdown="1"> The `Status` of a dataset group must be `ACTIVE` before you can create
503
- # use the dataset group to create a predictor. To get the status, use
504
- # the DescribeDatasetGroup operation.
502
+ # <note markdown="1"> The `Status` of a dataset group must be `ACTIVE` before you can use
503
+ # the dataset group to create a predictor. To get the status, use the
504
+ # DescribeDatasetGroup operation.
505
505
  #
506
506
  # </note>
507
507
  #
@@ -940,24 +940,20 @@ module Aws::ForecastService
940
940
 
941
941
  # Creates an Amazon Forecast predictor.
942
942
  #
943
- # In the request, you provide a dataset group and either specify an
944
- # algorithm or let Amazon Forecast choose the algorithm for you using
943
+ # In the request, provide a dataset group and either specify an
944
+ # algorithm or let Amazon Forecast choose an algorithm for you using
945
945
  # AutoML. If you specify an algorithm, you also can override
946
946
  # algorithm-specific hyperparameters.
947
947
  #
948
- # Amazon Forecast uses the chosen algorithm to train a model using the
949
- # latest version of the datasets in the specified dataset group. The
950
- # result is called a predictor. You then generate a forecast using the
951
- # CreateForecast operation.
948
+ # Amazon Forecast uses the algorithm to train a predictor using the
949
+ # latest version of the datasets in the specified dataset group. You can
950
+ # then generate a forecast using the CreateForecast operation.
952
951
  #
953
- # After training a model, the `CreatePredictor` operation also evaluates
954
- # it. To see the evaluation metrics, use the GetAccuracyMetrics
955
- # operation. Always review the evaluation metrics before deciding to use
956
- # the predictor to generate a forecast.
952
+ # To see the evaluation metrics, use the GetAccuracyMetrics operation.
957
953
  #
958
- # Optionally, you can specify a featurization configuration to fill and
959
- # aggregate the data fields in the `TARGET_TIME_SERIES` dataset to
960
- # improve model training. For more information, see FeaturizationConfig.
954
+ # You can specify a featurization configuration to fill and aggregate
955
+ # the data fields in the `TARGET_TIME_SERIES` dataset to improve model
956
+ # training. For more information, see FeaturizationConfig.
961
957
  #
962
958
  # For RELATED\_TIME\_SERIES datasets, `CreatePredictor` verifies that
963
959
  # the `DataFrequency` specified when the dataset was created matches the
@@ -965,12 +961,17 @@ module Aws::ForecastService
965
961
  # restriction. Amazon Forecast also verifies the delimiter and timestamp
966
962
  # format. For more information, see howitworks-datasets-groups.
967
963
  #
964
+ # By default, predictors are trained and evaluated at the 0.1 (P10), 0.5
965
+ # (P50), and 0.9 (P90) quantiles. You can choose custom forecast types
966
+ # to train and evaluate your predictor by setting the `ForecastTypes`.
967
+ #
968
968
  # **AutoML**
969
969
  #
970
970
  # If you want Amazon Forecast to evaluate each algorithm and choose the
971
971
  # one that minimizes the `objective function`, set `PerformAutoML` to
972
972
  # `true`. The `objective function` is defined as the mean of the
973
- # weighted p10, p50, and p90 quantile losses. For more information, see
973
+ # weighted losses over the forecast types. By default, these are the
974
+ # p10, p50, and p90 quantile losses. For more information, see
974
975
  # EvaluationResult.
975
976
  #
976
977
  # When AutoML is enabled, the following properties are disallowed:
@@ -1003,9 +1004,9 @@ module Aws::ForecastService
1003
1004
  #
1004
1005
  # * `arn:aws:forecast:::algorithm/ARIMA`
1005
1006
  #
1006
- # * `arn:aws:forecast:::algorithm/Deep_AR_Plus`
1007
+ # * `arn:aws:forecast:::algorithm/CNN-QR`
1007
1008
  #
1008
- # Supports hyperparameter optimization (HPO)
1009
+ # * `arn:aws:forecast:::algorithm/Deep_AR_Plus`
1009
1010
  #
1010
1011
  # * `arn:aws:forecast:::algorithm/ETS`
1011
1012
  #
@@ -1025,6 +1026,14 @@ module Aws::ForecastService
1025
1026
  # The maximum forecast horizon is the lesser of 500 time-steps or 1/3 of
1026
1027
  # the TARGET\_TIME\_SERIES dataset length.
1027
1028
  #
1029
+ # @option params [Array<String>] :forecast_types
1030
+ # Specifies the forecast types used to train a predictor. You can
1031
+ # specify up to five forecast types. Forecast types can be quantiles
1032
+ # from 0.01 to 0.99, by increments of 0.01 or higher. You can also
1033
+ # specify the mean forecast with `mean`.
1034
+ #
1035
+ # The default value is `["0.10", "0.50", "0.9"]`.
1036
+ #
1028
1037
  # @option params [Boolean] :perform_auto_ml
1029
1038
  # Whether to perform AutoML. When Amazon Forecast performs AutoML, it
1030
1039
  # evaluates the algorithms it provides and chooses the best algorithm
@@ -1052,11 +1061,11 @@ module Aws::ForecastService
1052
1061
  # hyperparameter. In this case, you are required to specify an algorithm
1053
1062
  # and `PerformAutoML` must be false.
1054
1063
  #
1055
- # The following algorithm supports HPO:
1064
+ # The following algorithms support HPO:
1056
1065
  #
1057
1066
  # * DeepAR+
1058
1067
  #
1059
- # ^
1068
+ # * CNN-QR
1060
1069
  #
1061
1070
  # @option params [Hash<String,String>] :training_parameters
1062
1071
  # The hyperparameters to override for model training. The
@@ -1134,6 +1143,7 @@ module Aws::ForecastService
1134
1143
  # predictor_name: "Name", # required
1135
1144
  # algorithm_arn: "Arn",
1136
1145
  # forecast_horizon: 1, # required
1146
+ # forecast_types: ["ForecastType"],
1137
1147
  # perform_auto_ml: false,
1138
1148
  # perform_hpo: false,
1139
1149
  # training_parameters: {
@@ -1716,6 +1726,7 @@ module Aws::ForecastService
1716
1726
  # * {Types::DescribePredictorResponse#predictor_name #predictor_name} => String
1717
1727
  # * {Types::DescribePredictorResponse#algorithm_arn #algorithm_arn} => String
1718
1728
  # * {Types::DescribePredictorResponse#forecast_horizon #forecast_horizon} => Integer
1729
+ # * {Types::DescribePredictorResponse#forecast_types #forecast_types} => Array&lt;String&gt;
1719
1730
  # * {Types::DescribePredictorResponse#perform_auto_ml #perform_auto_ml} => Boolean
1720
1731
  # * {Types::DescribePredictorResponse#perform_hpo #perform_hpo} => Boolean
1721
1732
  # * {Types::DescribePredictorResponse#training_parameters #training_parameters} => Hash&lt;String,String&gt;
@@ -1744,6 +1755,8 @@ module Aws::ForecastService
1744
1755
  # resp.predictor_name #=> String
1745
1756
  # resp.algorithm_arn #=> String
1746
1757
  # resp.forecast_horizon #=> Integer
1758
+ # resp.forecast_types #=> Array
1759
+ # resp.forecast_types[0] #=> String
1747
1760
  # resp.perform_auto_ml #=> Boolean
1748
1761
  # resp.perform_hpo #=> Boolean
1749
1762
  # resp.training_parameters #=> Hash
@@ -1807,7 +1820,7 @@ module Aws::ForecastService
1807
1820
  # Provides metrics on the accuracy of the models that were trained by
1808
1821
  # the CreatePredictor operation. Use metrics to see how well the model
1809
1822
  # performed and to decide whether to use the predictor to generate a
1810
- # forecast. For more information, see metrics.
1823
+ # forecast. For more information, see [Predictor Metrics][1].
1811
1824
  #
1812
1825
  # This operation generates metrics for each backtest window that was
1813
1826
  # evaluated. The number of backtest windows (`NumberOfBacktestWindows`)
@@ -1828,6 +1841,10 @@ module Aws::ForecastService
1828
1841
  #
1829
1842
  # </note>
1830
1843
  #
1844
+ #
1845
+ #
1846
+ # [1]: https://docs.aws.amazon.com/forecast/latest/dg/metrics.html
1847
+ #
1831
1848
  # @option params [required, String] :predictor_arn
1832
1849
  # The Amazon Resource Name (ARN) of the predictor to get metrics for.
1833
1850
  #
@@ -1854,6 +1871,10 @@ module Aws::ForecastService
1854
1871
  # resp.predictor_evaluation_results[0].test_windows[0].metrics.weighted_quantile_losses #=> Array
1855
1872
  # resp.predictor_evaluation_results[0].test_windows[0].metrics.weighted_quantile_losses[0].quantile #=> Float
1856
1873
  # resp.predictor_evaluation_results[0].test_windows[0].metrics.weighted_quantile_losses[0].loss_value #=> Float
1874
+ # resp.predictor_evaluation_results[0].test_windows[0].metrics.error_metrics #=> Array
1875
+ # resp.predictor_evaluation_results[0].test_windows[0].metrics.error_metrics[0].forecast_type #=> String
1876
+ # resp.predictor_evaluation_results[0].test_windows[0].metrics.error_metrics[0].wape #=> Float
1877
+ # resp.predictor_evaluation_results[0].test_windows[0].metrics.error_metrics[0].rmse #=> Float
1857
1878
  #
1858
1879
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/GetAccuracyMetrics AWS API Documentation
1859
1880
  #
@@ -2459,7 +2480,7 @@ module Aws::ForecastService
2459
2480
  params: params,
2460
2481
  config: config)
2461
2482
  context[:gem_name] = 'aws-sdk-forecastservice'
2462
- context[:gem_version] = '1.11.0'
2483
+ context[:gem_version] = '1.12.0'
2463
2484
  Seahorse::Client::Request.new(handlers, context)
2464
2485
  end
2465
2486
 
@@ -64,6 +64,8 @@ module Aws::ForecastService
64
64
  Double = Shapes::FloatShape.new(name: 'Double')
65
65
  EncryptionConfig = Shapes::StructureShape.new(name: 'EncryptionConfig')
66
66
  ErrorMessage = Shapes::StringShape.new(name: 'ErrorMessage')
67
+ ErrorMetric = Shapes::StructureShape.new(name: 'ErrorMetric')
68
+ ErrorMetrics = Shapes::ListShape.new(name: 'ErrorMetrics')
67
69
  EvaluationParameters = Shapes::StructureShape.new(name: 'EvaluationParameters')
68
70
  EvaluationResult = Shapes::StructureShape.new(name: 'EvaluationResult')
69
71
  EvaluationType = Shapes::StringShape.new(name: 'EvaluationType')
@@ -230,6 +232,7 @@ module Aws::ForecastService
230
232
  CreatePredictorRequest.add_member(:predictor_name, Shapes::ShapeRef.new(shape: Name, required: true, location_name: "PredictorName"))
231
233
  CreatePredictorRequest.add_member(:algorithm_arn, Shapes::ShapeRef.new(shape: Arn, location_name: "AlgorithmArn"))
232
234
  CreatePredictorRequest.add_member(:forecast_horizon, Shapes::ShapeRef.new(shape: Integer, required: true, location_name: "ForecastHorizon"))
235
+ CreatePredictorRequest.add_member(:forecast_types, Shapes::ShapeRef.new(shape: ForecastTypes, location_name: "ForecastTypes"))
233
236
  CreatePredictorRequest.add_member(:perform_auto_ml, Shapes::ShapeRef.new(shape: Boolean, location_name: "PerformAutoML"))
234
237
  CreatePredictorRequest.add_member(:perform_hpo, Shapes::ShapeRef.new(shape: Boolean, location_name: "PerformHPO"))
235
238
  CreatePredictorRequest.add_member(:training_parameters, Shapes::ShapeRef.new(shape: TrainingParameters, location_name: "TrainingParameters"))
@@ -374,6 +377,7 @@ module Aws::ForecastService
374
377
  DescribePredictorResponse.add_member(:predictor_name, Shapes::ShapeRef.new(shape: Name, location_name: "PredictorName"))
375
378
  DescribePredictorResponse.add_member(:algorithm_arn, Shapes::ShapeRef.new(shape: Arn, location_name: "AlgorithmArn"))
376
379
  DescribePredictorResponse.add_member(:forecast_horizon, Shapes::ShapeRef.new(shape: Integer, location_name: "ForecastHorizon"))
380
+ DescribePredictorResponse.add_member(:forecast_types, Shapes::ShapeRef.new(shape: ForecastTypes, location_name: "ForecastTypes"))
377
381
  DescribePredictorResponse.add_member(:perform_auto_ml, Shapes::ShapeRef.new(shape: Boolean, location_name: "PerformAutoML"))
378
382
  DescribePredictorResponse.add_member(:perform_hpo, Shapes::ShapeRef.new(shape: Boolean, location_name: "PerformHPO"))
379
383
  DescribePredictorResponse.add_member(:training_parameters, Shapes::ShapeRef.new(shape: TrainingParameters, location_name: "TrainingParameters"))
@@ -395,6 +399,13 @@ module Aws::ForecastService
395
399
  EncryptionConfig.add_member(:kms_key_arn, Shapes::ShapeRef.new(shape: KMSKeyArn, required: true, location_name: "KMSKeyArn"))
396
400
  EncryptionConfig.struct_class = Types::EncryptionConfig
397
401
 
402
+ ErrorMetric.add_member(:forecast_type, Shapes::ShapeRef.new(shape: ForecastType, location_name: "ForecastType"))
403
+ ErrorMetric.add_member(:wape, Shapes::ShapeRef.new(shape: Double, location_name: "WAPE"))
404
+ ErrorMetric.add_member(:rmse, Shapes::ShapeRef.new(shape: Double, location_name: "RMSE"))
405
+ ErrorMetric.struct_class = Types::ErrorMetric
406
+
407
+ ErrorMetrics.member = Shapes::ShapeRef.new(shape: ErrorMetric)
408
+
398
409
  EvaluationParameters.add_member(:number_of_backtest_windows, Shapes::ShapeRef.new(shape: Integer, location_name: "NumberOfBacktestWindows"))
399
410
  EvaluationParameters.add_member(:back_test_window_offset, Shapes::ShapeRef.new(shape: Integer, location_name: "BackTestWindowOffset"))
400
411
  EvaluationParameters.struct_class = Types::EvaluationParameters
@@ -548,8 +559,9 @@ module Aws::ForecastService
548
559
  ListTagsForResourceResponse.add_member(:tags, Shapes::ShapeRef.new(shape: Tags, location_name: "Tags"))
549
560
  ListTagsForResourceResponse.struct_class = Types::ListTagsForResourceResponse
550
561
 
551
- Metrics.add_member(:rmse, Shapes::ShapeRef.new(shape: Double, location_name: "RMSE"))
562
+ Metrics.add_member(:rmse, Shapes::ShapeRef.new(shape: Double, deprecated: true, location_name: "RMSE", metadata: {"deprecatedMessage"=>"This property is deprecated, please refer to ErrorMetrics for both RMSE and WAPE"}))
552
563
  Metrics.add_member(:weighted_quantile_losses, Shapes::ShapeRef.new(shape: WeightedQuantileLosses, location_name: "WeightedQuantileLosses"))
564
+ Metrics.add_member(:error_metrics, Shapes::ShapeRef.new(shape: ErrorMetrics, location_name: "ErrorMetrics"))
553
565
  Metrics.struct_class = Types::Metrics
554
566
 
555
567
  ParameterRanges.add_member(:categorical_parameter_ranges, Shapes::ShapeRef.new(shape: CategoricalParameterRanges, location_name: "CategoricalParameterRanges"))
@@ -652,6 +652,7 @@ module Aws::ForecastService
652
652
  # predictor_name: "Name", # required
653
653
  # algorithm_arn: "Arn",
654
654
  # forecast_horizon: 1, # required
655
+ # forecast_types: ["ForecastType"],
655
656
  # perform_auto_ml: false,
656
657
  # perform_hpo: false,
657
658
  # training_parameters: {
@@ -737,9 +738,9 @@ module Aws::ForecastService
737
738
  #
738
739
  # * `arn:aws:forecast:::algorithm/ARIMA`
739
740
  #
740
- # * `arn:aws:forecast:::algorithm/Deep_AR_Plus`
741
+ # * `arn:aws:forecast:::algorithm/CNN-QR`
741
742
  #
742
- # Supports hyperparameter optimization (HPO)
743
+ # * `arn:aws:forecast:::algorithm/Deep_AR_Plus`
743
744
  #
744
745
  # * `arn:aws:forecast:::algorithm/ETS`
745
746
  #
@@ -761,6 +762,15 @@ module Aws::ForecastService
761
762
  # of the TARGET\_TIME\_SERIES dataset length.
762
763
  # @return [Integer]
763
764
  #
765
+ # @!attribute [rw] forecast_types
766
+ # Specifies the forecast types used to train a predictor. You can
767
+ # specify up to five forecast types. Forecast types can be quantiles
768
+ # from 0.01 to 0.99, by increments of 0.01 or higher. You can also
769
+ # specify the mean forecast with `mean`.
770
+ #
771
+ # The default value is `["0.10", "0.50", "0.9"]`.
772
+ # @return [Array<String>]
773
+ #
764
774
  # @!attribute [rw] perform_auto_ml
765
775
  # Whether to perform AutoML. When Amazon Forecast performs AutoML, it
766
776
  # evaluates the algorithms it provides and chooses the best algorithm
@@ -790,11 +800,11 @@ module Aws::ForecastService
790
800
  # hyperparameter. In this case, you are required to specify an
791
801
  # algorithm and `PerformAutoML` must be false.
792
802
  #
793
- # The following algorithm supports HPO:
803
+ # The following algorithms support HPO:
794
804
  #
795
805
  # * DeepAR+
796
806
  #
797
- # ^
807
+ # * CNN-QR
798
808
  # @return [Boolean]
799
809
  #
800
810
  # @!attribute [rw] training_parameters
@@ -877,6 +887,7 @@ module Aws::ForecastService
877
887
  :predictor_name,
878
888
  :algorithm_arn,
879
889
  :forecast_horizon,
890
+ :forecast_types,
880
891
  :perform_auto_ml,
881
892
  :perform_hpo,
882
893
  :training_parameters,
@@ -1731,6 +1742,11 @@ module Aws::ForecastService
1731
1742
  # also called the prediction length.
1732
1743
  # @return [Integer]
1733
1744
  #
1745
+ # @!attribute [rw] forecast_types
1746
+ # The forecast types used during predictor training. Default value is
1747
+ # `["0.1","0.5","0.9"]`
1748
+ # @return [Array<String>]
1749
+ #
1734
1750
  # @!attribute [rw] perform_auto_ml
1735
1751
  # Whether the predictor is set to perform AutoML.
1736
1752
  # @return [Boolean]
@@ -1742,10 +1758,9 @@ module Aws::ForecastService
1742
1758
  #
1743
1759
  # @!attribute [rw] training_parameters
1744
1760
  # The default training parameters or overrides selected during model
1745
- # training. If using the AutoML algorithm or if HPO is turned on while
1746
- # using the DeepAR+ algorithms, the optimized values for the chosen
1747
- # hyperparameters are returned. For more information, see
1748
- # aws-forecast-choosing-recipes.
1761
+ # training. When running AutoML or choosing HPO with CNN-QR or
1762
+ # DeepAR+, the optimized values for the chosen hyperparameters are
1763
+ # returned. For more information, see aws-forecast-choosing-recipes.
1749
1764
  # @return [Hash<String,String>]
1750
1765
  #
1751
1766
  # @!attribute [rw] evaluation_parameters
@@ -1830,6 +1845,7 @@ module Aws::ForecastService
1830
1845
  :predictor_name,
1831
1846
  :algorithm_arn,
1832
1847
  :forecast_horizon,
1848
+ :forecast_types,
1833
1849
  :perform_auto_ml,
1834
1850
  :perform_hpo,
1835
1851
  :training_parameters,
@@ -1884,6 +1900,32 @@ module Aws::ForecastService
1884
1900
  include Aws::Structure
1885
1901
  end
1886
1902
 
1903
+ # Provides detailed error metrics to evaluate the performance of a
1904
+ # predictor. This object is part of the Metrics object.
1905
+ #
1906
+ # @!attribute [rw] forecast_type
1907
+ # Forecast types can be quantiles from 0.01 to 0.99 (by increments of
1908
+ # 0.01), and the mean.
1909
+ # @return [String]
1910
+ #
1911
+ # @!attribute [rw] wape
1912
+ # The weighted absolute percentage error (WAPE).
1913
+ # @return [Float]
1914
+ #
1915
+ # @!attribute [rw] rmse
1916
+ # The root-mean-square error (RMSE).
1917
+ # @return [Float]
1918
+ #
1919
+ # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/ErrorMetric AWS API Documentation
1920
+ #
1921
+ class ErrorMetric < Struct.new(
1922
+ :forecast_type,
1923
+ :wape,
1924
+ :rmse)
1925
+ SENSITIVE = []
1926
+ include Aws::Structure
1927
+ end
1928
+
1887
1929
  # Parameters that define how to split a dataset into training data and
1888
1930
  # testing data, and the number of iterations to perform. These
1889
1931
  # parameters are specified in the predefined algorithms but you can
@@ -2146,6 +2188,11 @@ module Aws::ForecastService
2146
2188
  # * `backfill`\: `zero`, `value`, `median`, `mean`, `min`, `max`
2147
2189
  #
2148
2190
  # * `futurefill`\: `zero`, `value`, `median`, `mean`, `min`, `max`
2191
+ #
2192
+ # To set a filling method to a specific value, set the fill parameter
2193
+ # to `value` and define the value in a corresponding `_value`
2194
+ # parameter. For example, to set backfilling to a value of 2, include
2195
+ # the following: `"backfill": "value"` and `"backfill_value":"2"`.
2149
2196
  # @return [Hash<String,String>]
2150
2197
  #
2151
2198
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/FeaturizationMethod AWS API Documentation
@@ -3002,7 +3049,7 @@ module Aws::ForecastService
3002
3049
  # predictor. This object is part of the WindowSummary object.
3003
3050
  #
3004
3051
  # @!attribute [rw] rmse
3005
- # The root mean square error (RMSE).
3052
+ # The root-mean-square error (RMSE).
3006
3053
  # @return [Float]
3007
3054
  #
3008
3055
  # @!attribute [rw] weighted_quantile_losses
@@ -3011,11 +3058,17 @@ module Aws::ForecastService
3011
3058
  # this case is the loss function.
3012
3059
  # @return [Array<Types::WeightedQuantileLoss>]
3013
3060
  #
3061
+ # @!attribute [rw] error_metrics
3062
+ # Provides detailed error metrics on forecast type, root-mean
3063
+ # square-error (RMSE), and weighted average percentage error (WAPE).
3064
+ # @return [Array<Types::ErrorMetric>]
3065
+ #
3014
3066
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/Metrics AWS API Documentation
3015
3067
  #
3016
3068
  class Metrics < Struct.new(
3017
3069
  :rmse,
3018
- :weighted_quantile_losses)
3070
+ :weighted_quantile_losses,
3071
+ :error_metrics)
3019
3072
  SENSITIVE = []
3020
3073
  include Aws::Structure
3021
3074
  end
@@ -3381,39 +3434,10 @@ module Aws::ForecastService
3381
3434
  # Describes a supplementary feature of a dataset group. This object is
3382
3435
  # part of the InputDataConfig object.
3383
3436
  #
3384
- # The only supported feature is a holiday calendar. If you use the
3385
- # calendar, all data in the datasets should belong to the same country
3386
- # as the calendar. For the holiday calendar data, see the [Jollyday][1]
3387
- # web site.
3388
- #
3389
- # India and Korea's holidays are not included in the Jollyday library,
3390
- # but both are supported by Amazon Forecast. Their holidays are:
3391
- #
3392
- # **"IN" - INDIA**
3393
- #
3394
- # * `JANUARY 26 - REPUBLIC DAY`
3395
- #
3396
- # * `AUGUST 15 - INDEPENDENCE DAY`
3397
- #
3398
- # * `OCTOBER 2 GANDHI'S BIRTHDAY`
3399
- #
3400
- # **"KR" - KOREA**
3401
- #
3402
- # * `JANUARY 1 - NEW YEAR`
3403
- #
3404
- # * `MARCH 1 - INDEPENDENCE MOVEMENT DAY`
3405
- #
3406
- # * `MAY 5 - CHILDREN'S DAY`
3407
- #
3408
- # * `JUNE 6 - MEMORIAL DAY`
3409
- #
3410
- # * `AUGUST 15 - LIBERATION DAY`
3411
- #
3412
- # * `OCTOBER 3 - NATIONAL FOUNDATION DAY`
3413
- #
3414
- # * `OCTOBER 9 - HANGEUL DAY`
3415
- #
3416
- # * `DECEMBER 25 - CHRISTMAS DAY`
3437
+ # The only supported feature is Holidays. If you use the calendar, all
3438
+ # data in the datasets should belong to the same country as the
3439
+ # calendar. For the holiday calendar data, see the [Jollyday][1]
3440
+ # website.
3417
3441
  #
3418
3442
  #
3419
3443
  #
@@ -3434,19 +3458,35 @@ module Aws::ForecastService
3434
3458
  # @!attribute [rw] value
3435
3459
  # One of the following 2 letter country codes:
3436
3460
  #
3461
+ # * "AL" - ALBANIA
3462
+ #
3437
3463
  # * "AR" - ARGENTINA
3438
3464
  #
3439
3465
  # * "AT" - AUSTRIA
3440
3466
  #
3441
3467
  # * "AU" - AUSTRALIA
3442
3468
  #
3469
+ # * "BA" - BOSNIA HERZEGOVINA
3470
+ #
3443
3471
  # * "BE" - BELGIUM
3444
3472
  #
3473
+ # * "BG" - BULGARIA
3474
+ #
3475
+ # * "BO" - BOLIVIA
3476
+ #
3445
3477
  # * "BR" - BRAZIL
3446
3478
  #
3479
+ # * "BY" - BELARUS
3480
+ #
3447
3481
  # * "CA" - CANADA
3448
3482
  #
3449
- # * "CN" - CHINA
3483
+ # * "CL" - CHILE
3484
+ #
3485
+ # * "CO" - COLOMBIA
3486
+ #
3487
+ # * "CR" - COSTA RICA
3488
+ #
3489
+ # * "HR" - CROATIA
3450
3490
  #
3451
3491
  # * "CZ" - CZECH REPUBLIC
3452
3492
  #
@@ -3454,38 +3494,82 @@ module Aws::ForecastService
3454
3494
  #
3455
3495
  # * "EC" - ECUADOR
3456
3496
  #
3497
+ # * "EE" - ESTONIA
3498
+ #
3499
+ # * "ET" - ETHIOPIA
3500
+ #
3457
3501
  # * "FI" - FINLAND
3458
3502
  #
3459
3503
  # * "FR" - FRANCE
3460
3504
  #
3461
3505
  # * "DE" - GERMANY
3462
3506
  #
3507
+ # * "GR" - GREECE
3508
+ #
3463
3509
  # * "HU" - HUNGARY
3464
3510
  #
3465
- # * "IE" - IRELAND
3511
+ # * "IS" - ICELAND
3466
3512
  #
3467
3513
  # * "IN" - INDIA
3468
3514
  #
3515
+ # * "IE" - IRELAND
3516
+ #
3469
3517
  # * "IT" - ITALY
3470
3518
  #
3471
3519
  # * "JP" - JAPAN
3472
3520
  #
3521
+ # * "KZ" - KAZAKHSTAN
3522
+ #
3473
3523
  # * "KR" - KOREA
3474
3524
  #
3525
+ # * "LV" - LATVIA
3526
+ #
3527
+ # * "LI" - LIECHTENSTEIN
3528
+ #
3529
+ # * "LT" - LITHUANIA
3530
+ #
3475
3531
  # * "LU" - LUXEMBOURG
3476
3532
  #
3533
+ # * "MK" - MACEDONIA
3534
+ #
3535
+ # * "MT" - MALTA
3536
+ #
3477
3537
  # * "MX" - MEXICO
3478
3538
  #
3539
+ # * "MD" - MOLDOVA
3540
+ #
3541
+ # * "ME" - MONTENEGRO
3542
+ #
3479
3543
  # * "NL" - NETHERLANDS
3480
3544
  #
3545
+ # * "NZ" - NEW ZEALAND
3546
+ #
3547
+ # * "NI" - NICARAGUA
3548
+ #
3549
+ # * "NG" - NIGERIA
3550
+ #
3481
3551
  # * "NO" - NORWAY
3482
3552
  #
3553
+ # * "PA" - PANAMA
3554
+ #
3555
+ # * "PY" - PARAGUAY
3556
+ #
3557
+ # * "PE" - PERU
3558
+ #
3483
3559
  # * "PL" - POLAND
3484
3560
  #
3485
3561
  # * "PT" - PORTUGAL
3486
3562
  #
3563
+ # * "RO" - ROMANIA
3564
+ #
3487
3565
  # * "RU" - RUSSIA
3488
3566
  #
3567
+ # * "RS" - SERBIA
3568
+ #
3569
+ # * "SK" - SLOVAKIA
3570
+ #
3571
+ # * "SI" - SLOVENIA
3572
+ #
3489
3573
  # * "ZA" - SOUTH AFRICA
3490
3574
  #
3491
3575
  # * "ES" - SPAIN
@@ -3494,9 +3578,17 @@ module Aws::ForecastService
3494
3578
  #
3495
3579
  # * "CH" - SWITZERLAND
3496
3580
  #
3581
+ # * "UA" - UKRAINE
3582
+ #
3583
+ # * "AE" - UNITED ARAB EMIRATES
3584
+ #
3497
3585
  # * "US" - UNITED STATES
3498
3586
  #
3499
3587
  # * "UK" - UNITED KINGDOM
3588
+ #
3589
+ # * "UY" - URUGUAY
3590
+ #
3591
+ # * "VE" - VENEZUELA
3500
3592
  # @return [String]
3501
3593
  #
3502
3594
  # @see http://docs.aws.amazon.com/goto/WebAPI/forecast-2018-06-26/SupplementaryFeature AWS API Documentation
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: aws-sdk-forecastservice
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.11.0
4
+ version: 1.12.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Amazon Web Services
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2020-09-30 00:00:00.000000000 Z
11
+ date: 2020-11-11 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: aws-sdk-core